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Following successful widespread non-pharmaceutical interventions aiming

to control COVID-19, many jurisdictions are moving towards reopening2

economies and borders. Given that little immunity has developed in most pop-

ulations, re-establishing higher contact rates within and between populations4

carries substantial risks. Using a Bayesian epidemiological model, we estimate

the leeway to reopen in a range of national and regional jurisdictions that have6

experienced different COVID-19 epidemics. We estimate the risks associated

with different levels of reopening and the likely burden of new cases due to in-8

troductions from other jurisdictions. We find widely varying leeway to reopen,

high risks of exceeding past peak sizes, and high possible burdens per intro-10

duced case per week, up to hundreds in some jurisdictions. We recommend a

cautious approach to reopening economies and borders, coupled with strong12

monitoring for changes in transmission.

The novel severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2 virus), which14
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emerged at the end of 2019, has to date caused a global pandemic with over 7 million confirmed

cases of coronavirus disease 2019 (COVID-19) and 408,000 deaths worldwide as of June 9,16

2020 [1]. To date, there is no vaccine or cure, and it appears that asymptomatic individuals

can be infectious. Accordingly, wide-ranging non-pharmaceutical interventions (NPIs) such18

as hand hygiene, face masks, physical (social) distancing, banning mass gatherings, and strict

lockdowns have been among the primary tools for reducing COVID-19’s spread [2–6].20

As a result, incidence in many jurisdictions outside China followed a similar pattern

(e.g., Fig. 1B–M). After an initial phase of occasional detection (typically during late January22

to February and commonly due to imported cases), case counts grew rapidly (typically dur-

ing early March). At this point, NPIs were put in place, in the form of “lockdowns” or other24

requirements for social and physical distancing. Case counts generally continued to rise for

several weeks until the impact of NPIs became observable as a flattening and then decline of26

the epidemic curve. The economic, social, and health costs of NPIs have been significant.

Following declines in incidence, many jurisdictions are now beginning to partially lift re-28

strictions, reopen their economies, and are allowing travel across regional and international

boundaries [7–9]. Here, care must be taken not to undo the benefits of widespread NPIs. This30

is especially true given that large studies undertaken in high-prevalence settings do not indi-

cate that herd immunity has been reached [10]. However, the degree of flexibility, or ”leeway”,32

that exists to increase activity without causing a major resurgence or “second wave” of cases is

largely unknown. The flexibility that exists in a given location is dependent on the local circum-34

stances governing transmission, as well as the restrictions that are currently in place [11, 12]. It

is essential to estimate the risk associated with increased social and economic activity, and to36

understand this risk within and between particular jurisdictions, before making decisions around

reopening.38

We propose that discussions of COVID-19 risk in the context of reopening local economic

activity, and of reopening borders and trade, should consider three aspects of transmission dy-40

namics: (1) the probability that infections are rising at the current time in a jurisdiction, even if

reported cases are declining; (2) the probability that a given increase in social and economic ac-42

tivity in the general population will lead to a substantial growth in cases over the coming weeks,

and (3)—with regards to travel and border reopening—the number of introduced cases and their44

likely impact in the destination. Using a mathematical model fit to local case data for a selection

of jurisdictions with differing epidemics, we estimate the leeway for reopening without causing46

increasing COVID-19 cases, and the probabilities that reopening will lead to cases increasing

above thresholds after a fixed time. The model reflects a portion of the population engaging48

in distancing and related measures: these individuals are at reduced risk of encountering infec-

tious individuals, and are less likely to be encountered themselves—for example because they50

are able to work from home, consistently wear masks, or avoid social situations (see Methods).

For each of 12 jurisdictions worldwide, selected for their diversity of epidemic trajectories52

and NPIs, we first estimate the impact to date of widespread NPIs and then calculate how close

the estimated contact rate is to the threshold for epidemic growth (Figs 1, S2, S3). We estimate54

this both in the period immediately following NPI measures (late March to the end of April)

2
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and after May 1, as some jurisdictions have already begun to reopen as of the time of writing.56

We refer to these time frames as “post-measures” and “recent” and use the idea of leeway to

describe the room between their current state and the threshold beyond which cases would begin58

to grow.

