
Published as a conference paper at ICLR 2020

HOW MUCH POSITION INFORMATION DO

CONVOLUTIONAL NEURAL NETWORKS ENCODE?

Md Amirul Islam∗ ,1,2 , Sen Jia∗ ,1 , Neil D. B. Bruce1,2

1Ryerson University, Canada
2Vector Institute for Artificial Intelligence, Canada
amirul@scs.ryerson.ca, sen.jia@ryerson.ca, bruce@ryerson.ca

ABSTRACT

In contrast to fully connected networks, Convolutional Neural Networks (CNNs)
achieve efficiency by learning weights associated with local filters with a finite
spatial extent. An implication of this is that a filter may know what it is looking
at, but not where it is positioned in the image. Information concerning absolute
position is inherently useful, and it is reasonable to assume that deep CNNs may
implicitly learn to encode this information if there is a means to do so. In this
paper, we test this hypothesis revealing the surprising degree of absolute position
information that is encoded in commonly used neural networks. A comprehensive
set of experiments show the validity of this hypothesis and shed light on how
and where this information is represented while offering clues to where positional
information is derived from in deep CNNs.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) have achieved state-of-the-art results in many computer vi-
sion tasks, e.g. object classification (Simonyan & Zisserman, 2014; He et al., 2016) and detection
(Redmon et al., 2016; Ren et al., 2015), face recognition (Taigman et al., 2014), semantic segmenta-
tion (Long et al., 2015; Chen et al., 2018; Noh et al., 2015; Islam et al., 2017) and saliency detection
(Cornia et al., 2018; Li et al., 2014; Jia & Bruce, 2019; Islam et al., 2018). However, CNNs have
faced some criticism in the context of deep learning for the lack of interpretability (Lipton, 2018).

The classic CNN model is considered to be spatially-agnostic and therefore capsule (Sabour et al.,
2017) or recurrent networks (Visin et al., 2015) have been utilized to model relative spatial relation-
ships within learned feature layers. It is unclear if CNNs capture any absolute spatial information
which is important in position-dependent tasks (e.g. semantic segmentation and salient object de-
tection). As shown in Fig. 1, the regions determined to be most salient (Jia & Bruce, 2018) tend to
be near the center of an image. While detecting saliency on a cropped version of the images, the
most salient region shifts even though the visual features have not been changed. This is somewhat
surprising, given the limited spatial extent of CNN filters through which the image is interpreted. In
this paper, we examine the role of absolute position information by performing a series of random-
ization tests with the hypothesis that CNNs might indeed learn to encode position information as a
cue for decision making. Our experiments reveal that position information is implicitly learned from
the commonly used padding operation (zero-padding). Zero-padding is widely used for keeping the
same dimensionality when applying convolution. However, its hidden effect in representation learn-
ing has been long omitted. This work helps to better understand the nature of the learned features in
CNNs and highlights an important observation and fruitful direction for future investigation.

Previous works try to visualize learned feature maps to demystify how CNNs work. A simple idea
is to compute losses and pass these backwards to the input space to generate a pattern image that
can maximize the activation of a given unit (Hinton et al., 2006; Erhan et al., 2009). However,
it is very difficult to model such relationships when the number of layers grows. Recent work
(Zeiler & Fergus, 2014) presents a non-parametric method for visualization. A deconvolutional
network (Zeiler et al., 2011) is leveraged to map learned features back to the input space and their

∗Equal contribution

1

Published as a conference paper at ICLR 2020

Figure 1: Sample predictions for salient regions for input images (left), and a slightly cropped
version (right). Cropping results in a shift in position rightward of features relative to the centre. It
is notable that this has a significant impact on output and decision of regions deemed salient despite
no explicit position encoding and a modest change to position in the input.

results reveal what types of patterns a feature map actually learns. Another work (Selvaraju et al.,
2017) proposes to combine pixel-level gradients with weighted class activation mapping to locate
the region which maximizes class-specific activation. As an alternative to visualization strategies,
an empirical study (Zhang et al., 2016) has shown that a simple network can achieve zero training
loss on noisy labels. We share the similar idea of applying a randomization test to study the CNN
learned features. However, our work differs from existing approaches in that these techniques only
present interesting visualizations or understanding, but fail to shed any light on spatial relationships
encoded by a CNN model.

