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Abstract— This paper considers the effect of spatial correlation
between transmit antennas on the sum-rate capacity of the MIMO
broadcast channel (i.e., downlink of a cellular system). Specifically,
for a system with a large number of users n, we analyze the scaling
laws of the sum-rate for the dirty paper coding and for different
types of beamforming transmission schemes. When the channel is
i.i.d., it has been shown that for large n, the sum rate is equal to
M log log n + M log P

M
+ o(1) where M is the number of transmit

antennas, P is the average signal to noise ratio, and o(1) refers to
terms that go to zero as n → ∞. When the channel exhibits some
spatial correlation with a covariance matrix R (non-singular with
tr(R) = M ), we prove that the sum rate of dirty paper coding is
M log log n+M log P

M
+log det(R)+o(1). We further show that the

sum-rate of various beamforming schemes achieves M log log n +
M log P

M
+ M log c + o(1) where c ≤ 1 depends on the type of

beamforming. We can in fact compute c for random beamforming
proposed in [12] and more generally, for random beamforming with
precoding in which beams are pre-multiplied by a fixed matrix.
Simulation results are presented at the end of the paper.

I. INTRODUCTION

Multiple input multiple output (MIMO) communication has

been the focus of a lot of research which basically demonstrated

that the capacity of a point to point MIMO link increases linearly

with the number of transmit and receive antennas. Research

focus has shifted recently to the role of multiple antennas

in multiuser systems, especially broadcast scenarios (i.e., one
to many communication) as downlink scheduling is the major

bottleneck for future broadband wireless networks. An overview

of the research on this problem can be found in [13], [4], [1].

In these scenarios, when multiple users are present, one is usu-

ally interested in 1) quantifying the maximum possible sum rate

to all users and 2) devising computationally efficient algorithms

for capturing most of this rate. The first question was settled

recently by using dirty paper coding (DPC) [8]. While DPC

solves the broadcast problem optimally, it is computationally

expensive and requires a great deal of feedback as the transmitter

needs perfect channel state information for all users [13], [1].

There has been increased interest recently to devise simple

techniques that utilize multiuser diversity and achieve a sum-

rate close to the sum-rate capacity of the MIMO broadcast

channel (see, e.g., [9], [12], [8], [3], [4]). The scheme proposed in

[12], known as opportunistic multiple beamforming (or random
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beamforming), has been proved to asymptotically maximize the

sum-rate (or throughput) of the downlink of single antenna

cellular systems by transmitting to the users with the best channel

conditions for a given set of random beams. The gain of this

and other beamforming schemes can be attributed to multiuser

diversity– each user experiences a different channel and therefore

the transmitter can exploit this variation and choose the users

that have the best channel conditions. Clearly, the multiuser gain

would be specially magnified when the channels between the

transmitter and the users are changing independently.

In this paper we focus on a multi-antenna downlink channel

in the presence of correlation between transmit antennas. This

correlation is caused by local scatterers around the base station

or the fact that the transmit antennas in the base station are

not spaced far enough to create independent channels. The

overriding question then is to analyze the effect of this correlation

on the sum-rate of DPC and various beamforming scheduling

techniques.

Specifically, we consider three variations of random beam-

forming, namely, random beamforming with channel whitening,

beamforming with general precoding, and deterministic beam-

forming. In the first, the transmitter spatially whitens the channel

and then uses random beamforming. In random beamforming

with precoding, the transmitter employs a more general precod-

ing matrix. In both of these transmission schemes, the transmitted

signal needs to be scaled properly to maintain the average power

constraint. Finally, in deterministic beamforming, as its names

suggests, we use a fixed beamformer for all channel uses in place

of the randomly varying one.

When the number of users is large and there is no correlation,

the sum rate for DPC and random beamforming asymptotically

coincide [12]

R = M log log n + M log
P

M
+ o(1) (1)

where n is the number of users, M is the number of transmit

antennas, and P is the average signal to noise ratio, and o(1)
represents terms that go to zero as n → ∞. It turn out that this

is not the case for the channel with transmit correlation. In this

case, the sum-rate can be written as

M log log n + M log
P

M
+ M log c + o(1) (2)

where the constant 0 < c ≤ 1 (which refers to the sum-rate loss

due to correlation) depends on the scheduling scheme and the

eigenvalues of the covariance matrix R.
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II. CHANNEL MODEL AND PROBLEM FORMULATION

In this paper we consider a multi-antenna Gaussian broadcast

channel with n receivers equipped with one antenna and a

transmitter (base station) with M antennas. Let S(t) be the M×1
vector of the transmit symbols at time slot t, and let Yi(t) be

the received signal at the i’th receiver. We can then write the

received signal at the i’th user as

Yi(t) =
√

PHiS(t) + Wi, i = 1, . . . , n, (3)

where Wi is the additive noise which is complex Gaussian with

zero mean and unit variance, CN(0, 1). Moreover, S(t) is the

transmit symbol satisfying the power constraint E{S∗S} = 1.

