
❉✉r❤❛♠ ❘❡s❡❛r❝❤ ❖♥❧✐♥❡

❉❡♣♦s✐t❡❞ ✐♥ ❉❘❖✿

✷✼ ❏✉♥❡ ✷✵✶✾

❱❡rs✐♦♥ ♦❢ ❛tt❛❝❤❡❞ ✜❧❡✿

❆❝❝❡♣t❡❞ ❱❡rs✐♦♥

P❡❡r✲r❡✈✐❡✇ st❛t✉s ♦❢ ❛tt❛❝❤❡❞ ✜❧❡✿

P❡❡r✲r❡✈✐❡✇❡❞

❈✐t❛t✐♦♥ ❢♦r ♣✉❜❧✐s❤❡❞ ✐t❡♠✿

❍❛♥✱ ❈✳ ✭✷✵✷✵✮ ✬❍♦✇ ♠✉❝❤ s❤♦✉❧❞ ♣♦rt❢♦❧✐♦s s❤r✐♥❦❄✬✱ ❋✐♥❛♥❝✐❛❧ ♠❛♥❛❣❡♠❡♥t✳✱ ✹✾ ✭✸✮✳ ♣♣✳ ✼✵✼✲✼✹✵✳

❋✉rt❤❡r ✐♥❢♦r♠❛t✐♦♥ ♦♥ ♣✉❜❧✐s❤❡r✬s ✇❡❜s✐t❡✿

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✶✶✴✜♠❛✳✶✷✷✽✷

P✉❜❧✐s❤❡r✬s ❝♦♣②r✐❣❤t st❛t❡♠❡♥t✿

❚❤✐s ✐s t❤❡ ❛❝❝❡♣t❡❞ ✈❡rs✐♦♥ ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣ ❛rt✐❝❧❡✿ ❍❛♥✱❈✳ ✭✷✵✷✵✮✳ ❍♦✇ ▼✉❝❤ ❙❤♦✉❧❞ P♦rt❢♦❧✐♦s ❙❤r✐♥❦❄ ❋✐♥❛♥❝✐❛❧
▼❛♥❛❣❡♠❡♥t ✹✾✭✸✮✿ ✼✵✼✲✼✹✵ ✇❤✐❝❤ ❤❛s ❜❡❡♥ ♣✉❜❧✐s❤❡❞ ✐♥ ✜♥❛❧ ❢♦r♠ ❛t ❬❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✶✶✴✜♠❛✳✶✷✷✽✷✳ ❚❤✐s ❛rt✐❝❧❡
♠❛② ❜❡ ✉s❡❞ ❢♦r ♥♦♥✲❝♦♠♠❡r❝✐❛❧ ♣✉r♣♦s❡s ✐♥ ❛❝❝♦r❞❛♥❝❡ ❲✐t❤ ❲✐❧❡② ❚❡r♠s ❛♥❞ ❈♦♥❞✐t✐♦♥s ❢♦r s❡❧❢✲❛r❝❤✐✈✐♥❣✳

❆❞❞✐t✐♦♥❛❧ ✐♥❢♦r♠❛t✐♦♥✿

❯s❡ ♣♦❧✐❝②

❚❤❡ ❢✉❧❧✲t❡①t ♠❛② ❜❡ ✉s❡❞ ❛♥❞✴♦r r❡♣r♦❞✉❝❡❞✱ ❛♥❞ ❣✐✈❡♥ t♦ t❤✐r❞ ♣❛rt✐❡s ✐♥ ❛♥② ❢♦r♠❛t ♦r ♠❡❞✐✉♠✱ ✇✐t❤♦✉t ♣r✐♦r ♣❡r♠✐ss✐♦♥ ♦r ❝❤❛r❣❡✱ ❢♦r
♣❡rs♦♥❛❧ r❡s❡❛r❝❤ ♦r st✉❞②✱ ❡❞✉❝❛t✐♦♥❛❧✱ ♦r ♥♦t✲❢♦r✲♣r♦✜t ♣✉r♣♦s❡s ♣r♦✈✐❞❡❞ t❤❛t✿

• ❛ ❢✉❧❧ ❜✐❜❧✐♦❣r❛♣❤✐❝ r❡❢❡r❡♥❝❡ ✐s ♠❛❞❡ t♦ t❤❡ ♦r✐❣✐♥❛❧ s♦✉r❝❡

• ❛ ❧✐♥❦ ✐s ♠❛❞❡ t♦ t❤❡ ♠❡t❛❞❛t❛ r❡❝♦r❞ ✐♥ ❉❘❖

• t❤❡ ❢✉❧❧✲t❡①t ✐s ♥♦t ❝❤❛♥❣❡❞ ✐♥ ❛♥② ✇❛②

❚❤❡ ❢✉❧❧✲t❡①t ♠✉st ♥♦t ❜❡ s♦❧❞ ✐♥ ❛♥② ❢♦r♠❛t ♦r ♠❡❞✐✉♠ ✇✐t❤♦✉t t❤❡ ❢♦r♠❛❧ ♣❡r♠✐ss✐♦♥ ♦❢ t❤❡ ❝♦♣②r✐❣❤t ❤♦❧❞❡rs✳

P❧❡❛s❡ ❝♦♥s✉❧t t❤❡ ❢✉❧❧ ❉❘❖ ♣♦❧✐❝② ❢♦r ❢✉rt❤❡r ❞❡t❛✐❧s✳

❉✉r❤❛♠ ❯♥✐✈❡rs✐t② ▲✐❜r❛r②✱ ❙t♦❝❦t♦♥ ❘♦❛❞✱ ❉✉r❤❛♠ ❉❍✶ ✸▲❨✱ ❯♥✐t❡❞ ❑✐♥❣❞♦♠
❚❡❧ ✿ ✰✹✹ ✭✵✮✶✾✶ ✸✸✹ ✸✵✹✷ ⑤ ❋❛① ✿ ✰✹✹ ✭✵✮✶✾✶ ✸✸✹ ✷✾✼✶

❤tt♣s✿✴✴❞r♦✳❞✉r✳❛❝✳✉❦

https://www.dur.ac.uk
https://doi.org/10.1111/fima.12282
http://dro.dur.ac.uk/28563/
https://dro.dur.ac.uk/policies/usepolicy.pdf
https://dro.dur.ac.uk


How Much Should Portfolios Shrink?∗

Chulwoo Han†

This Version: June 2019

Abstract

This paper develops a portfolio model that penalizes the deviation from a reference

portfolio. The proposed model renders a robust portfolio that performs superior un-

der parameter uncertainty. Penalizing the deviation also improves the performance of

existing shrinkage portfolio models that are sub-optimal due to model parameter un-

certainty. The equal-weight portfolio turns out to be a better reference portfolio than

the currently holding portfolio even in the presence of transaction costs. A data-driven

method for determining the degree of penalization is offered. Comprehensive simula-

tion and empirical studies suggest that the proposed model significantly outperforms
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1 Introduction

Optimal portfolio choice under parameter uncertainty and transaction costs is a central

problem in the portfolio literature, and there has been a significant amount of effort dedicated

to this problem.

One pillar has been formed by the Bayesian approach: e.g., Klein and Bawa (1976);

Brown (1976, 1978); Jorion (1986); Black and Litterman (1992); Pástor (2000); Pástor and

Stambaugh (2000), among others. For a review of Bayesian models, the reader is referred to

Avramov and Zhou (2010). More recently, the robust optimization that optimizes portfolio

under a worst-case scenario becomes popular: e.g., Goldfarb and Iyengar (2003); Fabozzi

et al. (2007); Cao et al. (2009); Ceria and Stubbs (2016). Kan and Zhou (2007) and Tu

and Zhou (2011) optimally combine two or more portfolios so that the expected utility loss

is minimized. Incorporating transaction costs is also known to help reduce the sensitivity

and improve the performance after transaction costs: e.g., Gârleanu and Pedersen (2013);

DeMiguel et al. (2015). Other approaches impose weight constraints (Jagannathan and Ma,

2003) or use a shrinkage method for parameter estimation (Ledoit and Wolf, 2004).

While these models are known to alleviate the problems arising from parameter uncer-

tainty and perform superior to the classical mean-variance model, DeMiguel et al. (2009)

show that none of the portfolio models considered in their paper consistently outperforms

the näıve, equal-weight portfolio. Their work triggered many studies that challenge the

equal-weight portfolio: e.g., Tu and Zhou (2011); Kirby and Ostdiek (2012); Bessler et al.

(2014). Their evaluation method that compares risky-asset-only portfolios derived from op-

timal portfolios has also been criticized for being unfair to some models (see, e.g., Kirby and

Ostdiek (2012) and Kan et al. (2016)). Still, most optimal strategies seem to struggle to

outperform the näıve strategy consistently across assets and time.

This paper addresses parameter uncertainty by developing a portfolio model that pe-

nalizes the deviation from a reference portfolio (deviation penalty, henceforth), where the

reference portfolio can be any portfolio known at the time of rebalancing such as the current
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portfolio or the equal-weight portfolio. By penalizing the deviation from a reference portfo-

lio, the model reduces the time-series variation of portfolio weights and generates a portfolio

that is robust to estimation errors. While the model can be considered a shrinkage model,

existing shrinkage models can also benefit from the deviation penalty as illustrated below.

This paper offers a data-driven method to determine the degree of penalization and

shows that the proposed model significantly outperforms many existing models in terms

of certainty equivalent and Sharpe ratio before and after transaction costs. The optimal

degree of penalization turns out to be strikingly high compared to the shrinkage levels of

other shrinkage models, especially when the input parameters are subject to large estimation

errors.

Comprehensive simulation and empirical studies involving thirteen datasets and a sample

period of over 60 years suggest that the proposed model performs superior in comparison

to various existing models such as the equal-weight portfolio, market portfolio, and other

shrinkage models. Robustness tests show that the proposed model continues to outper-

form other models in different circumstances: e.g., during different sample periods, during

recession periods, and when using different sample sizes for input parameter estimation.

Apart from introducing a new portfolio model that performs superior, the paper makes

several important contributions to the extant literature.

One important contribution of the paper is to show that, both theoretically and em-

pirically, the equal-weight portfolio is a more effective reference portfolio than the current

portfolio. While penalizing the deviation from the current portfolio is helpful to some extent

especially when trades are subject to transaction costs, its effect on portfolio performance

is revealed to be rather trivial compared to the effect of penalizing the deviation from the

equal-weight portfolio: shrinking towards the equal-weight portfolio renders a less volatile

portfolio with better performance. Counterintuitively, the equal-weight portfolio also incurs

fewer transaction costs. Using the current portfolio is certainly a more effective way of re-

ducing turnover for a single period. However, since the current portfolio can be distant from
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the true optimal portfolio under parameter uncertainty, shrinking towards it is revealed to

cause higher turnover and transaction costs in the long run. As penalizing the deviation from

the current portfolio is similar to accounting for transaction costs, this finding is contrary to

the earlier findings that accounting for transaction costs in portfolio optimization enhances

portfolio robustness and performance: e.g., Gârleanu and Pedersen (2013); DeMiguel et al.