In summary, CNNs have emerged as a way of dealing with the prohibitive number of weights that
would come with a fully connected end-to-end network. A trade-off resulting from this is that
kernels and their learned weights only have visibility of a small subset of the image. This would
seem to imply solutions where networks rely more on cues such as texture and color rather than
shape (Baker et al., 2018). Nevertheless, position information provides a powerful cue for where
objects might appear in an image (e.g. birds in the sky). It is conceivable that networks might rely
sufficiently on such cues that they implicitly encode spatial position along with the features they
represent. It is our hypothesis that deep neural networks succeed in part by learning both what and
where things are. This paper tests this hypothesis, and provides convincing evidence that CNNs do
indeed rely on and learn information about spatial positioning in the image to a much greater extent
than one might expect.

2 POSITION INFORMATION IN CNNS

CNNs naturally try to extract fine-level high spatial-frequency details (e.g. edges, texture, lines)
in the early convolutional stages while at the deepest layers of encoding the network produces the
richest possible category specific features representation (Simonyan & Zisserman, 2014; He et al.,
2016; Badrinarayanan et al., 2017). In this paper, we propose a hypothesis that position information
is implicitly encoded within the extracted feature maps and plays an important role in classifying,
detecting or segmenting objects from a visual scene. We therefore aim to prove this hypothesis
by predicting position information from different CNN archetypes in an end-to-end manner. In the
following sections, we first introduce the problem definition followed by a brief discussion of our
proposed position encoding network.

Problem Formulation: Given an input image Im∈ R
h×w×3, our goal is to predict a gradient-like

position information mask f̂p∈ R
h×w where each pixel value defines the absolute coordinates of an

pixel from left→right or top→bottom. We generate gradient-like masks Gpos∈ R
h×w (Sec. 2.2) for

supervision in our experiments, with weights of the base CNN archetypes being fixed.

2.1 POSITION ENCODING NETWORK

Our Position Encoding Network (PosENet) (See Fig. 2) consists of two key components: a feed-
forward convolutional encoder network fenc and a simple position encoding module, denoted as
fpem. The encoder network extracts features at different levels of abstraction, from shallower to
deeper layers. The position encoding module takes multi-scale features from the encoder network
as input and predicts the absolute position information at the end.

Encoder: We use ResNet and VGG based architectures to build encoder networks (fenc) by re-
moving the average pooling layer and the layer that assigns categories. As shown in Fig. 2, the

2

Published as a conference paper at ICLR 2020

Figure 2: Illustration of PosENet architecture.

Natural Black White Noise

H V G HS VS

Figure 3: Sample images and generated
gradient-like ground-truth position maps.

encoder module consists of five feature extractor blocks denoted by (f1

ϑ, f
2

ϑ, f
3

ϑ, f
4

ϑ, f
5

ϑ). The ex-
tracted multi-scale features from bottom to top layers of the canonical network are denoted by
(f1

pos, f
2

pos, f
3

pos, f
4

pos, f
5

pos). We summarize the key operations as follows:

f i
pos = f i

ϑ(Wa ∗ Im) (1)

where Wa denotes weights that are frozen. ∗ denotes the convolution operation. Note that in probing
the encoding network, only the position encoding module fpem is trained to focus on extracting
position information while the encoder network is forced to maintain their existing weights.

