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Abstract 

The emergent properties that arise from self-assembly and molecular recognition phenomena are a 

direct consequence of non-covalent interactions. While gas-phase measurements and computational 

methods point to the dominance of dispersion forces in molecular association, solvent effects 

complicate the unambiguous quantification of these forces in solution. Here we have used synthetic 

molecular balances to measure interactions between apolar alkyl chains in 31 organic, fluorous and 

aqueous solvent environments. The experimental interaction energies are an order of magnitude 

smaller than estimates of dispersion forces between alkyl chains that have been derived from 

vaporisation enthalpies and dispersion-corrected calculations. Instead, it was found that cohesive 

solvent-solvent interactions are the major driving force behind apolar association in solution. The 

results suggest that theoretical models which implicate important roles for dispersion forces in 

molecular recognition events should be interpreted with caution in solvent-accessible systems. 

 

Introduction 

Dispersion forces are the attractive component of the van der Waals force that arise from correlated 

interactions between charge fluctuations in the electron distributions of atoms.
1
 Dispersion forces have 

been invoked in protein folding
2
 and as major factors in determining the properties of nanostructured 

materials;
3,4

 from stabilising the longest known carbon-carbon bond
5
, to governing the structure of 

carbon nanotubes
6
 and the wetting transparency of graphene

7,8
. Beyond the molecular scale, van der 

Waals forces give rise to the Casimir effect
9,10

, and have been implicated in the mechanisms of 

anaesthesia
11

 and gecko adhesion
12

. 

Since alkanes cannot form significant cohesive polar interactions such as hydrogen bonds, the 

enthalpy associated with the phase transition from liquid to gas (Hvap) can be considered as a direct 

measurement of the dispersion component of the van der Waals force. Hvap changes by an average of 

4 kJ mol
–1

 for each CH2 unit added between methane and n-hexane (Supplementary Table S4). Since 

this energy is comparable to the strength of a hydrogen bond between two amides in chloroform
13

, this 

conflicts with the widely held view that van der Waals interactions are weak compared to hydrogen 

bonds
4,14-16

. 

One explanation for this apparent discrepancy is that dispersion forces are difficult to measure due to 

complications arising from solvent effects
15,17,18

. Thus, experimental studies capable of revealing the 

significance of dispersion forces in solution are highly sought-after
19-23

. The unambiguous assignment 

of the individual factors contributing to molecular recognition requires systems that are structurally 

well-defined enough that the role of specific molecular contacts can be determined. Furthermore, few 
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supramolecular model systems are amenable to the systematic investigation of solvent effects since 

both solubility and association constants change dramatically as the solvent is varied. Most studies of 

dispersion forces have therefore been performed in the gas phase or derived from theory
16,24,25

. Ab 

initio-correlated wavefunction methods capable of modelling dispersion forces are particularly 

computationally demanding, and considerable research effort is being directed towards the 

development of DFT methods that are able to approximate dispersion forces (DFT-D)
26-28

. Moving 

forward, modelling dispersion forces in solution will provide an even greater computational challenge. 

Thus, the question remains, how much do dispersion forces contribute to molecular recognition in 

solution? 

 

 

Figure 1. Folding equilibrium for a molecular balance in solution. The position of the folding 

equilibrium (Kfold) in molecular balance (±)-1 is determined by the relative energies of intramolecular 

interactions, desolvation and solvophobic effects. If intramolecular van der Waals dispersion forces, 

and/or solvophobic interactions dominate then the conformer on the right-hand side of the equilibrium 

would be preferred. However, if solvent competition dominates then the equilibrium would lie to the 

left. 

 

Molecular balances provide a useful means of measuring weak non-covalent interactions since the 

position of the conformational equilibrium is governed by the relative energies of intramolecular 

interactions and solvent interactions in the folded and unfolded conformations (Figure 1)
29,30

.  In this 

study we have employed modified versions of Wilcox’s classic molecular torsion balance, which 

provides a convenient framework for positioning functional groups in close proximity in the folded 

conformation (Figure 1)
31-34

. 

The key structural feature with regards to the current investigation of dispersion forces is the contact 

formed between the alkyl chains in the folded conformation of molecular balance (±)-1 (Figure 1). 