We find that after initial NPI measures took effect, some jurisdictions had substantial leeway60

to re-open (Japan, New Zealand, Germany, New York, British Columbia, and Belgium), with an

above-0.99 probability that contact rates were below 80% of the threshold for epidemic growth.62

Japan and New Zealand had the most leeway, with contact rates well below half the threshold.

In contrast, some had little leeway (the United Kingdom (UK), Washington, and Ontario) and64

some had none, as cases were still rising (Quebec, Sweden, and California). Estimates for the

period after May 1 find that some jurisdictions have little or no leeway for further re-opening66

(California, Sweden, Washington, Ontario) as they are at or above the critical threshold. Some

have used part of their leeway already (Japan, Germany, and New York, and British Columbia;68

Fig. 1A). Several have more leeway than they did immediately after NPI measures took effect

(Belgium, the UK, and Quebec, with Quebec now well below the threshold and the UK now70

with > 0.99 probability of being < 80% of the threshold). New Zealand has so few cases that

estimation with this modelling framework leaves considerable uncertainty.72

We forecast the impact of relaxing distancing measures by increasing contact rates, starting

from a baseline of the lower of the post-measures and recent estimates (Fig. 1B–M). The UK,74

Belgium, and Quebec moved to stricter control after May 1. All have some leeway as of the

time of writing, though increasing contact beyond 60% above the recent estimate would likely76

lead to a growing epidemic in the UK and Quebec. Belgium has substantial leeway to re-open.

The remaining jurisdictions have used some of their leeway already. Those with little to no78

leeway to begin with now show rapid increases if contact is increased (California, Sweden,

Washington, and Ontario). British Columbia had some leeway to re-open and has done so; a80

doubling of contact compared to the post-measures baseline would likely lead to rises in case

numbers. Germany, New York, New Zealand, and Japan show low risks of rising cases. These82

results are robust to assumptions about the duration of infection and reasonable priors on the

fraction of individuals distancing (Fig. S4).84

Rising case numbers may be tolerable, depending on the costs and severity of measures

needed to keep cases in check, the capacity of the health care system to cope with increases in86

COVID-19 cases, and a population’s preference regarding the balance of widespread measures

vs. increases in incidence. Policy makers could factor into their decision-making the probability88

and time frame of new cases that may arise following reopening. Fig. 2 shows our estimates of

the probability of exceeding the peak number of cases to date, and the probability of reaching90

1 incident reported case per 20,000 individuals under different increases in contact rates (again

from a baseline of the time period in which control was stricter). Given similar increases in92

contact rate, Ontario, Washington, Sweden, and California are most likely to exceed both 1

incident case per 20,000 and their historical peaks in the coming 6 weeks. The UK has a small94

risk of exceeding its previous peak (probability of 0.06 with a doubling of contact rates from

the post-measures period). New York, the UK, and Quebec have some risk of exceeding 1 case96

3
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Figure 1: Projected cases given scenarios of relaxed control measures strongly depend on

the leeway between the estimated contact rate and the threshold for increase. A: Posterior

densities of the ratio between the contact rate and the threshold (the value above which exponen-

tial increases are expected). Darker violins represent the post-measures period and paler dotted

violins represent the recent (post May 1) estimates. Jurisdictions with contacts well below the

threshold have more leeway to relax control measures. B–M: Model fits and projections at 6

multiplicative contact rate increases, from a baseline from the lower of the estimates from the

two time periods. Solid lines represent posterior medians and ribbons represent 90% credible

intervals. Dots and thin lines represent reported case data. Vertical grey bands indicate 90%

credible intervals for the start and end times of initial control measures ramp. Dashed vertical

lines indicate the start of the “recent” period (May 1). The choice to project from a baseline of

the lower of the post-measures and recent estimates means that projections are based on mea-

sures at the stricter time period in all jurisdictions. Regions are arranged by decreasing mean

threshold ratio in the immediate post-measures period.
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per 20,000 given these increases; New York’s previous peak was high and the risk of exceeding

it is correspondingly low.98
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Figure 2: Probabilities of cases exceeding reference thresholds at 6 weeks in the future

depend on contact rate increases and jurisdiction. Projections are from a baseline of the

lower of the post-measures and recent estimates. A, B: Probability of exceeding the historical

“first wave” maximum. C, D: Probability of reported cases per day exceeding 1/20,000 of

the population (N ). ON: Ontario, WA: Washington, CA: California, QC: Quebec, BC: British

Columbia, NY: New York, SE: Sweden, UK: United Kingdom, BE: Belgium, DE: Germany,

NZ: New Zealand, JP: Japan.