(2015); Olivares-Nadal and DeMiguel (2018).

Another important contribution of the paper is to show that existing shrinkage models,

e.g., Kan and Zhou (2007) and Tu and Zhou (2011), are sub-optimal and can be improved

substantially when augmented with the deviation penalty. These models combine two or

more portfolios so that the expected out-of-sample utility is maximized. However, the coeffi-

cients on the portfolios (model parameters) are nonlinear functions of unknown input param-

eters and therefore inherit their uncertainty, resulting in worse-than-expected performance

even when the underlying assumptions are correct. That is, just like the mean-variance

optimal portfolio is not optimal when the mean and covariance matrix are subject to estima-

tion errors, the shrinkage models are not optimal when the model parameters are subject to

estimation errors inherited from the mean and covariance matrix. If any of the assumptions

such as i.i.d. normal returns are violated, which is very likely, the problem is exacerbated.

Although the impact of model parameter uncertainty can be substantial, the extant litera-

ture has failed to recognise this. This paper shows that the deviation penalty increases the

robustness of existing shrinkage portfolios and alleviates the performance deterioration due

to model parameter uncertainty.

The rest of the paper is organized as follows. Section 2 develops portfolio models with

the deviation penalty. A calibration method to determine the degree of penalization is

also offered here. Section 3 describes the datasets and portfolio models used in the empirical

study. Section 4 evaluates the proposed models via simulations. Two reference portfolios, the

equal-weight and the current portfolios, are examined. Section 5 carries out empirical studies

which compare the proposed models against various existing models. Section 6 concludes the
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paper. The implementation details of the models used in the empirical analysis and the full

empirical results are provided in the accompanying internet appendix (Internet Appendix).

2 Optimal Portfolio with Deviation Penalty

2.1 Utility Maximization

The quadratic utility maximization problem with the deviation penalty is given by

max
w

U(w) = w′µ−
γ

2
w′Σw −

δ

2
(w − w0)

′G(w − w0), (1)

where µ ∈ R
N and Σ ∈ R

N×N are the mean and covariance matrix of N asset returns

in excess of the risk-free rate, w ∈ R
N is the portfolio weights, and γ is the risk aversion

coefficient of the investor.1 The last term on the right-hand side penalizes the deviation

from a reference portfolio w0, where δ is a constant and G ∈ R
N×N is a penalty matrix. The

reference portfolio w0 can be any portfolio known at the time of portfolio rebalancing: the

equal-weight portfolio, wew, and the current portfolio, wt−, are considered in this paper.

The optimal portfolio w∗ that maximizes the utility function is given by

w∗ = (γΣ + δG)−1(µ+ δGw0). (2)

If an asset return has a large variance, its mean estimate may well have a large estimation

error, and it is justifiable to penalize the weight change of such assets more severely. From

this perspective, a natural choice of G would be the covariance matrix, Σ. When G ≡ Σ, the

optimal portfolio becomes a convex combination of the Markowitz (1952) optimal portfolio,

wml =
1
γ
Σ−1µ, and the reference portfolio, w0:

w∗ =
γ

γ + δ
wml +

δ

γ + δ
w0. (3)

1Returns refer to excess returns throughout the paper unless otherwise noted.
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In order to implement w∗, unknown µ and Σ need to be estimated. If the asset returns

are i.i.d. normal random variables, the maximum likelihood (ML) estimates of µ and Σ, µ̂

and Σ̂, are independent of each other and have the following distributions:

µ̂ ∼ N

(

µ,
Σ

T

)

, Σ̂ ∼ WN(T − 1,Σ)
1

T
, (4)

where T is the estimation window size, and N and WN respectively denote a normal distri-

bution and N -dimensional Wishart distribution. To allow the case when asset returns are

not i.i.d. or µ̂ and Σ̂ are estimated separately, e.g., using different estimation windows, a

slightly relaxed assumption,

µ̂ ∼ N

(

µ,
Σ

K

)

, Σ̂ ∼ WN(T − 1,Σ)
1

T
, (5)

for some constant K, is made.

An unbiased estimate of the Markowitz portfolio is then given by

ŵml =
1

γ
Σ̃−1µ̂, Σ̃ =

T

T −N − 2
Σ̂. (6)

As shown by Kan and Zhou (2007), however, plugging ŵml in (3) is not optimal in the sense

that it does not minimize the expected utility loss. Therefore, the following generic form

w(a, b) = aŵml + bw0 (7)

is considered, and a and b are determined so that the expected utility loss is minimized, or

equivalently, the expected out-of-sample utility (expected utility, henceforth) is maximized:

max
a,b

E[U(a, b)] = E

[

w(a, b)µ−
γ

2
w(a, b)′Σw(a, b)−

δ

2
(w(a, b)− w0)

′Σ(w(a, b)− w0)

]

.

(8)
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Proposition 1. The optimal a and b that solve (8) are given by

a∗ =
γ

γ + δ
a∗0, (9)

b∗ =
γ

γ + δ
b∗0 +

δ

γ + δ
, (10)

where

a∗0 =
θ2 − ψ2

c1

(

N
K + θ2

)

− ψ2
, (11)

b∗0 =
c1

(

N
K + θ2

)

− θ2

c1

(

N
K + θ2

)

− ψ2

1

γ

w′

0µ

w′

0Σw0

, (12)

θ2 = µ′Σ−1µ, ψ2 = µ′

0Σ
−1µ, µ0 =

w′

0µ

w′

0Σw0

Σw0, (13)

and

c1 =
(T − 2)(T −N − 2)

(T −N − 1)(T −N − 4)
. (14)

See Appendix A.1 for proof. Note that variables a∗0 and b
∗

0 are the optimal a and b when

δ = 0. Since a∗ and b∗ are functions of unknown µ and Σ, they need to be estimated, and

one method is provided in Appendix A.2.

The optimal portfolio is given by

w(a∗, b∗) = a∗ŵml + b∗w0

=
γ

γ + δ
(a∗0ŵml + b∗0w0) +

δ

γ + δ
w0

=
γ

γ + δ
(a∗0ŵml + (1− a∗0)wim) +

δ

γ + δ
w0,

(15)

where

wim =
1

γ

w′

0µ

w′

0Σw0

w0 =
1

γ
Σ−1µ0. (16)

The portfolio wim is proportional to w0 and can be interpreted as the Markowitz portfolio
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when the mean returns are µ0.

When w0 = wew and δ = 0, the optimal portfolio becomes the shrinkage portfolio of Tu

and Zhou (2011) except that they set b = 1−a. There is no reason to assume b = 1−a apart

from the obvious advantage of having fewer parameters. Furthermore, under this restriction,

the proportion of ŵml to w0 is no longer invariant to γ.

Viewed as a function of δ, w∗(δ) = w(a∗, b∗|δ), the optimal portfolio can be rewritten as

w∗(δ) =
γ

γ + δ
w∗ +

δ

γ + δ
w0, (17)

where w∗ = a∗0ŵml+ b
∗

0w0 is the solution to the usual expected utility maximization problem

without the deviation penalty term. In fact, any shrinkage estimator of the form, w(a, b) =

aŵ+ bw0 for some portfolio ŵ, has the optimal solution given in (17) with w∗ = a∗0ŵ+ b∗0w0

being the optimal solution when δ = 0 (a∗0 and b∗0 here are generic notations to denote the

optimal values and not as defined in (11) and (12)).

2.2 Variance Minimization

The penalty term can also be incorporated into a variance minimization problem:

min
w

V (w) =
1

2
w′Σw +

δ

2
(w − w0)

′Σ(w − w0)

subject to w′1N = 1,

(18)

where 1N ∈ R
N is a vector of ones, and w′

01N = 1 is assumed. The optimal portfolio that

solves (18) is given by

w∗ =
1

1 + δ
wmv +

δ

1 + δ
w0, (19)

where wmv = Σ−11N
1′
N
Σ−11N

is the global minimum-variance portfolio. An unbiased estimate of

wmv can be obtained from

ŵmv =
Σ̂−11N

1′N Σ̂
−11N

. (20)
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As before, a generic portfolio strategy

w(a) = aŵmv + (1− a)w0 (21)

is considered and a is found so that the expected variance is minimized:

min
a
E[V (a)] = E

[

1

2
w(a)′Σw(a) +

δ

2
(w(a)− w0)

′Σ(w(a)− w0)

]

. (22)

Since ŵ′

mv1N = 1 and w′

01N = 1, the budget constraint is implicitly satisfied without further

restriction.

Proposition 2. The optimal a that solves (22) is given by

a∗ =
1

1 + δ

σ2
0 − σ2

mv

σ2
0 −

(

1− N − 3
T −N + 1

)

σ2
mv

, (23)

where σ2
0 = w′

0Σw0 and σ2
mv = w′

mvΣwmv = (1′NΣ
−11N)

−1 are the variances of w0 and wmv,

respectively.

See Appendix B for proof and the estimation of a∗.

2.3 Choice of Reference Portfolio

The choice of the reference portfolio has a significant impact on portfolio performance. As

opposed to the conventional wisdom, the current portfolio does not appear to be an effective

shrinkage target and is usually dominated by the equal-weight portfolio. The latter renders

far less volatile portfolios and involves lower transaction costs, leading to robust performance

especially under high parameter uncertainty and transaction costs. This is shown theoreti-

cally by the following propositions and confirmed by the simulations and empirical studies

in the following sections.

Proposition 3. Suppose that portfolio w is rebalanced t times via a deviation penalty model.
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Let wct and wet denote the optimal portfolio at time t respectively when w0 = wt− and w0 =

wew:

wct = (1− α)w∗

t + αwct−1,

wet = (1− α)w∗

t + αwew,

(24)

where w∗

t is the optimal portfolio of the base model, and α = δ
γ + δ

. At time 0, the expectation

and variance of the optimal portfolio at time t are given by:

E(wct ) = (1− αt)E(w∗

t ) + αtw,

V (wcit) = (1− α)2V (w∗

it + αw∗

it−1 + · · ·+ αt−1w∗

i1),

E(wet ) = (1− α)E(w∗

t ) + αwew,

V (weit) = (1− α)2V (w∗

it),

(25)

where wcit and w
e
it are the i-th elements of wct and w

e
t , respectively. It follows that

E(wct ) → E(w∗

t ) as t→ ∞, (26)

V (weit) < V (wcit) < V (w∗

it). (27)

See Appendix C.1 for proof. The proposition implies that while wet is biased, i.e., E(w
e
t ) 6=

E(w∗

t ), V (weit) can be considerably smaller than V (w∗

it) resulting in superior performance

especially under high parameter uncertainty. Empirical studies show that α is often greater

than 0.5, in which case, V (weit) < 0.25V (w∗

it). On the contrary, although wct is asymptotically

unbiased, V (wcit) can be considerably larger than V (weit) especially when t is large, resulting

in an inferior performance of wct .