Here P is the transmit power (or equivalently the average

SNR considering the normalization for the noise and channel

variances).

The channel Hi is a 1 × M complex channel vector, known

perfectly to the receiver, and distributed as CN(0,R). The

M × M covariance matrix R is a measure of the spatial

correlation and is assumed to be non-singular with tr(R) = M
1. We also assume that Hi follows a block fading model, i.e.,

it remains constant during a coherence interval T and varies

independently from one such interval to the next. We finally

note that the channel is identically distributed across users but

is independent from one user to another.

III. REVIEW OF TRANSMISSION SCHEMES IN THE

DOWNLINK

A. Dirty Paper Coding (DPC)

The capacity region of the multi-antenna broadcast channel is

achieved by dirty paper coding when full channel state informa-

tion (CSI) is available to the transmitter and users. Intuitively, if

the transmitter knows the channels of all users, it can use DPC to

pre-subtract the interference for each user while preserving the

average power constraint. More precisely, the sum rate capacity,

RDPC , can be written as (see [8] and the references therein),

RDPC = E

{
max

{P1,...,Pn,
�

tr(Pi)≤P}
log det

(
1 +

n∑
i=1

H∗
i PiHi

)}
(4)

In a system with a large number of users n, and for fixed M
and P, it has been shown that the sum-rate of DPC behaves as

in (1), when there is no spatial correlation, i.e., R = I [12].

Scaling of the sum rate capacity has also been investigated for

other regions of n, M , and P (see [6], [4], [5] for details).

There are two major drawbacks of this scheme. First, it is very

computationally complex, both at the receivers and transmitter.

Moreover, it requires full CSI feedback from all active users

to the transmitter of the base station (this feedback requirement

increases with the number of antennas and users and with the

decrease of the coherence time of the system).

1We assume that the spatial correlation is invariant across users. This assump-
tion is realistic because this is effectively the transmit correlation among antennas
at the base station.

B. Random Beamforming

Given these drawbacks of DPC, research has focused on

devising algorithms for multiuser broadcast channels that have

less computational complexity and/or less feedback and still

achieve most of the sum-rate promised by DPC such as random

beamformig [11] and zero forcing [3] (see also [7], [2]). A

random beamforming scheme was proposed in [12] where the

transmitter sends multiple (in fact M ) random orthonormal

beams chosen to users with the best signal to interference ratio

(SINR). In this scheme the only feedback required from each

user is the SINR of the best beam and the corresponding index.

Specifically, the transmitter chooses M random orthonormal

beam vectors φm (of size M × 1) generated according to an

isotropic distribution. Now these beams are used to transmit the

symbols s1(t), s2(t), . . . , sM (t) by constructing the transmitted

vector S(t) =
∑M

m=1 φm(t)sm(t), for t = 1, . . . , T . After T
channel uses, the transmitter independently chooses another set

of orthogonal vectors {φm} (or the beamforming matrix Φ =
[φ1, . . . , φM ]) and constructs the signal vector and so on. From

now on and for simplicity, we will drop the time index t. The

signal Yi at the i’th receiver is given by

Yi =
√

PHiS + Wi =
√

P
M∑

m=1

Hiφmsm + Wi, (5)

for i = 1, . . . , n and where E(SS∗) = 1
M I since the si’s

are assumed to be i.i.d. and assigned to different users. The

i’th receiver uses its knowledge of the effective channel gain

Hiφm, something that can be arranged by training, to calculate

M SINR’s, one for each transmitted beam

SINRi,m =
|Hiφm|2

M
P +

∑
k �=m |Hiφk|2

, m = 1, . . . ,M (6)

Each receiver then feeds back its maximum SINR, i.e.

max
1≤m≤M

SINRi,m, along with the maximizing index m. There-

after, the transmitter assigns sm to the user with the highest

corresponding SINR, i.e. max
1≤i≤n

SINRi,m. If we do the above

scheduling, the throughput for large n can be written as [14],

[12] 2,

RRBF = ME log
(

1 + max
1≤i≤n

SINRi,m

)
+ o(1) (7)

where the term o(1) accounts for the small probability that user

i may be the strongest user for more than one signal sm [12].