There is pressure to reopen borders to business and leisure travelers due to the social and

economic costs of travel restrictions. We modelled the impact of introducing imported cases at100

a constant rate to estimate the impact on total cases in each jurisdiction, taking uncertainty in

the contact ratios (and other posterior estimated quantities; see Supplementary Information) into102

account (Fig. 3). Our results illustrate the expected extra cases resulting from one imported case

per week over six weeks. Assuming independence of imported cases, these results can be scaled104

to realistic rates of importation (e.g., for 100 imported cases, multiply expected extra cases by

100). In Japan, where the dynamics are well below the threshold in all posterior samples, each106

importation results in few additional cases. Meanwhile, in California or Sweden, because there

is a high posterior probability that transmission is above the threshold, introduced cases are108

more likely to cause extended chains of transmission and contribute large case volumes. The

result is that up to approximately 100 new cases may result (over six weeks) from a weekly110

introduction of a single case. Fig. 3 is generated under the assumption that introduced cases

join the general population, have access to its testing and control procedures, and engage in its112

broader distancing and NPI behaviors, making these conservative projections.
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Figure 3: Cases resulting from one import per week over 6 weeks range from fewer than

ten to hundreds and depend on contact in the destination population. Dots represent me-

dians and thick and thin line segments represent 50% and 90% credible intervals; the x-axis is

log distributed. Contact rate increases are based on the lower of the post-measures and recent

contact ratio estimates. Regions are ordered by the average extra cases across contact rate in-

creases. Extra cases are compared to a projection that does not include weekly imports; travelers

themselves have not been removed from the totals.

To interpret these results with reference to borders and travel requires consideration of the114

specific jurisdictions involved. Consider a border opening from jurisdiction A to jurisdiction B.

If both jurisdictions are well below their thresholds, then the probability of a large volume of116

new cases resulting from introductions is low, primarily because general transmission will be

prevented in jurisdiction B, but also because prevalence is likely to be low in A, though this118

depends on the epidemic, testing, reporting, and population dynamics in A. If the destination

is near its threshold, then introduced cases could result in exponential growth in B. This effect120

could be amplified if travelers join a congregate setting or are less socially distanced than the

6

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.20129833doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.12.20129833
http://creativecommons.org/licenses/by-nd/4.0/


general population due to tourism or work activities, or if they have reduced access to local122

health care and control measures such as contact tracing. In addition, if jurisdiction A is near its

own threshold, then there may be as-yet-unobserved exponential growth of cases in A, affecting124

the rate of introduction to B. Furthermore, travel itself may result in additional transmissions.

The COVID-19 pandemic has seen an unprecedented number of travel restrictions and bor-126

der measures, in spite of WHO recommendations against unnecessary closures, weak evidence

that these are effective in preventing pandemic influenza [13] (though they do reduce spread and128

buy time [14]), and concerns about their impact on movement of medical supplies and person-

nel [15]. There is now some discussion of “travel bubbles” in which countries or jurisdictions130

experiencing comparable levels of risk open borders to travel and commerce [16]. As juris-

dictions with low case numbers move to reopen their economies (likely causing the epidemic132

threshold as measures are relaxed), they will be at renewed risk of introductions. We suggest

that the highest-risk borders arise when a source jurisdiction has prevalent cases and the desti-134

nation jurisdiction is near or above its threshold, or reopening to the extent that cases could now

spread widely despite earlier successes. Due to variations in testing, we cannot know the rela-136

tive prevalence [17], but we would predict, among the locations in our study, that introductions

into California, Sweden, Ontario, and Washington carry the highest risk, followed by the UK.138

Interactions among these jurisdictions would carry the highest risk, despite that by some indi-

cators the overall COVID-19 control in several of these is similar. Interactions among the UK,140

Quebec, BC, NY, Germany, and Belgium are lower risk but the probability of causing dozens

of new cases per introduced case per week remains considerable. Furthermore, jurisdictions142

with small historical peaks (e.g., British Columbia, New Zealand) could easily be put in a posi-

tion of exceeding their historical peak as a result of introduced cases from a region with higher144

prevalence.