Position Encoding Module: The position encoding module takes multi-scale features

(f1

pos, · · · , f
5

pos) from fenc as input and generates the desired position map f̂p thorough a trans-
formation function Tpos. The transformation function Tpos first applies a bi-linear interpolation
operation on the feature maps to have the same spatial dimension resulting in a feature map f c

pos.
Once we have the same spatial dimension for multi-scale features, we concatenate them together
followed by a sequence of k × k convolution operations. In our experiments, we vary the value of
k between {1, 3, 5, 7} and most experiments are carried out with a single convolutional layer in the
position encoding module fpem. The key operations can be summarized as follows:

f c
pos = (f1

pos ⊕ · · · ⊕ f5

pos) f̂p = (Wc

pos
∗ f c

pos) (2)

where W
c
pos is the trainable weights attached with the transformation function Tpos.

The main objective of the encoding module is to validate whether position information is implicitly
learned when trained on categorical labels. Additionally, the position encoding module models the
relationship between hidden position information and the gradient like ground-truth mask. The
output is expected to be random if there is no position information encoded in the features maps and
vice versa (ignoring any guidance from image content).

2.2 SYNTHETIC DATA AND GROUND-TRUTH GENERATION

To validate the existence of position information in a network, we implement a randomization test
by assigning a normalized gradient-like 1 position map as ground-truth shown in Fig. 3. We first
generate gradient-like masks in Horizontal (H) and vertical (V) directions. Similarly, we apply a
Gaussian filter to design another type of ground-truth map, Gaussian distribution (G) . The key
motivation of generating these three patterns is to validate if the model can learn absolute position
on one or two axes. Additionally, We also create two types of repeated patterns, horizontal and
vertical stripes, (HS, VS). Regardless of the direction, the position information in the multi-level
features is likely to be modelled through a transformation by the encoding module fpem. Our design
of gradient ground-truth can be considered as a type of random label because there is no correlation
between the input image and the ground-truth with respect to position. Since the extraction of
position information is independent of the content of images, we can choose any image datasets.
Meanwhile, we also build synthetic images to validate our hypothesis.

2.3 TRAINING THE NETWORK

As we implicitly aim to encode the position information from a pretrained network, we freeze the
encoder network fenc in all of our experiments. Our position encoding module fpem generates the

1We use the term gradient to denote pixel intensities instead of the gradient in back propagation.

3

Published as a conference paper at ICLR 2020

position map f̂p of interest. During training, for a given input image Im∈ R
h×w×3 and associated

ground-truth position map Gh
pos, we apply the supervisory signal on f̂p by upsampling it to the size

of Gh
pos. Then, we define a pixel-wise mean squared error loss to measure the difference between

predicted and ground-truth position maps as follows:

∆
f̂p

=
1

2n

n∑

i=1

(xi − yi)
2 (3)

where x ∈ IRn and y ∈ IRn (n denotes the spatial resolution) are the vectorized predicted position

and ground-truth map respectively. xi and yi refer to a pixel of f̂p and Gh
pos respectively.

3 EXPERIMENTS

3.1 DATASET AND EVALUATION METRICS

Datasets: We use the DUT-S dataset (Wang et al., 2017) as our training set, which contains 10, 533
images for training. Following the common training protocol used in (Zhang et al., 2017; Liu et al.,
2018), we train the model on the training set of DUT-S and evaluate the existence of position in-
formation on the natural images of the PASCAL-S (Li et al., 2014) dataset. The synthetic images
(white, black and Gaussian noise) are also used as described in Section 2.2. Note that we follow
the common setting used in saliency detection just to make sure that there is no overlap between the
training and test sets. However, any images can be used in our experiments given that the position
information is relatively content independent.

Evaluation Metrics: As position encoding measurement is a new direction, there is no universal
metric. We use two different natural choices for metrics (Spearmen Correlation (SPC) and Mean
Absoute Error (MAE)) to measure the position encoding performance. The SPC is defined as the
Spearman’s correlation between the ground-truth and the predicted position map. For ease of in-
terpretation, we keep the SPC score within range [-1 1]. MAE is the average pixel-wise difference
between the predicted position map and the ground-truth gradient position map.