The effect of penalization is more pronounced when transaction costs are taken into

account. As opposed to our intuition, penalizing the deviation from wew incurs lower trans-

action costs than wt− in the long run, as illustrated in Proposition 4.

10



Proposition 4. Let ∆wit = wit − wit−1.
2 If E

[

∆w∗

it∆w
c
it−1

]

> − α
2(1− α)

E
[

(∆wcit−1)
2
]

,

the following inequalities hold:

E
[

(∆weit)
2
]

< E
[

(∆wcit)
2
]

< E
[

(∆w∗

it)
2
]

. (28)

See Appendix C.2 for proof. E
[

∆w∗

it∆w
c
it−1

]

> − α
2(1− α)

E
[

(∆wcit−1)
2
]

is a reasonable

assumption as the correlation between ∆w∗

it and ∆wcit−1 is usually small and negligible when

the estimation window is large. If they are uncorrelated, the following relationship can be

established.

Corollary 1. If E
[

∆w∗

it∆w
c
it−1

]

= 0,

E
[

(∆weit)
2
]

< (1− α2)E
[

(∆wcit)
2
]

. (29)

Proposition 4 implies that both reference portfolios reduce transaction costs, but wew is

more effective especially when α is large.

2.4 Calibration of δ

The coefficient δ needs to be determined in order to implement the model. This section

proposes a simple, but effective calibration method. The procedure is as follows:

1. For the first ten months into the sample period, δ is set to 3, 2, or 1 respectively when

T = 60, 120, or 240.

2. When t > 10, δ is calibrated each month so that the certainty equivalent (CE) during

1, . . . , t − 1 is maximized. The optimal δ is found via line search spanning the range

[0, 10].

2For simplicity, turnover is defined as wit − wit−1 instead of wit − wit− = wit − (1 + rit−1)wit−1. In the
latter case, the inequalities hold under a slightly more complex assumption.
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3. In the presence of transaction costs, δ is chosen based on the CE after transaction

costs.

2.5 Optimal Portfolio Choice under Constraints

One drawback of the proposed model is that it is difficult to extend it to a constrained

optimization problem, e.g., utility maximization with short-sale constraints. This is also true

for other shrinkages models. This paper employs a simple method to incorporate constraints

as described below. Given an optimal portfolio, ŵ∗, obtained from a deviation penalty model

without constraints, the expected returns implied by the portfolio can be derived as follows:

µ̄ = γΣ̂ŵ∗. (30)

A constrained problem is then solved as usual after substituting µ̂ with µ̄.

Even though this method does not explicitly maximize the expected utility subject to

constraints, empirical studies suggest that this method effectively accounts for parameter

uncertainty in a constrained problem. The same approach can be adopted for a constrained

variance minimization problem.

3 Data and Portfolio Models

3.1 The Data

The deviation penalty models are evaluated on the thirteen datasets described in Table I and

compared against the portfolio models listed in Table III. The datasets are based on those

used in DeMiguel et al. (2009), Kirby and Ostdiek (2012), and Kan et al. (2016), but also

include new ones. Except for the first dataset D1 which has the sample period from 1990.10

to 2015.12, all other datasets have the same sample period from 1951.01 to 2015.12. The

sample period refers to the out-of-sample period during which portfolios are rebalanced and
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evaluated, and the samples for moments estimation extend further to the past. For example,

when T = 240, the mean and covariance matrix of the asset returns in the first month are

estimated using the sample from 1931.01 to 1950.12. By using the same out-of-sample period

regardless of the estimation window size, the results from different estimation window sizes

(T = 60, 120, and 240 months in this paper) can be directly compared. The moments of

the asset returns are estimated monthly during the evaluation period rolling the estimation

window.

[TABLE I]

Before assessing the performance of the portfolio models, it is worth understanding the

characteristics of the datasets. Table II reports a summary of the ex-post optimal portfolios,

i.e., Markowitz portfolios obtained from the mean and covariance matrix of the entire sample.

As evidenced by the sum of the absolute values of the weights (the fifth column), the ex-

post optimal portfolios are unrealistically highly leveraged in most datasets. They even

short the risky portfolio in D6 and D7. As shown in the last three columns, these datasets

also frequently yield negative expected returns on the global minimum-variance portfolio,

which will lead to a short risky portfolio position in the optimal portfolio.3 High leverage

arises largely from the inclusion of the market and factor portfolios: these portfolios can be

approximated by other assets and the optimal portfolio often resembles a long-short strategy

(sell the market and buy other assets). Without the factor portfolios, the datasets behave

more nicely resulting in less leveraged portfolios. Nevertheless, the empirical studies of this

paper are primarily based on the datasets including factor portfolios as these have been used

in previous studies, e.g., DeMiguel et al. (2009). The results from the datasets without factor

portfolios are provided in the Internet Appendix.

[TABLE II]

3There is a marked contrast between D5 which contains only the market portfolio and D6 and D7 which
contain all three Fama-French factors: adding the Fama-French factors results in higher leverage and short
positions of the risky portfolio.
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3.2 The Portfolio Models

Table III lists the portfolio models that are compared in this paper. The ex-post optimal

portfolio (W*) is the Markowitz portfolio obtained from the sample moments of the entire

sample. The equal-weight portfolio (EW) is chosen as a benchmark, and other classical

portfolio strategies, i.e., the Markowitz optimal portfolio (ML), global minimum-variance

portfolio (MV), and their short-sale constrained versions (ML+, MV+) are also considered.

The models (VT, OC) of Kirby and Ostdiek (2012) are added as they are argued to outper-

form EW. The three-fund rule (KZ) of Kan and Zhou (2007) and the shrinkage portfolios

(TZML, TZKZ) of Tu and Zhou (2011) are included as they share the same approach to

parameter uncertainty and are similar to the proposed models without the deviation penalty

term.

The deviation penalty models (DPML, DPMV) are tested using two reference portfolios,

wew and wt−. In addition, a model (DPMLK) that estimates K in (5) instead of assuming

K = T is examined. K is estimated using the method of Lo and MacKinlay (1988) as

described in Appendix A.3.

Variants of KZ, TZML, and TZKZ that incorporate the deviation penalty are also con-

sidered. If w0 = wew, the optimal Tu and Zhou portfolio incorporating the deviation penalty

is given by

wtz(δ) =
γ

γ + δ
wtz +

δ

γ + δ
w0, (31)

where wtz is the original Tu and Zhou portfolio (TZML or TZKZ). Extension of KZ is less

straightforward. In principle, it would be best to determine the coefficients on the three

portfolios simultaneously by letting

w(a, b, c) = aŵml + bŵmv + cw0, (32)

and determining a, b, and c so that the expected utility is maximized. The solution to this

problem is given in the Internet Appendix. Although this approach is theoretically more
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appealing, it is difficult to implement due to the complexity of model parameter estima-

tion: simulations reveal that a crude plug-in method using the ML estimates, µ̂ and Σ̂,

performs unsatisfactorily. Instead, based on the generic solution in (17), the following form

is employed:

wkz(δ) =
γ

γ + δ
wkz +

δ

γ + δ
w0, (33)

where wkz is the original Kan and Zhou three-fund rule. Equation (31) and (33) are also

used when w0 = wt−. Implementation details of each model can be found in the Internet

Appendix.

[TABLE III]

4 Simulation Studies

The proposed models are first validated via simulation studies. Four datasets, D1, D2, D5,

and D8, out of the thirteen datasets in Table I are chosen for simulation. The sample mean

and covariance matrix of the entire sample are regarded as the true mean and covariance

matrix. The expected utility and variance are obtained from 10,000 iterations. These values

are computed without the penalty term as portfolio performance should not be affected by

it.

4.1 Utility Maximization

Table IV reports normalized expected utilities for the case of γ = 3. The first column

represents the portfolio models, and the numbers in the header are estimation window sizes.

EW and EW* are equal-weight portfolios adjusted so as to maximize utility, respectively

using the sample and true moments. The reported values are averages across the datasets.

Detailed results from each dataset can be found in the Internet Appendix.

[TABLE IV]

15



Consistent with the findings in the literature, e.g., Tu and Zhou (2011) and Kan et al.

(2016), ML is outperformed by EW when the window size is small: T > 240 is required for

ML to outperform EW. KZ improves over ML significantly and outperforms both EW and

ML across all window sizes. It is however outperformed by the two models of Tu and Zhou

(2011). Of the two, TZKZ performs superior.

Compared with TZML, DPML(0) performs marginally, but consistently superior. It also

has smaller standard errors. This result is in favour of the proposed two-parameter model

over the one-parameter model of Tu and Zhou (2011). In fact, the difference becomes more

prominent when γ = 1 (available in the Internet Appendix).

Of particular interest is the effect of penalization, which can be examined by comparing

the DPML models with different values of δ. Performance enhancement stemming from

penalization is substantial when T is small: the expected utility of DPML(0) is 0.200 when

T = 60, whereas those of DPML(1) and DPML(2) are 0.286 and 0.312, respectively. These

values are even higher than the expected utility of EW* which assumes prior knowledge of

the distribution. This result is rather striking considering that DPML(δ), δ > 0, is a linear

combination of DPML(0) and the equal-weight portfolio. Furthermore, the fact that incor-

porating the penalty causes the objective utility function to drift away from the evaluation

utility function makes the result particularly noteworthy. Due to this misalignment, the δ

associated with the maximum utility declines as T increases, i.e., as parameter uncertainty

diminishes, and the models with δ > 0 eventually underperform DPML(0). This result

suggests that a carefully chosen δ for a given level of parameter uncertainty would improve

portfolio performance. This hypothesis is further investigated later in this section.

The penalty term does not only enhance the expected utility but also reduces its standard

error considerably: e.g., when T = 60, the standard error of DPML(0) is 0.507, whilst those

of DPML(1) and DPML(2) are 0.274 and 0.185, respectively. A smaller standard error

implies a smaller chance of extreme losses over a finite investment horizon.

Jagannathan and Ma (2003) show that imposing short-sale constraints can reduce esti-
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mation error even when the constraints are wrong. A similar conclusion can be drawn here.

ML+, DPML+(0), and DPML+(1) all exhibit superior performance to ML when T < 360.

This result is remarkable considering the high leverage of the ex-post optimal portfolios re-

ported in Table II. The performance of DPML+ is particularly noteworthy. It outperforms

ML+ significantly and outperforms EW* across all T ’s. Besides, it has significantly lower

standard errors compared to ML+. This confirms that the proposed method of incorporating

constraints is effective. Nevertheless, a limitation of short-sale constrained models is that

their performance is suppressed even when T is large.