The model and underlying data have limitations. The data are provided by jurisdictions146

and depend on testing protocols and capacity, delays to reporting, different base populations

being tested, and other variations [18]. Indeed, this motivates using inferred summaries like148

the leeway, in lieu of direct comparisons of case counts. Our approach accounts as much as

possible for differences in testing through time, for the local dynamics of distancing behavior,150

and different starting intensity and timing of different epidemics. However, our model estimates

are oriented towards widespread NPI and distancing measures, and implicitly attribute changes152

in case dynamics to contact rates. In truth, transmission dynamics involve a complex function

of outbreak control, management of COVID-19 in health care settings, reduction in community154

transmission, reporting, contact tracing and other public health measures. Our notion of contact

rates combines both rate of interaction and probability of infection during interaction; thus,156

increased rates of interaction during reopening may, to a certain degree, be possible without

increased transmission if key public health measures (e.g., hand hygiene, physical distancing)158

are strictly adhered to. Our model also assumes a simple population structure—data for more

complex populations being largely lacking. In addition, the numbers of reported cases per160

prevalent case will change as testing is widened, and this is not modelled in our forecasts.

Amidst differing epidemics and control measures, each jurisdiction has a leeway—the room162
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between the current state and the threshold—and this is comparable from place to place. The

leeway, together with model fits that are informed by data and which describe the uncertainty164

in how much leeway there is, can provide a quantitative basis for decisions about reopening.

We are at a unique time in this pandemic, with a so-called “first wave” receding not due to im-166

munity, but due to widespread behavioural change. Given that reopening will occur, this leaves

populations vulnerable to resurgence of cases, driven both by local transmission and sparked168

by introductions. Our results indicate that jurisdictions should proceed with great caution, par-

ticularly where there is a substantial probability that they are near the threshold already; rapid170

monitoring should seek signs of increased community transmission and clustered outbreaks as

early as possible. To mitigate risks associated with imported cases and reopening borders, it is172

important to account for the risk of growth in the general population together with the likeli-

hood that imported cases will arrive in high-risk settings. We recommend that policy-makers174

carefully consider (i) whether imported cases and seeded outbreaks are likely to be identified

and managed to the same degree as those in the local population; (ii) whether travellers will en-176

gage in high-risk or high-contact activities, especially within marginalized populations; and (iii)

whether local trace and test strategies have the capacity to manage imported cases and nascent178

outbreaks.

Methods180

Model description

We extend the SARS-CoV-2 susceptible-exposed-infectious-recovered (SEIR) model developed182

in Ref. [19]. The model allows for self-isolation and quarantine through a quarantine compart-

ment and a reduced duration of infection (compared to the clinical course of disease). We model184

a fixed portion of the population that is able to participate in physical distancing; each of the

SEIR compartments has an analogous compartment in the distancing group (Fig. 4). We extend186

our model [19] here by estimating additional parameters in a Bayesian context including the

timing of the physical distancing ramp, the scale of the initial cases, and multiple contact rates188

through time for those practicing distancing.

The model describes the time dynamics of susceptible (S), exposed (E1) exposed and in-190

fectious (E2), symptomatic and infectious (I), quarantined (Q) and recovered or deceased (R)

individuals (see Fig. 4). It assumes that recovered individuals are immune to the virus. The192

model has analogous states for individuals practicing physical distancing, given by Sd, E1d,

E2d, Id, Qd, and Rd. Physical distancing is implemented by reducing the contact rate, thereby194

lowering the spread of the virus. The model is fitted separately for each jurisdiction.