3.2 IMPLEMENTATION DETAILS

We initialize the architecture with a network pretrained for the ImageNet classification task. The new
layers in the position encoding branch are initialized with xavier initialization (Glorot & Bengio,
2010). We train the networks using stochastic gradient descent for 15 epochs with momentum of
0.9, and weight decay of 1e−4. We resize each image to a fixed size of 224×224 during training and
inference. Since the spatial extent of multi-level features are different, we align all the feature maps
to a size of 28 × 28. We report experimental results for the following baselines that are described
as follows: VGG indicates PosENet is based on the features extracted from the VGG16 model.
Similarly, ResNet represents the combination of ResNet-152 and PosENet. PosENet alone denotes
only the PosENet model is applied to learn position information directly from the input image. H,
V, G, HS and VS represent the five different ground-truth patterns, horizontal and vertical gradients,
2D Gaussian distribution, horizontal and vertical stripes respectively.

3.3 EXISTENCE OF POSITION INFORMATION

Position Information in Pretrained Models: We first conduct experiments to validate the exis-
tence of position information encoded in a pretrained model. Following the same protocol, we train
the VGG and ResNet based networks on each type of the ground-truth and report the experimental
results in Table 1. We also report results when we only train PosENet without using any pretrained
model to justify that the position information is not driven from prior knowledge of objects. Our
experiments do not focus on achieving higher performance on the metrics but instead validate how
much position information a CNN model encodes or how easily PosENet can extract this informa-
tion. Note that, we only use one convolutional layer with a kernel size of 3× 3 without any padding
in the PosENet for this experiment.

As shown in Table 1, PosENet (VGG and ResNet) can easily extract position information from the
pretrained CNN models, especially the ResNet based PosENet model. However, training PosENet

4

Published as a conference paper at ICLR 2020

Model
PASCAL-S Black White Noise

SPC MAE SPC MAE SPC MAE SPC MAE

H

PosENet .012 .251 .0 .251 .0 .251 .001 .251

VGG .742 .149 .751 .164 .873 .157 .591 .173

ResNet .933 .084 .987 .080 .994 .078 .973 .077

V

PosENet .131 .248 .0 .251 .0 .251 .053 .250

VGG .816 .129 .846 .146 .927 .138 .771 .150

ResNet .951 .083 .978 .069 .979 .072 .968 .074

G

PosENet -.001 .233 .0 .186 .0 .186 -.034 .214

VGG .814 .109 .842 .123 .898 .116 .762 .129

ResNet .936 .070 .953 .068 .964 .064 .971 .055

HS

PosENet -.001 .712 -.055 .704 .0 .704 .023 .710

VGG .405 .556 .532 .583 .576 .574 .375 .573

ResNet .534 .528 .566 .518 .562 .515 .471 .530

VS

PosENet .006 .723 .081 .709 .081 .709 .018 .714

VGG .374 .567 .538 .575 .437 .578 .526 .566

ResNet .520 .537 .574 .523 .593 .514 .523 .545

Table 1: Quantitative comparison of different networks in terms of SPC and MAE across different
image types.

Input GT PosENet VGG ResNet

Figure 4: Qualitative results of PosENet based networks corresponding to different ground-truth
patterns.

(PosENet) separately achieves much lower scores across different patterns and source images. This
result implies that it is very difficult to extract position information from the input image alone.
PosENet can extract position information consistent with the ground-truth position map only when
coupled with a deep encoder network. As mentioned prior, the generated ground-truth map can be
considered as a type of randomization test given that the correlation with input has been ignored
(Zhang et al., 2016). Nevertheless, the high performance on the test sets across different ground-
truth patterns reveals that the model is not blindly overfitting to the noise and instead is extracting
true position information. However, we observe low performance on the repeated patterns (HS and
VS) compared to other patterns due to the model complexity and specifically the lack of correlation
between ground-truth and absolute position (last two rows of Table 1). The H pattern can be seen as
one quarter of a sine wave whereas the striped patterns (HS and VS) can be considered as repeated
periods of a sine wave which requires a deeper comprehension.