Unlike simulation, the real-world performance of optimal portfolios does not necessarily

improve with the estimation window size. DeMiguel et al. (2009) find that accumulating

the estimation window rather than rolling it improves the performance of optimal models

only slightly, whereas no apparent relationship between performance and window size can

be derived from the empirical results in Tu and Zhou (2011). It appears that beyond a

certain window size, parameter uncertainty does not diminish further or even rises again.

From this perspective, the proposed models that show robust performance when T is small

are expected to demonstrate superior performance when applied to actual market data.

4.2 Sensitivity to Misspecification

The assumption that the returns are i.i.d. random variables is rather strong and unrealistic,

and the expectation of the sample mean may well deviate from the true mean. In order

to examine the effect of misspecification, the mean is perturbed when random samples are

drawn using µi := µi(1 + 0.2zi), where µi is the mean return of asset i and zi is a standard

normal random variable. Simulation results are reported in Table V.

[TABLE V]

It is striking how small errors in mean can deteriorate the performance of shrinkage es-

timators: KZ, TZML, TZKZ, and DPML(0) all perform poorly and yield negative utilities

17



regardless of the size of T . In fact, the performance of these models worsens with T . This is

because these models ignore the misspecification and put more weight on ML as T increases.

This may explain to some extent why some shrinkage estimators perform worse when the

estimation window size is larger: see, e.g., Table 6 of Tu and Zhou (2011). On the contrary,

the deviation penalty model is far more robust to misspecification. DPML(δ > 0) main-

tains positive expected utility and its performance improves with T . Furthermore, it has

considerably smaller standard errors. The short-sale-constrained models are also robust to

misspecification of mean.

Accounting for parameter uncertainty does help improve portfolio performance. KZ,

TZML, and TZKZ all improve over ML and generally outperform EW even for a moderately

large T . However, since their model parameters need to be estimated, these models are

still sensitive to estimation errors and misspecification, and their actual performance can be

unexpectedly poor. Meanwhile, the deviation penalty models are robust to misspecification

and demonstrate superior performance when subject to large estimation errors. In addition,

they have much smaller standard errors.

4.2.1 Performance over a Finite Investment Horizon

The results in Table IV and V are asymptotic properties. A real-world investment horizon is

finite and the performance of portfolios can be different. To examine the performance over a

finite investment horizon, portfolios are assumed to be managed for ten years during which

they are rebalanced monthly. As we now have the “current portfolio”, the DPML models

with w0 = wt− are also examined.

[TABLE VI]

Table VI reports the mean and standard deviation of the normalized certainty equivalents

(CE) obtained from 10,000 iterations. The results in the upper (lower) panel are before (after)

transaction costs. Transaction costs of 30 basis points (bp) for both buying and selling risky

assets and 0 bp for the risk-free asset are assumed.
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The mean certainty equivalents are similar to the expected utilities in Table IV and will

not be discussed further. What is more interesting is a comparison between the DPML

models with w0 = wew (DPML(δ)) and those with w0 = wt− (DPMLc(δ)). When T > 60,

DPMLc(δ) has a higher CE than its counterpart. Adding the current portfolio has an

effect similar to accumulating estimation sample and DPMLc(δ) is anticipated to outperform

DPML(δ) under the i.i.d. assumption. Notwithstanding, it underperforms DPML(δ) when

T = 60 both before and after transaction costs and has a higher standard error. This is

because when the moments are subject to large estimation errors, the current portfolio can

be distant from the true optimal portfolio and it becomes a less effective shrinkage target

compared to a fixed-weight portfolio. As illustrated in the next section, the equal-weight

portfolio indeed serves better as the reference portfolio.

4.3 Variance Minimization

Table VII reports the results from variance minimization. The top panel reports expected

variances and the bottom panel reports sample variances from the finite investment horizon.

The standard global minimum-variance portfolio (MV) performs well even for a small

T : its expected variance is 27.6% higher than the ex-post optimal value when T = 60 and

only 11.5% higher when T = 120. Still, DPMV(0) yields consistently lower variances across

all window sizes. DPMV(0) also has smaller standard errors. Meanwhile, incorporating

deviation penalty with δ = 1 adds little value. This is perhaps because the estimation

error of the covariance matrix is not large enough to benefit from deviation penalty. Both

DPMVc(0) and DPMVc(1) perform comparably to DPMV(0).

[TABLE VII]
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4.4 Model Parameter Uncertainty and Optimal Deviation Penalty

The results so far suggest that the deviation penalty does improve the performance of opti-

mal portfolios, and the optimal degree of penalization decreases as estimation window size

increases and therefore parameter uncertainty diminishes. This section investigates the op-

timal degree of penalization more in detail and demonstrates that other shrinkage models

can also be improved by incorporating the deviation penalty.

As shown in Section 2, the coefficients of the portfolios in a shrinkage model (model

parameters) are a function of unknown input parameters and need to be estimated. This

model parameter uncertainty can deteriorate portfolio performance significantly as reported

in Table VIII.

[TABLE VIII]

The table compares the certainty equivalents obtained from true model parameters

(‘True’) with those from estimated model parameters (‘Estd’). The utility loss due to model

parameter uncertainty is substantial especially when the input parameters are subject to

large estimation errors. For instance, when T = 60, The certainty equivalent of KZ is re-

duced from 0.176 to 0.058 and that of TZML is reduced from 0.360 to 0.184. Although

the loss diminishes rapidly with T , it remains significant even when T = 240. This implies

that the coefficient on the shrinkage target determined by maximizing expected utility is

not sufficient as model parameter uncertainty is ignored. As illustrated in the rest of this

section, the deviation penalty helps compensate this loss.

Figure 1 displays the certainty equivalent of each model as a function of δ in the absence

of transaction costs. Solid lines are for w0 = wew and dashed lines are for w0 = wt−. Adding

the penalty term improves the performance of the models in most cases, and its effect is

particularly noticeable when w0 = wew and T is small: e.g., the CE of KZ increases by 20%

at δ ≈ 1.6 when T = 120, while it continues to increase with δ within the considered range

when T = 60. Among the four models, only KZ does not contain wew in its original form
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and thus benefits most by incorporating wew, whereas TZKZ, which includes both wew and

wkz, benefits least. In contrast to the case of w0 = wew, penalizing the deviation from wt−

has little effect on performance when there is no transaction cost.4 This result was predicted

in Proposition 3 where it is shown that the expected portfolio weights of the models that

penalize the deviation from wt− converge to those of their base models, whilst their variances

are not particularly smaller.

[FIGURE 1]

The effect of the deviation penalty is more pronounced when transaction costs are taken

into account. The results in Figure 2 are obtained assuming transaction costs of 30 bp. In

the presence of transaction costs, the models with w0 = wew as well as those with w0 = wt−

improve portfolio performance, but the improvement is more prominent when w0 = wew.

The optimal δ that maximizes CE is strikingly large often exceeding the considered range:

recall that, with γ = 3, δ = 3 implies 50% on the reference portfolio. When w0 = wew,

the actual loading on wew is even higher than what δ implies as TZML, TZKZ, and DPML

already involve wew without the penalty term. As illustrated in Proposition 4, anchoring

to wew incurs lower transaction costs in the long run and is therefore more effective than

anchoring to wt− even in the presence of transaction costs: the gap between the two versions

indeed widens with transaction costs.

[FIGURE 2]

DPMLc is different from other models with w0 = wt− in that it consists of only ŵml and

wt− and their loadings are dynamically determined based on the input parameters, whereas

the other models consist of the base model and wt− and their loadings are solely determined

by δ. Dynamically determining the loadings results in the superior performance of DPMLc

to DPML when the i.i.d. assumption holds and estimation errors are small. However, as

4An exception to this is DPML, which is discussed further later in this section.
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revealed in the case of T = 60, DPMLc can be outperformed by DPML when subject to

high uncertainty. In addition, DPML’s performance improves faster with δ. Since ŵml,

wt−, and their loadings are all subject to estimation errors, DPMLc is very sensitive and

its performance can rapidly deteriorate under large estimation errors. As will be seen later

in the empirical studies, DPMLc indeed performs very poorly when applied to real market

data.

As opposed to the conventional wisdom, the current portfolio does not appear to be an

effective shrinkage target and is usually dominated by the equal-weight portfolio. The latter

renders far less volatile portfolios and involves lower transaction costs, leading to robust

performance especially under high uncertainty and transaction costs.

The deviation penalty models can be extended by incorporating both wew and wt−:

w∗(δ, κ) = (1− κ)

(

γ

γ + δ
w∗ +

δ

γ + δ
w0

)

+ κwt−. (34)

Figure 3 presents simulation results from this extension. Solid lines represent the case of

κ = 0 and are the same as those in Figure 2. Incorporating both wew and wt− further

improves performance especially when T is small. Nevertheless, the gain from the inclusion

of wt− is not large and diminishes with δ.

[FIGURE 3]

5 Empirical Studies

5.1 Portfolio Construction and Evaluation

Portfolios are rebalanced every month during the sample period based on the mean and

covariance estimates obtained from a rolling estimation window of size T = 60, 120, or 240.

Monthly portfolio returns and performance measures are then calculated.

It is nontrivial to compare different portfolio models on a level playing field. DeMiguel
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et al. (2009) compare the risky portfolios derived from the optimal portfolios by normalizing

the risky asset weights. This method, however, gives an unfair disadvantage to some models

that are not designed to maximize the Sharpe ratio. This issue is discussed in detail in

Kan et al. (2016) for the Kan and Zhou model. Another, more subtle and often overlooked

problem is that if the optimal weight of the risky portfolio (the sum of the risky asset weights)

is negative, the maximum Sharpe ratio portfolio does not exist and the näıve scaling whereby

the weights are divided by their sum leads to the minimum Sharpe ratio portfolio. In this

case, the original portfolio and the derived risky portfolio have opposite exposures to the

risky assets and their performances will differ considerably.5 As shown in Table II, negative

risky portfolio weights are indeed common especially when T is small or in D6 and D7.

Comparing utility maximizing portfolios has its own problem as the results depend on

the choice of the risk aversion coefficient. Besides, for those portfolio strategies that do not

take the mean into account, e.g., EW, MV, and VT, adjusting the weights so that the utility

is maximized conflicts their nature as the adjustment involves the mean.

In this paper, portfolios are constrained so that they have the same ex-ante variance

(variance targeting). This creates a more level playing field for evaluation without favouring

a particular model. Imposing a risk constraint is also common in practical asset allocation.