8

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.20129833doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.12.20129833
http://creativecommons.org/licenses/by-nd/4.0/


S E1 E2 I

Q R

β
[

I + E2 + f(Id + E2d)
]

k1 k2

q

1/D

1/D

Sd E1d E2d Id

Qd Rd

fβ
[

I + E2 + f(Id + E2d)
]

k1 k2

q

1/D

1/D

Figure 4: Schematic of the epidemiological model. Compartments: susceptible to the virus

(S); exposed (E1); exposed, pre-symptomatic, and infectious (E2); symptomatic and infectious

(I); quarantined (Q); and recovered or deceased (R). Recovered individuals are assumed to be

immune. The model includes analogous variables for individuals practicing physical distancing:

Sd, E1d, E2d, Id, Qd, andRd. Solid arrows represent flow of individuals between compartments

at rates indicated by the mathematical terms. Dashed lines show which compartments contribute

to new infections. An individual in some compartment X can begin distancing and move to the

corresponding compartment Xd at rate ud. The reverse transition occurs at rate ur. The model

quickly settles on a fraction e = ud/(ud+ur) participating in distancing, and dynamics depend

on this fraction, rather than on the rates ud and ur. Duplicated from Ref. [19] for clarity.
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The system of differential equations for the non-physical-distancing population is given by:196

dS

dt
= −β [I + E2 + f(Id + E2d)]

S

N
− udS + urSd

dE1

dt
= β [I + E2 + f(Id + E2d)]

S

N
− k1E1 − udE1 + urE1d

dE2

dt
= k1E1 − k2E2 − udE2 + urE2d

dI

dt
= k2E2 − qI − I

D
− udI + urId

dQ

dt
= qI − Q

D
− udQ+ urQd

dR

dt
=

I

D
+
Q

D
− udR + urRd,

(1)

where β is the transmission rate, f is the physical distancing parameter, D is the average in-

fectious period, ud and ur are the rates individuals move to and from the physical distancing198

compartments, k1 is the rate of moving from E1 to E2, k2 is the rate of moving from E2 to

I , and q is the quarantine rate for movement from compartment I to Q [19]. In the model200

without interventions (neither distancing nor quarantine), the basic reproductive number R0b

is β(D + 1/k2), namely the transmission rate times the mean duration of the infectious state202

period. We explicitly estimate R0b not β, and so β is given by β = k2R0b/(Dk2 + 1). The

analogous system of equations for the physical-distancing population is given by204

dSd

dt
= −fβ [I + E2 + f(Id + E2d)]

Sd

N
+ udS − urSd

dE1d

dt
= fβ [I + E2 + f(Id + E2d)]

Sd

N
− k1E1d + udE1 − urE1d

dE2d

dt
= k1E1d − k2E2d + udE2 − urE2d

dId
dt

= k2E2d − qId −
Id
D

+ udI − urId

dQd

dt
= qId −

Qd

D
+ udQ− urQd

dRd

dt
=
Id
D

+
Qd

D
+ udR− urRd.

(2)

The force of infection for this population is a fraction f of that of the non-distancing popu-

lation Eq. (1). In addition, note that the factor f appears twice in the force of infection. This is206

due to the fact that physical distancing helps in reducing the rate that “distancers” move about

and contact others, and the rate at which they are contacted by anyone (distancing or otherwise)208

who is experiencing population contact. This factor changes with time to model the introduction
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and strength of NPI measures that reduce contact rates:210

f(t) =



















1, t < t1,

f1 +
t2 − t

t2 − t1
(1− f1), t1 ≤ t < t2,

f1, t2 ≤ t < May 1,
f2, May 1 ≤ t,

(3)

where t1 and t2 are the start and end times of the initial implementation of physical distancing

measures such that f declines from 1 to f1 during this period, and f2 is the value of f after May212

1 as physical distancing starts potentially relaxing. For each jurisdiction, t1, t2, f1, and f2 are

estimated (see below).214

Our overall approach is to estimate f1 and f2 using Bayesian inference. We also estimate

the fraction of the population e = ur/(ud + ur) engaged in NPI or distancing, the times t1216

and t2, the and starting introduction size (prevalence at the model starting time). We use data

from reported cases, despite the issues inherent in this [18], and compensate for variable testing218

through time where possible (see below) and for the delay between symptom onset and case

reporting.220

Reported cases and testing model

We let Cr denote the number of recorded cases on day r. The number of people who become222

symptomatic on a given day n is the number moving from the exposed pre-symptomatic (E2

and E2d) to the symptomatic (I and Id) compartments, namely
∫

n

n−1
k2 [E2(τ) + E2d(τ)] dτ.224

The expected number of reported cases on day r is a weighted sum of those who become

symptomatic in previous days, where the weights are determined by the the delay between226

symptom onset and reporting [19]:

µr = ψr

∫

r

0

k2

[

E2(τ) + E2d(τ)
]

w(r − τ)dτ, (4)

where ψr represents the sampling fraction on day r and we use a Weibull distribution with shape228

kMLE and scale λMLE for w(·). If ψr = 1, then all estimated infectious people are tested and

then become reported cases; ψr < 1 represents a reduction in expected cases on day r due to not230

everyone being tested. See Ref. [19] for further details on fitting w(·) from data. We used kMLE

and λMLE as estimated for British Columbia in Ref. [19] for the other regions (due to a lack of232

the necessary data), except for New Zealand for which A. Lustig and M. Plank (pers. comm.)

fitted non-public data using our code [20].234

Model fitting was performed in Stan with the R package ‘covidseir’ [21]. Code

to reproduce the analysis is available at https://github.com/carolinecolijn/236

leeway-reopen-covid19.
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Supplementary Information

Data processing and regional fitting2

We obtained reported case data from publicly available sources (Table S1). We used baseline

values of constant testing (0.2) where we were not aware of testing data indicating widened test-4

ing eligibility or steep increases in testing volume. Where these were indicated we increased the

sample fraction accordingly (see Table S2). A number of jurisdictions also required additional6

data processing and/or modification to obtain regional fits:

• Several jurisdictions showed a strong weekly pattern in case reporting. In these cases8

(Belgium, Germany, Japan, Washington), we implemented a 3-day running average.

• Quebec public health officials announced that a computer error resulted in 1,317 missing10

positive COVID-19 cases between April 2nd–30th. As a result, we removed these 1,317

cases from the day they were eventually reported, and redistributed them evenly across12

days April 2nd–30th

• April 1st was an outlier in the number of observed cases in Ontario, seeing more than14

double the number of cases than other days during that week. To account for this, we

redistributed the difference in the number of cases between April 1st and April 2nd evenly16

across the 5 days prior to April 1st.

• In the UK, April 11th was an outlier in the daily number of observed cases with almost18

double any other day during the pandemic so far. We redistributed the difference in the

number of cases between April 10th and April 11th evenly across the 5 days prior to20

April 11th. The UK also made a large increase in the daily number of completed tests

from April 30th onward, in line with the introduction of a government target of 100,00022

tests per day by the end of April. We account for this in the model by increasing the

assumed sampling fraction from 0.2 to 0.3 for April 30th onward.24
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Table S1: Publicly available data sources for reported COVID-19 cases across jurisdictions. See Fig. 2 for jurisdiction

abbreviations.

Jurisdiction Data source URL

BC http://www.bccdc.ca/health-info/diseases-conditions/covid-19/data

BE https://epistat.wiv-isp.be/Covid/

CA https://covidtracking.com/

DE https://opendata.ecdc.europa.eu/covid19

JP https://ourworldindata.org/coronavirus

NY https://covidtracking.com/api/v1/states/daily.csv

NZ https://www.health.govt.nz/our-work/diseases-and-conditions/covid-19-novel-coronavirus

ON https://github.com/ishaberry/Covid19Canada/

QC https://github.com/ishaberry/Covid19Canada/

SE https://opendata.ecdc.europa.eu/covid19

UK https://github.com/tomwhite/covid-19-uk-data

WA https://covidtracking.com/2
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Table S2: Regional modelling initialization, data properties, and priors. Population numbers were obtained from local gov-

ernment websites. We set sampling fractions to 0.2 in most cases except for in British Columbia (BC) where the sampling

fractions represent means from a fitted model that also accounts for daily hospitalizations with an assumed hospitalization

fraction of 0.08 (changes on March 14, April 11, and April 21 due to known policy changes); New Zealand (NZ) where

we assumed a higher sampling fraction; and the United Kingdom (UK) where there was a large increase in the daily num-

ber of completed tests from April 30 onward. The assumed sampling fraction should only affect modelled prevalence until

substantial immunity is built up. See Fig. 2 for jurisdiction abbreviations.