The qualitative results for several architectures across different patterns are shown in Fig. 4. We can
see the correlation between the predicted and the ground-truth position maps corresponding to H,
G and HS patterns, which further reveals the existence of position information in these networks.
The quantitative and qualitative results strongly validate our hypothesis that position information is
implicitly encoded in every architecture without any explicit supervision towards this objective.

Moreover, PosENet alone shows no capacity to output a gradient map based on the synthetic data.
We further explore the effect of image semantics in Sec. 4.1. It is interesting to note the performance
gap among different architectures specifically the ResNet based models achieve higher performance
than the VGG16 based models. The reason behind this could be the use of different convolutional

5

Published as a conference paper at ICLR 2020

Layers
PosENet VGG

SPC MAE SPC MAE

H

1 Layer .012 .251 .742 .149

2 Layers .056 .250 .797 .128

3 Layers .055 .250 .830 .117

G

1 Layer -.001 .233 .814 .109

2 Layers .067 .187 .828 .105

3 Layers .126 .186 .835 .104

HS

1 Layer -.001 .712 .405 .556

2 Layers -.006 .628 .483 .538

3 Layers .003 .628 .491 .540

(a)

Kernel
PosENet VGG

SPC MAE SPC MAE

H

1× 1 .013 .251 .542 .196

3× 3 .012 .251 .742 .149

7× 7 .060 .250 .828 .120

G

1× 1 .017 .188 .724 .127

3× 3 -.001 .233 .814 .109

7× 7 .068 .187 .816 .111

HS

1× 1 -.004 .628 .317 .576

3× 3 -.001 .723 .405 .556

7× 7 .002 .628 .487 .532

(b)

Table 2: Quantitative comparison on the PASCAL-S dataset in terms of SPC and MAE with varying
(a) number of layers and (b) kernel sizes. Note that (a) the kernel size is fixed to 3× 3 but different
numbers of layers are used in the PosENet. (b) Number of layers is fixed to one but we use different
kernel sizes in the PosENet.

kernels in the architecture or the degree of prior knowledge of the semantic content. We show an
ablation study in the next experiment for further investigation. For the rest of this paper, we only
focus on the natural images, PASCAL-S dataset, and three representative patterns, H, G and HS.

3.4 ANALYZING POSENET

In this section, we conduct ablation studies to examine the role of the proposed position encoding
network by highlighting two key design choices. (1) the role of varying kernel size in the position
encoding module and (2) stack length of convolutional layers we add to extract position information
from the multi-level features.

Impact of Stacked Layers: Experimental results in Table 1 show the existence of position informa-
tion learned from an object classification task. In this experiment, we change the design of PosENet
to examine if it is possible to extract hidden position information more accurately. The PosENet
used in the prior experiment (Table 1) has only one convolutional layer with a kernel size of 3 × 3.
Here, we apply a stack of convolutional layers of varying length to the PosENet and report the ex-
perimental results in Table 2 (a). Even though the stack size is varied, we aim to retain a relatively
simple PosENet to only allow efficient readout of positional information. As shown in Table 2, we
keep the kernel size fixed at 3 × 3 while stacking multiple layers. Applying more layers in the
PosENet can improve the readout of position information for all the networks. One reason could
be that stacking multiple convolutional filters allows the network to have a larger effective receptive
field, for example two 3 × 3 convolution layers are spatially equal to one 5 × 5 convolution layer
(Simonyan & Zisserman, 2014). An alternative possibility is that positional information may be
represented in a manner that requires more than first order inference (e.g. a linear readout).

Impact of varying Kernel Sizes: We further validate PosENet by using only one convolutional
layer with different kernel sizes and report the experimental results in Table 2 (b). From Table 2 (b),
we can see that the larger kernel sizes are likely to capture more position information compared to
smaller sizes. This finding implies that the position information may be distributed spatially within
layers and in feature space as a larger receptive field can better resolve position information.

We further show the visual impact of varying number of layers and kernel sizes to learn position
information in Fig. 5.