If the ex-ante variance of an optimal portfolio is σ̂2
p and the target variance is σ2

max, the

constraint can be satisfied by scaling the portfolio weights with σmax/σ̂p.
6 In the empirical

studies, the target variance is defined as the variance of the equal-weight portfolio over

the entire sample period. Kirby and Ostdiek (2012) adjust portfolios so that they have

the same expected return as the equal-weight portfolio. Whilst this method is similar to

variance targeting, the results will be less reliable due to the sizeable estimation error in

mean. Imposing constraints on the mean is also less common in practice.

As a robustness test, utility maximizing portfolios are also compared. In this case, the

5For this reason, DeMiguel et al. (2009) normalize portfolio weights by the absolute value of their sum.
In this case, however, the normalized portfolio still includes the risk-free asset.

6If the optimal portfolio has a short position on the risky portfolio, it is scaled by −σmax/σ̂p.

23



portfolios that are not designed to maximize utility, i.e., EW, MV, VT, TMV, and DPMV,

are compared without adjusting the weights so as to maximize utility.7 These models are

revealed to perform better unadjusted.

Portfolios are evaluated using four performance measures: certainty equivalent (CE),

Sharpe ratio (SR), turnover (TO), and leverage (LV). These are defined as follows:

CE = r̄p −
γ

2
s2p; (35)

SR =
r̄p
sp
; (36)

TO =
1

NTo

To
∑

t=1

N
∑

i=1

|wi,t − wi,t−|; (37)

LV =
1

To

To
∑

t=1

N
∑

i=1

|wi,t|, (38)

where r̄p and sp are the mean and standard deviation of the portfolio returns over the sample

period, To is the sample size, and wi,t− and wi,t are the weights of asset i immediately before

and after rebalancing at time t. For certainty equivalent, γ = 3 is used.

To assess the effect of transaction costs, SR and CE are calculated both before and

after transaction costs assuming transaction costs of 30 bp for buying and selling risky as-

sets and 0 bp for the risk-free asset. LV is calculated to gauge the feasibility of portfolios.

Highly leveraged portfolios are not desirable and unrealistic to many investors. While im-

posing constraints on asset weights can yield more realistic portfolios, its impact on portfolio

performance will be nontrivial, making the performance attributable to the unique charac-

teristics of individual models indistinguishable. Therefore, portfolios are evaluated without

weight constraints, and LV is calculated to supplement the results.

Given thirteen datasets and four performance measures, a coherent evaluation and rank-

ing of the models is a formidable task. To facilitate evaluation, SR and CE are normalized

by the SR and CE of the ex-post optimal portfolio. Normalization helps measure the loss

7One exception is DPMV+. DPMV+ solves the usual utility maximization problem employing the mean
implied by the unconstrained DPMV.
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against the hypothetical maximum and allows us to compare performance across datasets.

The normalized measures are averaged across the datasets in order to generate a single

measure for each performance metric. Despite the fact that the summary statistics across

datasets depend on the choice of datasets, this provides a convenient way of comparing mod-

els. The empirical analysis in this section is primarily based on the summary statistics, and

the results from each dataset are referred to when necessary.

The empirical results are reported in Table IX (variance targeting) and Table X (utility

maximization). In each table, the column ‘Mean CE’ reports the mean of the normalized CE

across the datasets, and ‘N(>EW)’, referred to as outperformance ratio, reports the number

of datasets in which a model outperforms EW in terms of CE. The Internet Appendix

provides full results including; results on other performance measures, results from datasets

without factor portfolios, and dataset-level results.

[TABLE IX]

[TABLE X]

5.2 Main Findings

The most remarkable finding from the empirical studies is the performance enhancement

resulting from the deviation penalty. Consistent with the simulation results, incorporating

the deviation penalty improves portfolio performance significantly, not only for the proposed

models, DPML and DPMV, but also for the existing ones; KZ, TZML, and TZKZ. Recall

that these models already address parameter uncertainty before incorporating the deviation

penalty. In general, a model involving three portfolios (KZ and TZKZ) outperforms a model

involving two portfolios (TZML and DPML), and KZ is revealed to perform best overall

when augmented with the deviation penalty.

Another important finding is the sharp contrast between the shrinkage targets, wew and

wt−. As anticipated from the simulation studies, incorporating wt− is not as effective as
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incorporating wew, both before and after transaction costs. When shrunk towards wt−, KZ,

TZML, and TZKZ do not perform better than their base models before transaction costs.

Their performances improve after transaction costs, but the effect is limited especially under

utility maximization. The results from DPMLc is particularly noteworthy. Contrary to the

simulation results where DPMLc performs superior, it performs very poorly when applied to

the real market data. On the other hand, shrinking towards wew improves the performance

substantially both before and after transaction costs.

The difference between the reference portfolios becomes more evident in utility maximiza-

tion: shrinking towards wew considerably improves the performance of all models, whereas

using wt− hardly adds value. When a portfolio is subject to large estimation errors, the cur-

rent portfolio can be substantially different from the true optimal portfolio, and penalizing

the deviation from it does not necessarily improve performance even after transaction costs.

As shown in Table X, the performance of most portfolios deteriorates without the vari-

ance constraint and outperforming EW becomes more challenging. This is because utility

maximizing portfolios are more sensitive to the mean. In fact, EW performs considerably

worse if its weights are adjusted so as to maximize utility (unreported). The performance of

the optimal portfolios that ignore parameter uncertainty, e.g., ML and OC, drops most when

the variance constraint is removed. KZ, TZML, and TZKZ without the deviation penalty

perform relatively better, but their performances also deteriorate substantially. When aug-

mented with the deviation penalty, however, these models perform robustly and their nor-

malized CE’s are not particularly lower than those from variance targeting. It is also worth

noting that a higher degree of penalization is required to maximize performance in utility

maximization.

Table XI reports calibrated δ values. As expected, a larger δ is required when estimation

errors have a greater impact on portfolio performance: i.e., when the window size is small,

transaction costs are taken into account, and the optimization criterion is utility maximiza-

tion. In an unreported analysis, the models with the calibrated δ are compared with models
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with a constant δ (1, 2, or 3) and found to outperform all these models, confirming the

effectiveness of the proposed calibration method.

[TABLE XI]

5.3 Detailed Analysis of Empirical Results

This section provides detailed analyses of the empirical results reported in Table IX and X.

Market Portfolio Apart from the equal-weight portfolio, the market portfolio (MKT)

and the S&P500 index (SP500) are also used as benchmarks. The market portfolio for the

first dataset is proxied by the MSCI world index including the US, and the market portfolio

for the other datasets is proxied by the CRSP value-weighted market portfolio.

As can be seen from Table X, MKT and SP500 perform comparably to each other and

to EW: their normalized mean CE’s are respectively 0.22 and 0.24, whereas that of EW is

0.24, and they outperform EW four and five times respectively. Their relative performance

improves slightly after accounting for transaction costs as they do not incur transaction costs.

MKT and SP500 appear to outperform EW in Table IX, but this is because all portfolios

except MKT and SP500 are adjusted so as to satisfy the variance target.

The deviation penalty models show superior performance when compared to MKT or

SP500, and the performance difference is similar to the difference from EW.

ML vs. TZML vs. DPML Under variance targeting, ML outperforms EW in ten

datasets and has a considerably higher mean CE before transaction costs. While much of

the advantage disappears after transaction costs, it still outperforms EW in nine datasets.

The benefit of combining ML with EW is evident from TZML and DPML. The mean CE’s of

TZML(δ∗) and DPML(δ∗) after transaction costs are respectively 0.558 and 0.553, whereas

those of ML and EW are respectively 0.135 and 0.246, and they outperform EW in all
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datasets before transaction costs and in eleven datasets after transaction costs, when T = 120

and under variance targeting. The improvement over ML is more noticeable when T is small.

KZ vs. TZML vs. TZKZ Consistent with the findings of Tu and Zhou (2011), TZKZ

outperforms TZML and KZ. This can be anticipated to some extent as TZKZ involves three

portfolios, whereas the others involve only two. Between KZ and TZML, TZML yields higher

CE’s, whilst KZ outperforms EW more often. Overall, both KZ and TZML perform well

when T is large, but the performance of KZ deteriorates rapidly as T decreases. This can

be attributed to the fact that both ML and MV which comprise KZ depend on the input

parameters and therefore subject to estimation errors. As discussed below, the performance

of KZ improves markedly when it is augmented with the deviation penalty.

Effects of Deviation Penalty Penalizing the deviation from wew improves portfolio per-

formance in most cases regardless of the base model. Improvements are particularly notice-

able in the presence of transaction costs and in terms of the outperformance ratio. Among

KZ, TZML, TZKZ, and DPML, KZ benefits most by incorporating the deviation penalty.

This is because the original KZ, contrary to the others, does not involve wew. Comparing

KZ(δ∗) with TZKZ(δ∗), KZ(δ∗) tends to perform marginally better even though both models

involve the same three portfolios.

The models with w0 = wt−, i.e., KZc, TZMLc, TZKZc, and DPMLc, perform rather

disappointingly. When these are compared with their counterparts with w0 = wew, the latter

models almost always perform better with respect to all criteria. The poor performance of

DPMLc is particularly noticeable, which indicates that the estimation errors in the actual

market data are substantially higher than assumed: in simulations, DPMLc outperformed

DPML when estimation errors were small (T = 120 or 240) but was outperformed otherwise

(T=60).

The above finding conveys an important message as the deviation penalty models with

w0 = wt− resemble the models that take transaction costs into account (e.g., Gârleanu
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and Pedersen, 2013; DeMiguel et al., 2015; Olivares-Nadal and DeMiguel, 2018). Shrinking

towards the current portfolio does improve portfolio performance but is less effective than

shrinking towards the equal-weight portfolio regardless of transaction costs. It appears that

a certain degree of robustness should be assured beforehand in order to benefit from the

former approach.

Estimation of K In general, DPMLK slightly outperforms DPML and requires lower

δ values. When δ is set to 0, the difference between DPMLK and DPML becomes more

prominent (unreported). This suggests that the proposed estimation method forK addresses

the uncertainty in mean more adequately than the simple assumption of K = T .

Effects of Short-sale Constraint When optimal portfolio models are subject to the

short-sale constraint, they perform robustly and outperform EW more frequently compared

with their unconstrained counterparts. In fact, the short-sale constrained deviation penalty

models (DPML+ and DPMV+) are among the best performers in terms of the outperfor-

mance ratio and demonstrate robust performance under utility maximization. They also

have a significantly lower turnover and leverage. VT also performs robustly. This is because

VT is implicitly short-sale constrained and depends only on the cross-sectional variation of

the variances which is stable over time. Nevertheless, these models’ performances are rather

suppressed as evidenced by the low CE’s. The short-sale constraint is an effective tool to

enhance robustness especially when parameter uncertainty is large, but at the same time, it

hinders high return potential.

Effects of Estimation Window Size Asset returns are not stationary over a long period

and using a large estimation window does not necessarily lead to smaller estimation errors.

Determining the optimal estimation window size mainly depends on two aspects: estimation

errors and transaction costs.