Detail BC BE CA DE JP NY NZ ON QC SE UK WA

Data start Mar 1 Mar 3 Mar 5 Mar 1 Mar 1 Mar 5 Mar 15 Mar 1 Mar 1 Mar 1 Mar 1 Mar 1
Data end Jun 4 Jun 6 Jun 7 Jun 7 Jun 7 Jun 7 May 26 Jun 7 Jun 7 Jun 8 Jun 8 Jun 3
Prior mean for t1 Mar 16 Mar 11 Mar 8 Mar 13 Mar 27 Mar 9 Mar 18 Mar 9 Mar 10 Mar 7 Mar 12 Mar 9
Prior mean for t2 Mar 23 Mar 21 Mar 25 Mar 22 May 4 Mar 28 Mar 26 Mar 24 Mar 25 Mar 28 Mar 28 Mar 29
Prior sd for t1 and t2 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1

Prior mean for e 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.8 0.8 0.8 0.8 0.8
Delay shape 1.73 1.73 1.73 1.73 1.73 1.73 1.53 1.73 1.73 1.73 1.73 1.73
Delay scale 9.85 9.85 9.85 9.85 9.85 9.85 7.83 9.85 9.85 9.85 9.85 9.85
Sampling fraction(s) 0.14,

0.21,
0.37

0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.2 0.2 0.2, 0.3 0.2

Log mean for I0 prior 2.08 0 0 1.61 2.64 0 -4.61 0 0 0 0 0

N : population
(millions)

5.10 11.48 39.51 83.00 126.00 19.45 4.95 14.50 14.50 10.34 66.40 7.60
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• For British Columbia, we defined two change-points for the fraction of cases sampled.

From March 1st–14th the sampling fraction was set to 0.14, from March 14th to April 21st26

it was set to 0.21 and from April 21st onward it was set to 0.37. These were obtained from

a separate model fit that included daily hospitalizations and an assumed hospitalization28

fraction of 0.08.

• For New Zealand, we used a fixed sampling fraction of 0.4 under the assumption of a30

higher level of case detection. We also removed all cases arising from international travel.

Mobility data32

We informed the priors for the start and end dates for physical distancing measures using Google

mobility data [22] (Fig. S1). For each region, we use the daily average of the available public34

transportation data. We then fit a piecewise linear regression with two breakpoints to the data

from each location using the R package ‘segmented’ [23]. We use the two fitted breakpoints36

(rounded to the nearest day) as prior means on the start and end dates t1 and t2 for each juris-

diction (Table S2). Two exceptions to this were New Zealand and Sweden. In New Zealand,38

mobility data suggested start and end dates of March 18th and March 30th, but an end date of

March 26th was found to provide an improved fit. Similarly, in Sweden March 9th to March40

20th were suggested by mobility data but this resulted in poor fit. Instead, we used March 6th

to March 27th.42

Bayesian estimation

The joint posterior distribution given the case counts {Cr} is44

Pr (R0b, f1, f2, t1, t2, I0, e, φ|Cr) ∝
Pr (Cr|R0b, f1, f2, t1, t2, I0, e)×
Pr(R0b) Pr(f1) Pr(f2) Pr(t1) Pr(t2) Pr(I0) Pr(e) Pr(φ),

(5)

where R0b, f1, f2, t1, t2, I0, e, and φ are estimated parameters. We use a negative binomial like-

lihood for the observation component parameterized such that the variance scales quadratically46

with the mean [24]. We describe the parameters here for clarity: R0b represents the basic re-

productive number (without distancing but with quarantine), f1 and f2 represent the force of48

infection for the post-measures and recent periods, I0 represents the incidence at 30 days be-

fore the first day of data, e represents the fraction distancing, and t1 and t2 represent the dates50

that physical distancing starts and finishes ramping in, φ represents the (inverse) dispersion

parameter.52

We fit our models with Stan 2.19.3 [25,26] and R 3.6.2 [27] using our R package ‘covidseir’

[21]. We sampled from 4 chains with 400 iterations per chain and discarded the first half of54

each chain as warm-up. We initialized the chains at random values drawn from the priors. We
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Figure S1: Mobility data from Ref. [22]. We use daily averaged public transit station percent

change from baseline data for each jurisdiction. We fit a piecewise linear regression with two

breakpoints using the R package ‘segmented’ [23] to inform the prior distributions for the timing

of physical distancing.
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Table S3: Fixed parameter values that are the same for all jurisdictions.