In [12], it is shown that the sum-rate of random beamforming

for a channel with no spatial correlation, i.e., R = I , scales

exactly the same as the sum-rate capacity for large n as in (1).

C. Other Beamforming Schemes

In the presence of channel correlation, one may think of other

types of beamforming as follows:

1-Random beamforming with channel whitening: One may

first whiten the channel and then use random beamforming

2The proof follows from the fact the when n is large the maximum SINR and
the M ’th maximum SINR behave quite similarly.
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scheduling. In this case, and instead of using Φ as the beamform-

ing matrix3, we would use
√

αR−1/2Φ where α is a constant to

make sure that the transmit symbol has an average power of 1.
2-Random beamforming with general precoding: More

generally, we can precode with a general matrix
√

αA−1/2 before

beamforming, i.e. we use
√

αA−1/2Φ to transmit the information

symbols. The scaling of this scheme follows directly from the

scaling of random beamforming over correlated channels and so

is considered in Sections V-B and V-D.

3-Deterministic beamforming: Finally, by fixing the beam-

forming matrix Φ, we obtain deterministic beamforming, a

scheme analyzed by Park and Park [10] (for the two antenna

case) and which we further analyze in Section V-C.

IV. EFFECT OF TRANSMIT CORRELATION ON THE

SUM-RATE OF DPC

In this section, we derive the scaling laws of DPC for corre-

lated channels. As mentioned the sum-rate capacity (achieved by

DPC) is given by (4) and its behavior when n is large is given by

(1) for i.i.d. channels. It turns out that when the number of users

is large, the sum-rate capacity will be decreased by a constant

which depends on the covariance matrix of the channel.

The next theorem proves this statement. The proof is along

the same line as the proof for the i.i.d. case (see [12]) with the

major difference that the lower bound, rather than being achieved

with random beamforming, is achieved with a spacial type of

deterministic beamforming. We first give the lower bound in the

following lemma.

Lemma 1. Consider a Gaussian broadcast channel with channel
covariance matrix R which is non-singular and tr(R) = M .
Let there be one transmitter with M antennas and n users with
single antennas that have access to the CSI and the transmitter
knows the CSI perfectly. We assume the transmitter uses the
deterministic beamforming matrix Φ = U∗ where U is the
unitary matrix consisting of the eigenvectors of R. Then for large
n, the sum-rate of this scheduling is

R = M log log n + M log
P

M
+ M log M

√
detR + o(1). (8)

Proof: See Section V-C for the proof.

Clearly (8) is a lower bound for the sum-rate capacity. In the

next theorem we show that (8) is indeed an upper bound for the

sum-rate as well.

Theorem 1. Consider a Gaussian broadcast channel with chan-
nel covariance matrix R defined in Lemma 1. Let there be one
transmitter with M antennas and n users with single antennas
that have access to the CSI. Assume further that the transmitter
knows the CSI perfectly. The sum-rate capacity (achieved by
DPC) scales like

RDPC = M log log n+M log
P

M
+M log M

√
detR+o(1), (9)

for large n.

3Note that Φ is an orthonormal matrix composed of the beam (column) vectors
φ1, . . . , φM .

Proof: The result of Lemma 1 can serve as a lower bound for

the sum-rate. As for the upper bound, we can bound the sum-

rate capacity in (4) by first defining H̃i = R−1/2Hi, and then

using the geometric mean-arithmetic mean inequality. We omit

the details of the proof for brevity and refer the reader to [15].

V. EFFECT OF TRANSMIT CORRELATION ON RANDOM

BEAMFORMING

The deterministic beamforming scheme of Lemma 1 asymp-

totically achieves the DPC sum-rate. However it has the draw-

back that, unless the Hi’s change very rapidly over different

channel uses, it will often transmit to a fixed set of users. To

make the scheduling more short-term fair, it is useful to further

randomize the user selection by random beamforming (see [11],

[12] for more details). In this section, we analyze the effect of

correlation on the sum-rate of random beamforming. We start by

the simplest case in which the beamforming matrix is multiplied

by R−1/2 in order to whiten the channel. We then turn our

attention to the random beamforming scheme and finally use

it to deduce the sum rates of deterministic beamforming and

beamforming with general precoding.