This extended alkyl-alkyl contact is intended to maximise the contribution of dispersion forces on the 

position of the conformational equilibrium, while electrostatic effects are expected to be minimal due 
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to the apolar nature of the alkyl chains (Supplementary Fig. S11). Pleasingly, our X-ray crystal 

structure of compound (±)-1 confirmed that the alkyl chains are able to come into contact in the folded 

conformation (Figure 2a). 

 

 

Figure 2. The crystal structure of compound (±)-1 showing alkyl-alkyl contacts. a) The structure 

(CCDC deposition number 898520) shows that the alkyl chains in compound (±)-1 are able to come 

into contact in a geometry close to a conformational energy minimum. This is evidenced by the fact 

that the alkyl-alkyl contact in  compound (±)-1 closely resembles that found in an unrelated compound 

in the Cambridge Structural Database (as shown in b).
35

 

 

Although some disorder is observed (see Supplementary Information), the similarity of this contact to 

others found in the Cambridge Structural Database (Figure 2b) suggests that balance (±)-1 is able to 

accommodate an alkyl-alkyl contact that lies close to a conformational energy minimum.
35

  

In common with many other molecular balances, the Wilcox balance features a slowly rotating bond 

that gives rise to distinct NMR signals corresponding to the unfolded and the folded states. Each peak 

can be integrated to determine the free energy difference between the two conformers in a range of 

solvents using G = –RT lnKfold
29

. However, the folding free energy of compound (±)-1 alone is not 

sufficient to measure the free energy associated with formation of the alkyl-alkyl contact, since the 

position of the conformational equilibrium may also be influenced by the edge-to-face aromatic 

interaction in the folded conformation and other secondary interactions and solvent effects
32,34,36,37

. 

Thus, control compounds (±)-2 to (±)-4 were also synthesised such that the contribution of the alkyl-

alkyl contact to the folding free energy could be determined as the solvent was varied. 

Thermodynamic double-mutant cycles provide one possible approach for dissecting-out the magnitude 

of the alkyl-alkyl interaction energies as the solvent is varied (Figure 3)
32-34,38

.  Application of this 

approach assumes that the structure of the core of the balance is unperturbed by the removal of alkyl 
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substituents in the control balances, and that the free energy of the alkyl-alkyl interaction and 

secondary effects on the position of the balance are approximately additive.
38

 The validity of the 

structural requirement at the core of the molecular balance is supported by crystallographic data from 

the current study which is similar to that of other phenyl-substituted Wilcox torsion balances
32-34

. 

Support for the approximate additivity of the interacting components comes from previous studies that 

have employed double-mutant cycles in combination with Wilcox torsion balances 
32-34

, combined 

with the small differences in the experimental folding free energies of the control balances (±)-2 to 

(±)-4 (Figure 4). This is consistent with the very small changes in the electrostatic potentials of phenyl 

rings upon substitution with alkyl groups (minima change from –89 to –95 kJ mol
–1

 and maxima 

change from +65 to +60 kJ mol
–1

, Supplementary Fig. S11).  

 

 

Figure 3. Thermodynamic double-mutant cycle used to isolate experimental alkyl-alkyl 

interaction energies (∆GDMC). An estimate of the alkyl-alkyl interaction energy of interest can be 

made by chemical mutations that remove it. A single mutation (e.g. comparing the folding free energy 

of compound (±)-1 to that of either compound (±)-2, or (±)-3) could be sufficient, but such an 

approach may not take into account secondary effects such as a change in the strength of the aromatic 

edge-to-face interaction upon removal of an alkyl chain. The folding energy of the double-mutant 

compound (±)-4 allows any such secondary effects to be quantified, and thus, the free energy 

difference of any two parallel mutations equates to the dissected alkyl-alkyl interaction energy  in the 

presence of any associated solvent effects. 
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Figure 4. Experimental folding free energies (∆G) for compounds (±)-1 to (±)-4 (coloured bars) 

and alkyl-alkyl interaction energies (∆GDMC) dissected using the equation shown in Figure 3 

(hollow black bars). The small magnitude of the dissected alkyl-alkyl interaction energies are 

particularly notable when compared to the much larger energies associated with experimental 

enthalpies of vaporisation for alkanes and computational estimates of alkyl-alkyl interactions in the 

gas-phase. Deuterated solvents were used in place of all protic solvents. Free energies have an error of 

< ±0.12 kJ mol
–1

 unless indicated otherwise, and relate to the error associated with integration of 

NMR peaks (see Supplementary Information for details). Similar magnitudes and solvent trends are 

seen when alkyl-alkyl interaction energies were dissected using an alternative approach (See 

Supplementary Information and Fig. S1, Table S1 for details). Percentages refer to (v/v) solvent 

mixture. DMSO corresponds to dimethylsulfoxide and THF to tetrahydrofuran. 