Based on the performance before transaction costs, many portfolio models turn out to
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perform best when T = 120 and worst when T = 60. It appears that estimation errors

decline with T until some point and then increase again. The window size also has an

effect on the portfolio loadings of the shrinkage estimators: a larger T will put more weight

on ŵml regardless of the actual estimation errors, and their performance could deteriorate

rapidly beyond a certain T . On the other hand, a larger window size is always beneficial

in terms of transaction costs as the moment estimates become more persistent resulting in

lower turnover.

The window size should be determined considering several factors such as portfolio strat-

egy, actual transaction costs, and dataset. Nevertheless, for the datasets considered in this

paper, T = 120 seems to be a reasonable choice, especially for the deviation penalty models.

Although not pursued in this paper, applying different window sizes to mean and covariance

estimations may improve overall estimation accuracy.

5.4 Robustness Check

Comprehensive robustness tests are conducted to verify the earlier findings. This includes

sub-period analyses and tests on ten additional datasets which do not contain the market

and factor portfolios, and other robustness checks.

Sub-Period Performance Figure 4 reports the sub-period performance of the deviation

penalty models. It reveals that the deviation penalty models perform consistently over time.

All four models maintain their superior performance against EW across sub-periods.

[FIGURE 4]

Economic Cycle To examine whether the deviation penalty models maintain their supe-

rior performance in different economic cycles, they are tested during recession periods and

the remaining periods. The NBER recession indicator is used to identify recession months

during the sample period.
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Table XII compares the performance of the deviation penalty models from these two

periods. As dataset D1 has a shorter sample period, the results are obtained from datasets

D2-D13, and therefore the maximum number of outperformance is 12 instead of 13.

The proposed models perform consistently well in both samples outperforming EW in

most datasets, especially when the estimation window size is large. One might expect a

shorter window size more appropriate during recession periods as it would reflect recent

economic changes better. However, the results suggest that a long window size (at least 120

months in the test) is still better regardless of the economic cycle.

In an unreported analysis, the portfolio models are also examined over the market crash

in October 1987, the dot-com bubble burst from 2000 to 2002, and the global financial crisis

in 2008. While the deviation penalty models have negative returns in October 1987 and over

the financial crisis, they still outperform the market and the equal-weight portfolio in all

three periods.

[TABLE XII]

Different Rebalancing Frequencies The portfolio models are examined assuming either

quarterly or annual rebalancing, and the results are reported in the Internet Appendix. When

portfolios are rebalanced less frequently, there is a tradeoff between increased deviation from

the optimal portfolio and reduced transaction costs. As expected, when the deviation penalty

models are rebalanced less frequently, they tend to perform worse before transaction costs,

but still outperform EW in most datasets. The performance after transaction costs improves

slightly when the portfolios are rebalanced quarterly but it becomes worse when rebalanced

annually, suggesting that the performance deterioration due to deviation from the optimal

portfolio outweighs the gain from reduced transaction costs. It appears that quarterly is a

good rebalancing frequency for the portfolios that allow short-sale. For the portfolios with

short-sale constraints, more frequent rebalancing appears to work better as these portfolios

do not incur much transaction cost.

31



Assets Excluding Factor Portfolios When the models are tested on the new datasets

excluding factor portfolios, the results are qualitatively similar to those presented here, but

the resulting portfolios are usually less leveraged (see the Internet Appendix). This is because

it is no longer possible to short the market and buy other assets.

Weight Constraints In an unreported analysis, an additional optimization criterion, vari-

ance targeting with weight constraints, |wi| ≤ 0.5, is also tested. The purpose of this criterion

is to generate more realistic portfolios with low leverage. Imposing the weight constraints

does not alter the results considerably, and the rankings of the models are largely preserved.

The CE and SR tend to be slightly smaller with the constraints, but the optimal portfolios

perform more consistently across the datasets and outperform EW more frequently. The

overall effect of the weight constraint is similar to that of the short-sale constraint, but,

with a relaxed lower bound, it appears to strike a better balance between robustness and

performance.

By and large, the conclusions drawn in this paper remain valid in the additional datasets

and optimization criterion.

The empirical results favour the equal-weight portfolio as the reference portfolio. A

natural question that arises would then be whether any fixed-weight portfolio could yield

the same performance. While this topic is not pursued further, there are a few reasons

to favour the equal-weight portfolio over other fixed-weight portfolios. First of all, it is

economically meaningful as it assumes that all the assets have the same return-risk ratio,

which is in line with the capital asset pricing model. Secondly, if we randomly choose

a portfolio under (strict) short-sale constraints, the expected portfolio is the equal-weight

portfolio. Furthermore, if the number of assets increases, it converges to the equal-weight

portfolio (See the Internet Appendix for proof).
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6 Concluding Remarks

This paper develops a new portfolio choice model that penalizes the deviation from a refer-

ence portfolio. Penalizing the deviation renders a biased, but robust portfolio that performs

superior under parameter uncertainty.

Existing shrinkage portfolio models can be improved by incorporating the deviation

penalty. These models are sub-optimal as they only address input parameter uncertainty and

fail to recognize the uncertainty inherited to model parameters. They are also vulnerable to

misspecification. The added robustness by the deviation penalty mitigates these problems

and enhances performance considerably.

Two reference portfolios, the current portfolio and the equal-weight portfolio, are con-

sidered, and it turns out that the latter is a much better choice than the former even in the

presence of transaction costs. Indeed, the latter incurs lower transaction costs. This result is

contrary to the widely-accepted belief that accounting for transaction costs improves port-

folio performance and reduces transaction costs: this must be true, but the effect appears

rather trivial compared to using the equal-weight portfolio.

A data-driven calibration method to determine the degree of penalization is offered.

This method is readily implementable and revealed to be effective, generating superior per-

formance when applied to various models and circumstances. Comprehensive simulation

and empirical studies involving different sample periods, datasets, and optimization criteria

support our model and confirm above claims.
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A Utility Maximization

A.1 Proof of Proposition 1

The expected utility can be rearranged as follows:

E[U(a, b)] = aE[ŵml]
′µ+ bw′

0µ−
γ

2

(

a2E[ŵ′

mlΣŵml] + 2abE[ŵml]
′Σw0 + b2w′

0Σw0

)

−
δ

2

(

a2E[ŵ′

mlΣŵml] + 2a(b− 1)E[ŵml]
′Σw0 + (b− 1)2w′

0Σw0

)

.

(A.1)

Differentiating the expected utility with respect to a and b, the first order conditions are

given by

∂E[U(a, b)]

∂a
= E[ŵml]

′µ− aγE[ŵ′

mlΣŵml]− bγE[ŵml]
′Σw0

− aδE[ŵ′

mlΣŵml]− (b− 1)δE[ŵml]
′Σw0 = 0, (A.2)

∂E[U(a, b)]

∂b
= w′

0µ− aγE[ŵml]
′Σw0 − bγw′

0Σw0

− aδE[ŵml]
′Σw0 − (b− 1)δw′

0Σw0 = 0. (A.3)

Solving for a and b, the optimal parameters are obtained:

a∗ =
1

(γ + δ)

E[ŵml]
′µ− w′

0µ
E[ŵml]

′Σw0

w′

0Σw0

E[ŵ′

mlΣŵml]− E[ŵml]′Σw0
E[ŵml]

′Σw0

w′

0Σw0

, (A.4)

b∗ =
1

(γ + δ)

E[ŵml]
′µ− w′

0µ
E[ŵ′

mlΣŵml]
E[ŵml]

′Σw0

E[ŵml]′Σw0 − w′

0Σw0
E[ŵ′

mlΣŵml]
E[ŵml]

′Σw0

+
δ

γ + δ
. (A.5)

Since µ̂ and Σ̂ are independent of each other and

µ̂ ∼ N

(

µ,
Σ

K

)

, Σ̂ ∼ WN(T − 1,Σ)
1

T
, (A.6)
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it follows that

E[Σ̃−1] = Σ−1, E[µ̂Σ−1µ̂] =
N

K
+ θ2, (A.7)

where θ2 = µ′Σ−1µ. The latter equation is from Kµ̂Σ−1µ̂ ∼ χ2
N(Kµ

′Σ−1µ). Also, it can be

shown that (see Kan and Zhou (2007) and the references therein)

E[µ̂′Σ̃−1ΣΣ̃−1µ̂] = c1

(

N

K
+ θ2

)

, (A.8)

where c1 =
(T−2)(T−N−2)

(T−N−1)(T−N−4)
. Then,

E[ŵml] =
1

γ
Σ−1µ, (A.9)

E[ŵ′

mlΣŵml] =
c1
γ2

(

N

K
+ θ2

)

. (A.10)

Substituting (A.9) and (A.10) into (A.4) and (A.5), the optimal parameters are rewritten as

follows:

a∗ =
γ

γ + δ
a∗0, (A.11)

b∗ =
γ

γ + δ
b∗0 +

δ

γ + δ
, (A.12)

where

a∗0 =
θ2 − ψ2

c1

(

N
K + θ2

)

− ψ2
, (A.13)

b∗0 =
c1

(

N
K + θ2

)

− θ2

c1

(

N
K + θ2

)

− ψ2

1

γ

w′

0µ

w′

0Σw0

, (A.14)

ψ2 = µ′

0Σ
−1µ, µ0 =

w′

0µ

w′

0Σw0

Σw0. (A.15)

35



A.2 Estimation of a∗ and b∗

Estimation of a∗ and b∗ involves estimation of θ2, ψ2, and wim. For θ2 and ψ2, the method

proposed by Kan and Zhou (2007) is adopted with modification for the different distributional

assumption of µ̂.

• Estimation of θ2

Since

Kµ̂Σ−1µ̂ ∼ χ2
N(Kµ

′Σ−1µ),
µ̂′Σ−1µ̂

µ̂′(T Σ̂)−1µ̂
∼ χ2

T−N , (A.16)

and they are independent of each other, it follows that

K

T
µ̂′Σ̂−1µ̂ ∼

N

T −N
FN,T−N(Kµ

′Σ−1µ), (A.17)

where F is a noncentral F -distribution. Following the proof in the appendix of Kan

and Zhou (2007), the estimate of θ2 is given by

θ̃2 =
(T −N − 2)θ̂2 −N

K
+

2(θ̂2)N/2(1 + θ̂2)−(T−2)/2

KBθ̂2/(1+θ̂2)(N/2, (T −N)/2)
, (A.18)

where

θ̂2 =
K

T
µ̂′Σ̂−1µ̂, (A.19)

and Bx(a, b) =
∫ x

0
ya−1(1− y)b−1dy is an incomplete beta function.