3.5 WHERE IS THE POSITION INFORMATION STORED?

Our previous experiments reveal that the position information is encoded in a pretrained CNN model.
It is also interesting to see whether position information is equally distributed across the layers. In
this experiment, we train PosENet on each of the extracted features, f1

pos, f2

pos, f3

pos, f4

pos, f5

pos

separately using VGG16 to examine which layer encodes more position information. Similar to
Sec. 3.3, we only apply one 3× 3 kernel in Fpem to obtain the position map.

6

Published as a conference paper at ICLR 2020

Figure 5: The effect of more Layers (Top row) and varying Kernel Size (bottom row) applied in
the PoseNet. Order (left → right): GT (G), PosENet (L=1, KS=1), PosENet (L=2, KS=3), PosENet
(L=3, KS=7), VGG (L=1, KS=1), VGG (L=2, KS=3), VGG (L=3, KS=7).

Method f1

pos f2

pos f3

pos f4

pos f5

pos SPC MAE

H VGG

X .101 .249

X .344 .225

X .472 .203

X .610 .181

X .657 .177

X X X X X .742 .149

G VGG

X .241 .182

X .404 .168

X .588 .146

X .653 .138

X .693 .135

X X X X X .814 .109

Table 3: Performance of VGG on natural images with a varying extent of the reach of different
feed-forward blocks.

As shown in Table 3, the VGG based PosENet with top f5

pos features achieves higher performance

compared to the bottom f1

pos features. This may partially a result of more feature maps being ex-
tracted from deeper as opposed to shallower layers, 512 vs 64 respectively. However, it is likely
indicative of stronger encoding of the positional information in the deepest layers of the network
where this information is shared by high-level semantics. We further investigate this effect for
VGG16 where the top two layers (f4

pos and f5

pos) have the same number of features. More inter-

estingly, f5

pos achieves better results than f4

pos. This comparison suggests that the deeper feature
contains more position information, which validates the common belief that top level visual features
are associated with global features.

4 WHERE DOES POSITION INFORMATION COME FROM?

We believe that the padding near the border delivers position information to learn. Zero-padding is
widely used in convolutional layers to maintain the same spatial dimensions for the input and output,
with a number of zeros added at the beginning and at the end of both axes, horizontal and vertical. To
validate this, we remove all the padding mechanisms implemented within VGG16 but still initialize
the model with the ImageNet pretrained weights. Note that we perform this experiment only using
VGG based PosENet since removing padding on ResNet models will lead to inconsistent sizes of
skip connections. We first test the effect of zero-padding used in VGG, no padding used in PosENet.
As we can see from Table 4, the VGG16 model without zero-padding achieves much lower perfor-
mance than the default setting (padding=1) on the natural images. Similarly, we introduce position
information to the PosENet by applying zero-padding. PosENet with padding=1 (concatenating one
zero around the frame) achieves higher performance than the original (padding=0). When we set
padding=2, the role of position information is more obvious. This also validates our experiment
in Section 3.3, that shows PosENet is unable to extract noticeable position information because no
padding was applied, and the information is encoded from a pretrained CNN model. This is why we
did not apply zero-padding in PosENet in our previous experiments. Moreover, we aim to explore

7

Published as a conference paper at ICLR 2020

Model
H G HS

SPC MAE SPC MAE SPC MAE

PosENet .012 .251 -.001 .233 -.001 .712

PosENet with padding=1 .274 .239 .205 .184 .148 .608

PosENet with padding=2 .397 .223 .380 .177 .214 .595

VGG16 .742 .149 .814 .109 .405 .556

VGG16 w/o. padding .381 .223 .359 .174 .011 .628

Table 4: Quantitative comparison subject to padding in the convolution layers used in PosENet and
VGG (w/o and with zero padding) on natural images.

Figure 6: The effect of zero-padding on Gaussian pattern. Left to right: GT (G), Pad=0 (.286, .186),
Pad=1 (.227, .180), Pad=2 (.473, .169), VGG Pad=1 (.928, .085), VGG Pad=0(.405, .170).

how much position information is encoded in the pretrained model instead of directly combining
with the PosENet. Fig. 6 illustrates the impact of zero-padding on encoding position information
subject to padding using a Gaussian pattern.