 

Furthermore, an alternative method of dissecting alkyl-alkyl interaction free energies gave similar 

energies and trends to those obtained via the double-mutant cycle approach (see Supporting 

Information for details). 

 

Results and discussion 

The experimental folding energies of compounds (±)-1 to (±)-4 were determined in 31 different 

solvents and solvent mixtures. The most immediate observation arising from the analysis is that the 

alkyl-alkyl interaction energies dissected using the double-mutant cycle approach (GDMC) are all 
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small in magnitude (hollow black bars in Figure 4). Alkyl-alkyl interactions are found to be slightly 

disfavoured in apolar organic solvents (less than +1 kJ mol
–1

) (Figure 4a), but slightly favoured (up to 

–1 kJ mol
–1

) in the more polar organic solvents (Figures 4b). The measured alkyl-alkyl association 

energy was still only ~ –1 kJ mol
–1

, in tetrahydrofuran(THF) / 40% D2O (v/v) solution (which equates 

to 75 mol% of D2O) where hydrophobic effects are likely to make a large contribution to the folding 

free energies (Figure 4c) 
39,40,41

. 

The small alkyl-alkyl interaction energies measured here contrast greatly with estimates of dispersion 

interactions derived from enthalpies of vaporisation (Hvap = 29 kJ mol
–1

 for n-hexane, Supplementary 

Table S4), and ab initio-correlated, and DFT-D calculations (which predict hexane dimers to have a 

stability of approximately –14 kJ mol
–1

 in the gas-phase)
42,43

. Similarly, calculations performed on 

alkanes containing enforced intramolecular alkyl-alkyl contacts (where solvent molecules cannot 

interpenetrate), have also shown that dispersion forces must be taken into account in the accurate 

prediction of bond energies
5
. In direct contrast, gas phase DFT-D methods dramatically overestimate 

favourable folding free energies for our solvent-exposed molecular balances by tens of kJ mol
–1 27,28

, 

but the predictions of standard Hartree Fock  and DFT/B3LYP methods (which do not take dispersion 

forces into account) are much closer to the experimentally determined folding free energies 

(Supplementary Table S3). 

The most likely explanation for the order of magnitude difference between the very small alkyl-alkyl 

interaction energies measured in this study compared to the large energies derived from enthalpies of 

vaporisation and computational methods is that dispersion forces are effectively cancelled by 

competitive dispersion interactions with the solvent, although other factors that might contribute to the 

large energy differences should also be considered. Firstly, the enthalpy of vaporisation involves 

breaking dispersive contacts on all sides of a molecule on the transition from solution to the gas phase, 

while alkyl-alkyl contacts can only be formed on one face of each alkyl-chain in compound (±)-1. 

Secondly, computational alkyl-alkyl energies do not take into account entropy, while the alkane chains 

in compound (±)-1 have a high degree of conformational flexibility, and thus may not always be in 

contact in solution. An assessment of possible entropic contributions was made by measuring the 

folding free energies of balances (±)-1 to (±)-4 in ethanol-d6 as the temperature was varied. The 

determined –TS values were small and unremarkable,
34

 being the same within error and only ranging 

between +0.3 to +0.9 kJ mol
 –1

 (Supplementary Fig. S10 and Table S2). 

Evidence for the role of solvent cohesion (i.e. solvophobic effects) in driving apolar association can be 

seen when dissected alkyl-alkyl interaction energies are plotted against the cohesive energy densities 

(ced) (Figure 5) and the Hildebrand solubility parameters (H) of each solvent (Supplementary Fig. 

S13), which are related to each other and Hvap as follows: 
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   √    √
        

  
 

where R is the gas constant and Vm is the molar volume of a particular solvent at temperature, T 
44-46

. 