• Estimation of ψ2

Since

K(w′

0µ̂)
2

w′

0Σw0

∼ χ2
1

(

K(w′

0µ)
2

w′

0Σw0

)

,
Tw′

0Σ̂w0

w′

0Σw0

∼ χ2
T−1, (A.20)

and they are independent of each other, it follows that

K

T

K(w′

0µ̂)
2

w′

0Σ̂w0

∼
1

T − 1
F1,T−1

(

K(w′

0µ)
2

w′

0Σw0

)

. (A.21)
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The estimate of ψ2 is then given by

ψ̃2 =
(T − 3)ψ̂2 − 1

K
+

2(ψ̂2)1/2(1 + ψ̂2)−(T−2)/2

KBψ̂2/(1+ψ̂2)(1/2, (T − 1)/2)
, (A.22)

where

ψ̂2 =
K

T

(w′

0µ̂)
2

w′

0Σ̂w0

. (A.23)

• Estimation of wim

From Tw′

0Σ̂w0 ∼ w′

0Σw0 ·χ
2
T−1,

w′

0Σw0

Tw′

0Σ̂w0

∼ inv-χ2
T−1, (A.24)

and

E

[

1

w′

0Σ̂w0

]

=
T

T − 3

1

w′

0Σw0

. (A.25)

Therefore, an unbiased estimate of wim is given by

w̃im =
1

γ

T − 3

T

w′

0µ̂

w′

0Σ̂w0

w0. (A.26)

Simulation studies suggest that the optimal portfolio with the above estimates some-

times underperforms the more restricted model of Tu and Zhou (2011), especially when T

is small. Meanwhile, assuming wim = c
γ
w0 for some constant c appears to yield more robust

performance. This can be justified as
w′

0
µ

w′

0
Σw0

should be constant when the returns are i.i.d.

Accordingly, wim = c
γ
w0 with c = 3 rather than w̃im is used in the empirical studies of the

paper.

A.3 Estimation of K

Let Tc denote a month during the sample period. For the first 119 months into the sample

period, K = T is assumed. When Tc ≥ 120, the covariance matrix of µ̂, Σµ̂, is estimated
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employing the method of Lo and MacKinlay (1988):

Σ̃µ̂ =
Tc + T − 1

Tc − 1
Σ̂µ̂, (A.27)

where Σ̂µ̂ is the ML estimate of Σµ̂. Let Σ̄ denote the average of Σ̂:

Σ̄ =
1

Tc

Tc
∑

t=1

Σ̂t, (A.28)

where Σ̂t is Σ̂ at month t. K is determined so that the distance between 1
K
Σ̄ and Σ̃µ̂ is

minimized. Defining the distance as the Frobenius norm of the lower triangular part of

(Σ̄−KΣ̃µ̂), K is obtained from

K =
v′1v2
v′1v1

, v1 = vech(Σ̃µ̂), v2 = vech(Σ̄), (A.29)

where vech(·) is the half-vectorization operator.

B Variance Minimization

B.1 Proof of Proposition 2

Differentiating the expected variance with respect to a, the first order condition is given by

∂E[V (a)]

∂a
= (1 + δ)aE[(ŵmv − w0)

′Σ(ŵmv − w0)] + E[(ŵmv − w0)
′Σw0] = 0. (B.1)

Solving for a,

a∗ =
1

1 + δ

w′

0Σw0 − E[ŵmv]
′Σw0

E[ŵ′

mvΣŵmv] + w′

0Σw0 − 2E[ŵmv]′Σw0

. (B.2)
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From Kan and Smith (2008),

E[ŵmv] =
Σ−11N

1′NΣ
−11N

, (B.3)

E[ŵ′

mvΣŵmv] =
T − 2

T −N − 1

1

1′NΣ
−11N

. (B.4)

Substituting (B.3) and (B.4) into (B.2),

a∗ =
1

1 + δ

σ2
0 − σ2

mv

σ2
0 −

(

1− N − 1
T −N − 1

)

σ2
mv

, (B.5)

where σ2
0 = w′

0Σw0 and σ2
mv = w′

mvΣwmv = (1′NΣ
−11N)

−1 are the variances of w0 and wmv,

respectively.

B.2 Estimation of a∗

Unbiased estimates of σ2
0 and σ2

mv can be obtained as follows:

σ̃2
0 =

T

T − 1
w′

0Σ̂w0, σ̃2
mv =

T

T −N

1

1′N Σ̂
−11N

. (B.6)

It can be seen that with the above estimates, 0 < a∗ < 1.
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C Moments of Optimal Portfolio Weights

C.1 Proof of Proposition 3

When w0 = wt−, the deviation penalty portfolio at time t, wct , can be written as

wct = (1− α)w∗

t + αwct−1

= (1− α)w∗

t + α((1− α)w∗

t−1 + αwct−2)

...

= (1− α)(w∗

t + αw∗

t−1 + · · ·+ αt−1w∗

1) + αtw.

(C.1)

Since the returns are assumed to be i.i.d., E(w∗

t ) = E(w∗

t−1) = · · · = E(w∗

1), and it follows

that

E(wct ) = (1− αt)E(w∗

t ) + αtw, (C.2)

V (wcit) = (1− α)2V (w∗

it + αw∗

it−1 + · · ·+ αt−1w∗

i1), (C.3)

where wit denotes the i-th element of wt.

When w0 = wew, the deviation penalty portfolio at time t, wet , has the form

wet = (1− α)w∗

t + αwew, (C.4)

and its moments are given by

E(wet ) = (1− α)E(w∗

t ) + αwew, (C.5)

V (weit) = (1− α)2V (w∗

it). (C.6)
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As 0 < Cov(w∗

it, w
∗

it−1) < 1 for t > 1,

(1− α)2(1 + α2 + · · ·+ α2(t−1))V (w∗

it) < V (wcit) < (1− αt)2V (w∗

it). (C.7)

Therefore,

V (weit) < V (wcit) < V (w∗

it). (C.8)

C.2 Proof of Proposition 4

Note that for t > 1,

∆wcit = (1− α)∆w∗

it + α∆wcit−1, (C.9)

∆weit = (1− α)∆w∗

it. (C.10)

Therefore,

E
[

(∆wcit)
2
]

= (1− α)2E
[

(∆w∗

it)
2
]

+ α2E
[

(∆wcit−1)
2
]

+ 2α(1− α)E
[

∆w∗

it∆w
c
it−1

]

,

(C.11)

E
[

(∆weit)
2
]

= (1− α)2E
[

(∆w∗

it)
2
]

. (C.12)

If E
[

∆w∗

it∆w
c
it−1

]

> − α
2(1− α)

E
[

(∆wcit−1)
2
]

,

E
[

(∆weit)
2
]

< E
[

(∆wcit)
2
]

. (C.13)

Since ∆wci1 = (1 − α)(w∗

i1 − wi) and ∆w∗

i1 = (w∗

i1 − wi), E [(∆wci1)
2] < E [(∆w∗

i1)
2]. From

(C.9), it follows that

E
[

(∆wcit)
2
]

< E
[

(∆w∗

it)
2
]

. (C.14)

Proof of Corollary 1 follows immediately from E
[

(∆wcit−1)
2
]

< E [(∆wcit)
2].
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Table I: The Datasets

This table lists the datasets used in the simulation and empirical studies. The 8 international indices in
D1 are the gross returns on large/mid-cap stocks from eight countries: Canada, France, Germany, Italy,
Japan, Switzerland, United Kingdom, and USA. The 20 portfolios with size-sort (D5, 6, 7, 11, 12, 20)
are from the corresponding 25 portfolios excluding the 5 largest portfolios. All data are from K. French
website (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html) except D1,
which is from the MSCI website (https://www.msci.com/end-of-day-data-country).

Dataset Description N Sample Period

D1 8 International + World Indices 9 1990.10 - 2015.12
D2 10 Industry Portfolios + Market 11 1951.01 - 2015.12
D3 30 Industry Portfolios + Market 31 1951.01 - 2015.12
D4 3 Fama-French (FF) Factors 3 1951.01 - 2015.12
D5 20 FF Portfolios + Market 21 1951.01 - 2015.12
D6 20 FF Portfolios + FF 3 23 1951.01 - 2015.12
D7 20 FF Portfolios + FF 3 and Momentum 24 1951.01 - 2015.12
D8 10 Momentum Portfolios + Market 11 1951.01 - 2015.12
D9 10 Short-Term Reversal Portfolios + Market 11 1951.01 - 2015.12
D10 10 Long-Term Reversal Portfolios + Market 11 1951.01 - 2015.12
D11 20 Size/Momentum Portfolios + Market 21 1951.01 - 2015.12
D12 20 Size/Short-Term Reversal Portfolios + Market 21 1951.01 - 2015.12
D13 20 Size/Long-Term Reversal Portfolios + Market 21 1951.01 - 2015.12
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Table II: Ex-post Optimal Portfolio Weights

This table summarizes the ex-post optimal portfolio weights from each dataset. The ex-post optimal portfolio
is defined as the Markowitz portfolio obtained from the sample moments of the entire sample. ‘minwi’ and
‘maxwi’ are respectively the minimum and maximum weights on the risky assets, ‘

∑

wi’ is the sum of the
risky asset weights, i.e., the weight of the risky portfolio, and ‘

∑

|wi|’, the sum of the absolute values of
the weights, measures the degree of leverage. The last three columns are the frequency of negative expected
returns on the global minimum-variance portfolio during the sample period for the estimation window size
T = 60, 120, and 240.

minwi maxwi

∑

wi

∑

|wi| P (µg < 0)

60 120 240

D1 -5.37 3.87 1.40 12.20 0.28 0.13 0.00
D2 -6.91 1.79 1.89 15.71 0.09 0.02 0.00
D3 -7.03 1.55 1.92 21.43 0.23 0.13 0.00
D4 0.53 2.12 3.98 3.98 0.10 0.02 0.00
D5 -2.32 3.54 2.34 26.74 0.22 0.09 0.00
D6 -4.17 3.89 -4.19 38.56 0.63 0.74 0.87
D7 -5.75 3.43 -3.64 41.90 0.66 0.75 0.88
D8 -4.02 2.47 1.53 14.40 0.17 0.11 0.06
D9 -1.42 1.45 1.51 9.64 0.23 0.19 0.12
D10 -3.55 1.31 1.46 10.67 0.15 0.08 0.00
D11 -4.23 3.79 2.39 25.21 0.11 0.00 0.00
D12 -7.12 3.65 1.24 31.71 0.20 0.22 0.15
D13 -2.65 2.37 2.21 18.79 0.14 0.01 0.00
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Table III: The Portfolio Models

This table lists the portfolio models considered in the simulation and empirical studies. The models with
‘+’ in their abbreviation are those subject to the short-sale constraint. The short-sale constraint is applied
only to risky assets. Implementation details of each model can be found in the Internet Appendix.

Abbreviation Description

W* Ex-post optimal portfolio, i.e., the Markowitz portfolio obtained from the
sample moments of the entire sample.