4.1 CASE STUDY

Recall that the position information is considered to be content independent but our results in Ta-
ble 1 show that semantics within an image may affect the position map. To visualize the impact of
semantics, we compute the content loss heat map using the following equation:

L =
|(Gh

pos − f̂h
p)|+ |(Gv

pos − f̂v
p)|+ |(Gg

pos − f̂g
p)|

3
(4)

where f̂h
p , f̂v

p , and f̂g
p are the predicted position maps from horizontal, vertical and Gaussian patterns

respectively.

As shown in Figure 7, the heatmaps of PosENet have larger content loss around the corners. While
the loss maps of VGG and ResNet correlate more with the semantic content. Especially for ResNet,
the deeper understanding of semantic content leads to a stronger interference in generating a smooth
gradient. The highest losses are from the face, person, cat, airplane and vase respectively (from left
to right). This visualization can be an alternative method to show which regions a model focuses on,
especially in the case of ResNet.

Figure 7: Error heat maps of PosENet (1st row), VGG (2nd row) and ResNet (3rd row).

8

Published as a conference paper at ICLR 2020

4.2 ZERO-PADDING DRIVEN POSITION INFORMATION

Saliency Detection: We further validate our findings in the position-dependent tasks (semantic
segmentation and salient object detection (SOD)). First, we train the VGG network with and with-
out zero-padding from scratch to validate if the position information delivered by zero-padding is
critical for detecting salient regions. For these experiments, we use the publicly available MSRA
dataset (Cheng et al., 2015) as our SOD training set and evaluate on three other datasets (ECSSD,
PASCAL-S, and DUT-OMRON). From Table 5 (a), we can see that VGG without padding achieves
much worse results on both of the metrics (F-measure and MAE) which further validates our findings
that zero-padding is the key source of position information.

Semantic Segmentation: We also validate the impact of zero-padding on the semantic segmentation
task. We train the VGG16 network with and without zero padding on the training set of PASCAL
VOC 2012 dataset and evaluate on the validation set. Similar to SOD, the model with zero padding
significantly outperforms the model with no padding.

Model
ECSSD PASCAL-S DUT-OMRON

Fm MAE Fm MAE Fm MAE

VGG w/o padding .36 .48 .32 .48 .25 .48

VGG .78 .17 .66 .21 .63 .18

(a)

Model mIoU (%)

VGG w/o padding 12.3

VGG 23.1

(b)

Table 5: VGG models with and w/o zero-padding for (a) SOD and (b) semantic segmentation.

We believe that CNN models pretrained on these two tasks can learn more position information than
classification task. To validate this hypothesis, we take the VGG model pretrained on ImageNet
as our baseline. Meanwhile, we train two VGG models on the tasks of semantic segmentation and
saliency detection from scratch, denoted as VGG-SS and VGG-SOD respectively. Then we finetune
these three VGG models following the protocol used in Section 3.3. From Table 6, we can see
that the VGG-SS and VGG-SOD models outperform VGG by a large margin. These experiments
further reveal that the zero-padding strategy plays an important role in a position-dependent task, an
observation that has been long-ignored in neural network solutions to vision problems.

Model
PASCAL-S BLACK WHITE NOISE

SPC MAE SPC MAE SPC MAE SPC MAE

H

VGG .742 .149 .751 .164 .873 .157 .591 .173

VGG-SOD .969 .055 .857 .099 .938 .087 .965 .060

VGG-SS .982 .038 .990 .030 .985 .032 .985 .033

G

VGG .814 .109 .842 .123 .898 .116 .762 .129

VGG-SOD .948 .067 .904 .086 .907 .085 .912 .077

VGG-SS .971 .055 .984 .050 .989 .046 .982 .051

HS

VGG .405 .556 .532 .583 .576 .574 .375 .573

VGG-SOD .667 .476 .699 .506 .709 .482 .668 .489

VGG-SS .810 .430 .802 .426 .810 .426 .789 .428

Table 6: Comparison of VGG models pretrained for classification, SOD, and semantic segmentation.