A. Random Beamforming with Channel Whitening

To whiten the channel, we multiply all the beams with√
αR−1/2 where α is a normalization factor. The transmit

symbol is therefore equal to

S(t) =
M∑

m=1

√
αR−1/2φm(t)sm(t) (10)

We choose α to satisfy the power constraint– that the transmit

symbol average power is bounded by unity,

E{αS∗R−1S} = αE{tr(SR−1S∗)} = α
tr(R−1)

M
(11)

Thus, the constraint E{αS∗R−1S} ≤ 1 implies that α ≤
M

tr(R−1) . We can therefore write the SINR as

SINRi,m =
|Hw

i φm|2
M
Pα +

∑
k �=m |Hw

i φk|2
, m = 1, . . . ,M (12)

where Hw
i = HiR−1/2 has covariance of I and therefore

has i.i.d. Gaussian entries with zero mean and unit variance.

Therefore we can apply the random beamforming result of [12]

to obtain the sum rate of random beamforming with channel

whitening. This is summarized in the following Theorem.

Theorem 2. Consider the setting of Lemma 1. Let there be one
transmitter with M antennas and n users with single antennas
that have access to the CSI. If the transmitter knows the channel
autocorrelation perfectly, then the sum rate capacity for random
beam forming with channel whitening (denoted by RBF−W ) is
given by

RBF−W = M log log n + M log
P

M
− M log

tr(R−1)
M

+ o(1)
(13)

for sufficiently large n.
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When the the channel is i.i.d, Theorem 2 reduces to the already

known result of [12]. It is also worth mentioning that (13) is less

than the sum-rate achieved by DPC in (9).

B. Sum-Rate of Random Beamforming

In this section, we study the effect of transmit correlation on

random beam-forming. To do this, we need to derive the CDF

and PDF of the SINR defined in (6).

The sum rate capacity of random beamforming is given in (7).

The expectation in (7) over Hi and Φ can be done as follows,

RRBF = EΦ

{
EH′

is|Φ log
(

1 + max
1≤i≤n

SINRi,m

)
|Φ

}
+ o(1),

(14)

i.e., we evaluate the expectation by first conditioning on Φ
and calculating the expectation over Hi and we subsequently

average over Φ. The advantage of doing so is that Φ is common

among all users and so, by conditioning over Φ, all the SINR’s,

SINR1,m, . . . ,SINRn,m remain iid. This in turn allows us to

evaluate max
1≤i≤n

SINRi,m using extreme value theory provided we

can evaluate the CDF (and pdf) of the SINR.

It turns out that the main challenge lies in calculating the CDF

of SINR given Φ. When the channel is i.i.d., calculating the CDF

is straightforward as the SINR numerator and denominator are

independent [12]. This ceases to be the case in the presence of

correlation and in evaluating the CDF. Instead, we use a contour

integral representation of the unit step and find the CDF using

the Gaussian integral. Once the CDF is available, we appeal

to results in extreme value theory to obtain the behavior of

max
1≤i≤n

SINRi,m when n is large and proceed to calculate the

expectation in (14)

With the scaling law for random beamforming at hand, it

becomes straightforward to obtain the scaling laws of random

beamforming with precoding and of deterministic beamforming.

1) Distribution of SINRi,1 Given Φ : Let U∗Λ−1U be the

eigenvalue decomposition of R−1 and define the matrix A as,

A = (1 + x)Λ1/2φmφ
∗
mΛ1/2 − xΛ (15)

where φm = φmU . Then, the CDF of SINRi,1 can be written

as,

F (x) = 1 − 1
2πM det(R)

λM

∏M−1
i=1

λ
′
iλ

′
M

x(λ
′
i−λ

′
M )

e
−M

P
x

λ
′
M (16)

where λ
′
i is the i’th eigenvalue of A. We would like to emphasize

that the eigenvalues of A (i.e., λ
′
i) are functions of x.

We can further show that the CDF of SINR satisfies,

lim
x→∞

1 − F (x)
f(x)

=
P

M‖φm‖2
Λ−1

where f(x) is the PDF of the SINR and ‖A‖Λ = A∗ΛA.

Using extreme value theory, and the lemma above, we know that

max
1≤i≤n

SINRi,m behaves like P
M‖φm‖2

Λ−1
log n. Upon substituting

this in (14) and noting that the φ’s are identically distributed, we

can write

R =
M∑

m=1

Eφm
log

(
P

M‖φm‖2
Λ−1

log n

)
+ o(1)

= M log log n+M log
P

M
+ MEφm

log(
1

‖φm‖2
Λ−1

) + o(1)

It thus remains to calculate the above expectation for which

we need to derive the CDF of 1
‖φm‖2

Λ−1
where φm is a vector

uniformly distributed over the complex sphere of radius one.