 

 

Figure 5. Experimental alkyl-alkyl interaction free energies (∆GDMC) measured in a range of 

solvents with different cohesive energy densities. Large cohesive energy densities arise due to 

strong cohesive interactions between solvent molecules, thus the correlation with the experimentally 

determined alkyl-alkyl interaction energies indicates that cohesive solvent-solvent interactions 

(solvophobic effects) provide a driving force for the association of apolar alkyl chains in solution. 

Supplementary Table S5 lists all data shown. Solid grey points correspond to perfluorinated solvents, 

and the R
2
 value refers to all black filled points. Errors bars indicate the error associated with 

integration of NMR peaks (see Supporting Information for details). Due to overlapping NMR peaks, 

the error in ∆GDMC for perfluoropyridine (ced = 74 cal cm
–3

) is ±1.4 kJ mol
–1

 and the error bar has 

been omitted for clarity.  The estimated ∆GDMC value for D2O (at 550 cal cm
–3

) was extrapolated from 

THF/D2O dilutions (Supplementary Figs. S2-S5).  

 

Figure 5, shows that favourable alkyl-alkyl interactions are seen in solvents with higher cohesive 

energy densities (particularly in the case of dimethylsulfoxide (DMSO) and the tetrahydrofuran/water 

mixtures). It is interesting to note that interaction profiles derived from s and s hydrogen-bond 

donor and acceptor constants have previously predicted favourable alkyl-alkyl association to occur in 

dimethylsulfoxide as a result of solvophobic effects
13

. Indeed, the product of s and s hydrogen-bond 
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constants give a reasonable correlation with Gexp for those solvents where hydrogen bond parameters 

are known (R
2
 = 0.80, Supplementary Fig. S12)

13
. 

Perfluorinated solvents often exhibit different properties to organic solvents that are attributed to the 

low polarisability of fluorine atoms compared to hydrocarbons. For example, while chloroform, 

ethanol and acetone are immiscible with perfluorohexane, but miscible with carbon disulfide, the 

perfluorohexyl solvents are fully miscible with one another, but form immiscible phases with carbon 

disulfide (Supplementary Fig. S14). Despite these miscibility differences, the alkyl-alkyl association 

energies measured in the perfluorinated solvents are within error of those measured in the organic 

solvents (Figure 4d). Nonetheless, alkyl-alkyl association in the perfluoroalkyl solvents appear as 

marginal outliers on Figure 5 (ced ~35 cal cm
– 3

). Clearly, any influence on alkyl-alkyl association due 

to dispersion differences in these perfluorohexane/ perfluorohexyl iodide mixtures are small enough 

that they are on the limit of detection using the current approach. 

In summary, we have presented experimental measurements of alkyl-alkyl interactions in solution, 

which appear consistent with a very large cancellation of dispersion forces due to competitive 

dispersion interactions with the solvent. Even though experimental enthalpies of vaporisation and 

high-level calculations which take dispersion forces into account show that dispersion forces are not 

weak in their own right, the present findings appear consistent with the view that dispersion forces are 

“weak” in solution, and support the hypothesis that there is little net change in dispersion forces when 

a molecular recognition event involves a rearrangement of the molecular surfaces in 

contact
13,14,18,45,47,48

. The results suggest that the degree of cancellation is only weakly dependent upon 

the dispersive properties of the solvent, and are in agreement with the proposal that cohesive solvent 

interactions (i.e. solvophobic effects) have a dominant role in driving the association of apolar 

groups 
45

. It should be noted that the cancellation of dispersion forces is likely to be highly dependent 

on the solvent accessibility of the interacting molecular surfaces. As Rebek has pointed out, most 

organic solvents consist of approximately 45% free space
49

, so a net gain in dispersion interactions 

may be possible when extended complementary surfaces are brought into contact
50

, or when cavities 

within binding sites cannot be effectively solvated
4,22,23,51,52

.  In addition, there is evidence to suggest 

that larger dispersion contributions might be seen when functional groups with higher molecular 

polarisabilities are brought into contact
19

, particularly in solvents with lower polarisabilities. Should 

the conclusions derived from the present study prove to be generally applicable, then this suggests 

that computational models which take dispersion forces into account should be used with caution in 

situations where competitive dispersion interactions with the solvent can occur. 
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