5 CONCLUSION

In this paper we explore the hypothesis that absolute position information is implicitly encoded
in convolutional neural networks. Experiments reveal that positional information is available to a
strong degree. More detailed experiments show that larger receptive fields or non-linear readout
of positional information further augments the readout of absolute position, which is already very
strong from a trivial single layer 3 × 3 PosENet. Experiments also reveal that this recovery is pos-
sible when no semantic cues are present and interference from semantic information suggests joint
encoding of what (semantic features) and where (absolute position). Results point to zero padding
and borders as an anchor from which spatial information is derived and eventually propagated over
the whole image as spatial abstraction occurs. These results demonstrate a fundamental property of
CNNs that was unknown to date, and for which much further exploration is warranted.

9

Published as a conference paper at ICLR 2020

REFERENCES

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional encoder-
decoder architecture for scene segmentation. TPAMI, 2017.

Nicholas Baker, Hongjing Lu, Gennady Erlikhman, and Philip J. Kellman. Deep convolutional
networks do not classify based on global object shape. PLOS Computational Biology, 2018.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. TPAMI, 2018.

M. Cheng, N. J. Mitra, X. Huang, P. H. S. Torr, and S. Hu. Global contrast based salient region
detection. TPAMI, 2015.

M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara. Predicting human eye fixations via an lstm-based
saliency attentive model. TIP, 2018.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing higher-layer
features of a deep network. University of Montreal, 2009.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In AISTATS, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Geoffrey Hinton, Simon Osindero, Max Welling, and Yee-Whye Teh. Unsupervised discovery of
nonlinear structure using contrastive backpropagation. Cognitive science, 2006.

Md Amirul Islam, Mrigank Rochan, Neil DB Bruce, and Yang Wang. Gated feedback refinement
network for dense image labeling. In CVPR, 2017.

Md Amirul Islam, Mahmoud Kalash, and Neil DB Bruce. Revisiting salient object detection: Si-
multaneous detection, ranking, and subitizing of multiple salient objects. In CVPR, 2018.

Sen Jia and Neil DB Bruce. Eml-net: An expandable multi-layer network for saliency prediction.
arXiv preprint arXiv:1805.01047, 2018.

Sen Jia and Neil DB Bruce. Richer and deeper supervision network for salient object detection.
arXiv preprint arXiv:1901.02425, 2019.

Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille. The secrets of salient object segmentation. In
CVPR, 2014.

Zachary C Lipton. The mythos of model interpretability. Queue, 2018.

Nian Liu, Junwei Han, and Ming-Hsuan Yang. Picanet: Learning pixel-wise contextual attention
for saliency detection. In CVPR, 2018.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In CVPR, 2015.

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network for seman-
tic segmentation. In ICCV, 2015.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In CVPR, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In NIPS, 2015.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In NIPS,
2017.

10

Published as a conference paper at ICLR 2020

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In ICCV, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing the gap to
human-level performance in face verification. In CVPR, 2014.

F Visin, K Kastner, K Cho, M Matteucci, A Courville, and Y Bengio. A recurrent neural network
based alternative to convolutional networks. arXiv preprint arXiv:1505.00393, 2015.

Lijun Wang, Huchuan Lu, Yifan Wang, Mengyang Feng, Dong Wang, Baocai Yin, and Xiang Ruan.
Learning to detect salient objects with image-level supervision. In CVPR, 2017.

M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive deconvolutional networks for mid and high
level feature learning. In ICCV, 2011.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In ECCV,
2014.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

Pingping Zhang, Dong Wang, Huchuan Lu, Hongyu Wang, and Xiang Ruan. Amulet: Aggregating
multi-level convolutional features for salient object detection. In ICCV, 2017.

11