Here is the result.

Lemma 2. The CDF of y = 1
‖φm‖2

Λ−1
is given by

G(x) = 1 − ∑
i ηi

(
1
x − 1

λi

)M−1

u
(
1 − x

λi

)

where λi’s are the diagonal entries of Λ, ηi = 1�
j �=i(

1
λj

− 1
λi

)
and

u(·) is the unit step function.

Therefore the sum-rate of beamforming can be written as,

RRBF = M log log n + M log
P

M
+ log λ1 + o(1) +

M∑
i=1

ηi log
(

λi

λ1

) M−1∑
k=1

1
k + 2

(−1
λi

)M−1−k

×
{

1
(λi)k+2

− 1
(λ1)k+2

}
(17)

C. Sum-Rate of Deterministic Beamforming

Here we consider the case where the beamforming matrix Φ
is fixed over all channel uses. In this case, we can use the same

analysis as we done in the case of random beamforming with

the only exception that we do not need to take expectation over

the beamforming matrix. Therefore, we may write the sum-rate

for the deterministic beamforming matrix Φ as,

RBF−D=M log log n+M log
P

M
+

M∑
i=1

log
(

1
φ∗

i U
∗Λ−1Uφi

)
+o(1)

where U∗Λ−1U is the eigenvalue decomposition of the correla-

tion matrix R−1.

One interesting spacial case would be the case where the

Uφi’s are the columns of the identity matrix. In this case, the

beamforming matrix is in fact equal to U∗ and the argument

in the logarithm would therefore reduce to λi. Thus, when n is

large, the sum-rate is given by

M log log n + M log
P

M
+ M log M

√
detR + o(1). (18)

Keeping in mind that the eigenvalues of Λ are such that∑M
i=1 λi = M , it is clear that the geometric mean of λi’s would

be less than 1. This in fact proves Lemma 1. It should be also

mentioned that this result is obtained in [10] for M = 2. As

mentioned before, this actually coincides with the upper bound

obtained in Theorem 1 for the sum-rate of DPC.
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Fig. 1. Sum-rate loss versus the correlation factor for a system with M = 2
and n = 100.

D. Sum-Rate of Random Beamforming with Precoding

We can consider a generalization of the random beamforming

by using precoding. In this scheme the new beamforming matrix

is
√

αA−1/2Φ where A is a positive definite matrix and α is just

a normalization factor to adjust the transmit power. Again similar

to Section V-B, we can state that α has to be less than M
tr(A−1) .

In order to analyze the sum-rate, we can proceed along the

same line as what we did for the analysis of the random

beamforming with the only exception that the covariance matrix

of the channel is replaced with R̃ = A−∗/2RA−1/2. Here is the

main result.

Corollary 1. Considering the random beamforming scheduling
with beamforming matrix

√
αA−1/2Φ where Φ is a random

unitary matrix, the sum-rate of this scheme can be written as

RBF−Prec = M log log n + M log
P

M
+ o(1)

+
M∑
i=1

E log
(

M

tr(Λ−1)
1

φ∗
i U

∗Λ−1Uφi

)
,

for large n, where U∗Λ−1U represents the eigenvalue decom-
position of R̃−1.

VI. SIMULATION RESULTS

In this section we present the simulation results for the sum-

rate of beamforming schemes and DPC. In the first example, we

consider a system with two transmit antennas, i.e., M = 2, and

100 users. The covariance matrix is assumed to be like

R =
[
1 β
β 1

]
(19)

where β is the correlation. Fig. 1 shows the sum-rate loss

(compared to the case of no correlation) for DPC, RBF and

RBF with whitening. It is clear that RBF outperforms the one

with channel whitening for not too small value of β. In Fig. 2,

we show the sum-rate versus the number of users in system with

M = 2, β = 0.5, P = 10 for beamforming scheme and it is

compared to the case of having no correlation. The non-smooth

behavior of the sum-rate is due to the averaging of the rates over

1000 channel realizations.
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Fig. 2. Sum-rate versus the number of users in a system with M = 2 and
β = 0.5

VII. CONCLUSION

This paper considers the effect of spatial correlation on various

multiuser scheduling schemes for MIMO broadcast channels.

Specifically, we considered dirty paper coding and various

(random, deterministic, and channel whitening) beamforming

schemes. The rate loss due to correlation has been obtained for

the aforementioned transmission schemes and when the number

of users is large.
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