Symbol Definition Default value Justification

D Mean duration of the infectious period 5 days [28, 29]

k1 (time to infectiousness)−1 (E1 to E2) 0.2 days−1 [30–32]

k2 (time period of pre-symptomatic

transmissibility)−1 (E2 to I)

1 days−1 [31, 32]

q Quarantine rate 0.05 [33]

ur Rate of people returning from physi-

cal distancing

0.02 [34]

Table S4: Prior distributions for all jurisdictions; note that I0 and e have jurisdiction-dependent

means (Table S2).

Symbol Definition Prior distribution Justification

I0 Number of infected people at an initial

point in time

Lognormal with sd 1 Small early introduc-

tions

e Proportion practicing distancing Beta with sd 0.05 Widespread measures

R0b Basic reproductive number without

distancing

Lognormal(log 2.6, 0.2) [35, 36]

f1, f2 Value of f at different times (Eq. 3) Beta with mean 0.4 and sd 0.2 Weakly informative

prior

φ Inverse dispersion parameter of nega-

tive binomial observation model

1/
√
φ ∼Normal(0, 1) [37]

assessed chain convergence with trace plots and via R̂ < 1.05 (the potential scale reduction56

factor) and ESS > 200 (the effective sample size) [26].

Some parameter values (Table S3) and prior distributions (Table S4) are the same for all58

jurisdictions, whereas some differ between jurisdictions (Table S2). The rate of people moving

to physical distancing, ud, is calculated from the estimates of e = ur/(ud + ur), because e is60

estimated and ur is fixed. We used informative prior distributions on estimated parameters as

follows (Table S4). The prior on R0b encompasses values commonly published in the literature62

for SARS-CoV-2 [35, 36]. The prior for f1 and f2 results in a mean of 0.4 and a standard

deviation of 0.2 to represent a moderately strong reduction in contact fraction while still being64

broad enough to encompass a wide range of values. We use lognormal priors for t1 and t2,

with the means based on the piecewise regression analyses of the Google mobility data, and66

standard deviations of 0.1, except for New Zealand and Sweden for which less tight priors

(standard deviation of 0.2) are needed. The prior on φ constrains the model to avoid substantial68

prior mass on a large amount of over-dispersion (small values of φ). The initial conditions of the

state variables are defined consistently across jurisdictions, but depend on the each jurisdiction’s70

population size N and estimated values of e and I0 (Table S5). For most jurisdictions, the prior

on I0 was set such that I0 has mean 1, representing a prior belief that the initial time point was72
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Table S5: Initial values of variables. The parameters e and I0 are estimated in the model sepa-

rately for each jurisdiction.

Non-distancing Distancing

Variable Initial value Variable Initial value

S (1− e)(N − I0) Sd e(N − I0)
E1 0.4(1− e)I0 E1d 0.4eI0
E2 0.1(1− e)I0 E2d 0.1eI0
I 0.5(1− e)I0 Id 0.5eI0
Q 0 Qd 0
R 0 Rd 0

set to a time without substantial numbers of cases in that location. New Zealand, where the

total number of cases has been very small, required a smaller mean to obtain a satisfactory fit74

(0.01). For British Columbia we instead set the mean for the I0 prior to 8, as in [19], and for

Germany and Japan (both having a more substantial number of cases prior to the initial time76

point) we used a mean equal to the reported number of observed cases 30 days before the initial

time point: 5 and 14, respectively. These are summarized in Table S2.78

To calculate the posterior distribution of the ratio between the contact rate and the threshold

(i.e., Fig. 1A), we apply the projection and regression approach described in Ref. [19]. We80

use a projection period of 25 days and evaluate f values ranging from 0.3 to 0.8. We then

determine the threshold value and compare it to the estimated f1 or f2 for every posterior sample82

independently.
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Figure S2: Reported case times series and model fits. These are the same as Fig. 1 but focused

on the historical data model fits.
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Figure S3: Posteriors for each jurisdiction of all estimated parameters from the Bayesian

SEIR model. The columns “start decline” and “end decline” represent t1 and t2. R0 accounts

for quarantine: R0 = R0b(1/(q + 1/D) + 1/k2)/(D + 1/k2)
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Figure S4: Example sensitivity for contact ratio in Germany to D (duration) of 4, 5, or 6 and

e (fraction distancing) prior of mean 0.7 (and SD 0.025) or 0.8 (and SD of 0.05; as in the main

models) for Germany.
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