EW Equal-weight portfolio.

Classical Portfolio Strategies
ML, ML+ Markowitz (1952) mean-variance portfolio.
MV, MV+ Global minimum-variance portfolio.

Kirby and Ostdiek (2012)
VT Volatility timing strategy.
OC, OC+ Optimal constrained portfolio: the Markowitz portfolio without the risk-free

asset.

Kan and Zhou (2007)
KZ Kan and Zhou (2007) three-fund rule.
KZ(δ), KZc(δ) KZ with deviation penalty. KZ(δ): w0 = wew; KZc(δ): w0 = wt−.

Tu and Zhou (2011)
TZML Tu and Zhou (2011) model that combines ML with EW.
TZML(δ), TZMLc(δ) TZML with deviation penalty. TZML(δ): w0 = wew; TZMLc(δ): w0 = wt−.
TZKZ Tu and Zhou (2011) model that combines KZ with EW.
TZKZ(δ), TZKZc(δ) TZKZ with deviation penalty. TZKZ(δ): w0 = wew; TZKZc(δ): w0 = wt−.

Deviation Penalty Models
DPML(δ), DPML+(δ) Utility maximization with deviation penalty. w0 = wew.
DPMLc(δ), DPMLc+(δ) Utility maximization with deviation penalty. w0 = wt−.
DPMLK(δ) DPML(δ) with estimated K.
DPMV(δ), DPMV+(δ) Variance minimization with deviation penalty. w0 = wew.
DPMVc(δ), DPMVc+(δ) Variance minimization with deviation penalty. w0 = wt−.
δ: deviation penalty coefficient
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Table IV: Expected Utility: γ = 3

This table reports the mean and standard error of the utilities of selected portfolios, obtained from 10,000
iterations. Utilities are normalized by that of W*. The reported values are averages across the datasets; D1,
D2, D5, and D8. The numbers in the header are estimation window sizes. EW and EW* are equal-weight
portfolios adjusted to maximize utility, respectively using sample and true moments.

Mean Standard Error

60 120 240 360 600 60 120 240 360 600

W* 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000
EW* 0.230 0.230 0.230 0.230 0.230 0.000 0.000 0.000 0.000 0.000
EW -0.024 0.110 0.172 0.191 0.207 0.407 0.183 0.082 0.056 0.032
ML -6.094 -1.074 0.167 0.480 0.705 4.850 1.094 0.387 0.233 0.128
KZ 0.058 0.379 0.587 0.681 0.782 0.654 0.295 0.162 0.123 0.086
TZML 0.183 0.395 0.574 0.671 0.778 0.530 0.247 0.159 0.127 0.090
TZKZ 0.259 0.436 0.581 0.664 0.764 0.363 0.183 0.135 0.117 0.091
DPML(0) 0.200 0.402 0.576 0.672 0.778 0.507 0.238 0.156 0.126 0.090
DPML(1) 0.286 0.431 0.571 0.653 0.747 0.274 0.161 0.138 0.121 0.092
DPML(2) 0.312 0.424 0.541 0.611 0.693 0.185 0.140 0.132 0.117 0.092
DPML(3) 0.318 0.409 0.509 0.570 0.642 0.145 0.128 0.124 0.111 0.088
ML+ -0.144 0.153 0.291 0.335 0.374 0.744 0.297 0.130 0.087 0.050
DPML+(0) 0.280 0.311 0.347 0.366 0.389 0.079 0.068 0.055 0.046 0.034
DPML+(1) 0.281 0.311 0.345 0.365 0.387 0.065 0.059 0.050 0.043 0.031
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Table V: Expected Utility: γ = 3, Error in Mean

This table reports the mean and standard error of the utilities of selected portfolios, obtained from 10,000
iterations. The misspecification of the mean is simulated by adding 0.2diag(µ)z to µ in (5), where diag(µ)
is a diagonal matrix with µ in its diagonal, and z is an N -dimensional standard normal random variable.
Utilities are normalized by that of W*. The reported values are averages across the datasets; D1, D2, D5,
and D8. The numbers in the header are estimation window sizes. EW and EW* are equal-weight portfolios
adjusted to maximize utility, respectively using sample and true moments.

Mean Standard Error

60 120 240 360 600 60 120 240 360 600

W* 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000
EW* 0.230 0.230 0.230 0.230 0.230 0.000 0.000 0.000 0.000 0.000
EW -0.027 0.108 0.171 0.191 0.206 0.415 0.181 0.086 0.056 0.034
ML -10.210 -3.321 -1.581 -1.139 -0.831 7.851 2.522 1.521 1.276 1.151
KZ -0.473 -0.335 -0.315 -0.325 -0.352 1.370 1.057 0.988 0.955 0.971
TZML -0.317 -0.302 -0.325 -0.342 -0.368 1.287 1.035 0.981 0.951 0.968
TZKZ -0.027 0.014 -0.043 -0.097 -0.180 0.902 0.767 0.814 0.829 0.892
DPML(0) -0.293 -0.291 -0.320 -0.338 -0.366 1.266 1.029 0.979 0.950 0.968
DPML(1) 0.039 0.091 0.121 0.133 0.141 0.681 0.558 0.541 0.532 0.546
DPML(2) 0.173 0.239 0.287 0.309 0.329 0.430 0.364 0.360 0.359 0.370
DPML(3) 0.235 0.303 0.357 0.382 0.406 0.305 0.270 0.272 0.274 0.282
ML+ -0.183 0.117 0.247 0.289 0.322 0.798 0.328 0.164 0.117 0.085
DPML+(0) 0.273 0.297 0.321 0.333 0.346 0.101 0.094 0.082 0.073 0.065
DPML+(1) 0.281 0.308 0.334 0.347 0.360 0.076 0.071 0.063 0.057 0.051
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Table VI: Certainty Equivalent: γ = 3

This table reports the mean and standard error of the certainty equivalents (CE) of selected portfolios,
obtained from 10,000 iterations. Portfolios are assumed to be rebalanced monthly and managed for ten
years. CE’s are normalized by that of W*. The reported values are averages across the datasets; D1, D2,
D5, and D8. The numbers in the header are estimation window sizes. EW and EW* are equal-weight
portfolios adjusted to maximize utility, respectively using sample and true moments.

Mean Standard Error

60 120 240 360 600 60 120 240 360 600

W* 1.000 1.000 1.000 1.000 1.000 0.653 0.650 0.649 0.653 0.647
EW* 0.232 0.229 0.231 0.228 0.228 0.306 0.304 0.302 0.307 0.305
EW -0.018 0.114 0.175 0.191 0.206 0.385 0.358 0.338 0.334 0.322
ML -5.994 -1.021 0.193 0.494 0.715 1.778 1.024 0.873 0.812 0.748
KZ 0.064 0.388 0.596 0.685 0.785 0.545 0.559 0.577 0.591 0.597
TZML 0.188 0.400 0.581 0.675 0.781 0.478 0.505 0.546 0.569 0.586
TZKZ 0.261 0.439 0.586 0.666 0.765 0.449 0.469 0.495 0.515 0.533
DPML(0) 0.205 0.407 0.583 0.676 0.781 0.470 0.500 0.541 0.565 0.584
DPML(1) 0.290 0.434 0.575 0.654 0.746 0.431 0.455 0.477 0.489 0.494
DPML(2) 0.314 0.426 0.544 0.611 0.691 0.405 0.423 0.437 0.443 0.443
DPML(3) 0.320 0.410 0.511 0.570 0.640 0.387 0.400 0.409 0.413 0.411
ML+ -0.130 0.163 0.296 0.337 0.374 0.534 0.521 0.496 0.484 0.464
DPML+(0) 0.282 0.311 0.348 0.366 0.388 0.354 0.369 0.382 0.395 0.404
DPML+(1) 0.283 0.311 0.346 0.364 0.386 0.343 0.353 0.362 0.371 0.376
DPMLc(0) 0.126 0.446 0.596 0.680 0.781 0.804 0.589 0.561 0.571 0.585
DPMLc(1) 0.226 0.483 0.600 0.667 0.750 0.700 0.510 0.478 0.482 0.488
DPMLc(2) 0.272 0.490 0.585 0.639 0.707 0.650 0.475 0.440 0.441 0.442
DPMLc(3) 0.297 0.489 0.573 0.621 0.687 0.622 0.458 0.423 0.424 0.426

(a) Before Transaction Cost

Mean Standard Error

60 120 240 360 600 60 120 240 360 600

W* 1.000 1.000 1.000 1.000 1.000 0.711 0.707 0.706 0.711 0.704
EW* 0.251 0.247 0.250 0.247 0.247 0.333 0.331 0.328 0.334 0.332
EW -0.035 0.117 0.187 0.205 0.222 0.418 0.388 0.367 0.363 0.350
ML -8.284 -1.655 -0.053 0.343 0.631 2.186 1.138 0.948 0.882 0.812
KZ -0.172 0.278 0.546 0.655 0.770 0.577 0.590 0.616 0.634 0.644
TZML 0.006 0.304 0.533 0.644 0.765 0.510 0.530 0.580 0.609 0.632
TZKZ 0.137 0.387 0.569 0.661 0.770 0.473 0.494 0.526 0.551 0.574
DPML(0) 0.030 0.315 0.536 0.645 0.765 0.500 0.525 0.575 0.605 0.629
DPML(1) 0.178 0.383 0.560 0.654 0.760 0.454 0.479 0.509 0.524 0.533
DPML(2) 0.236 0.395 0.542 0.623 0.715 0.428 0.448 0.467 0.477 0.479
DPML(3) 0.261 0.391 0.517 0.588 0.669 0.410 0.426 0.439 0.446 0.445
ML+ -0.185 0.154 0.309 0.357 0.400 0.578 0.564 0.539 0.525 0.504
DPML+(0) 0.288 0.326 0.370 0.392 0.417 0.383 0.399 0.415 0.429 0.439
DPML+(1) 0.291 0.326 0.369 0.390 0.415 0.372 0.383 0.393 0.403 0.409
DPMLc(0) 0.020 0.423 0.593 0.680 0.783 0.921 0.652 0.611 0.621 0.635
DPMLc(1) 0.152 0.480 0.617 0.689 0.776 0.787 0.556 0.517 0.522 0.528
DPMLc(2) 0.214 0.495 0.608 0.668 0.741 0.725 0.517 0.476 0.477 0.479
DPMLc(3) 0.248 0.498 0.599 0.652 0.722 0.691 0.497 0.457 0.459 0.462

(b) After Transaction Cost
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Table VII: Expected and Sample Variances

This table reports the mean and standard error of the variances of selected portfolios, obtained from 10,000
iterations. In the second panel, portfolios are assumed to be rebalanced monthly and managed for ten years.
Variances are normalized by that of the ex-post global minimum-variance portfolio, MV*. The reported
values are averages across the datasets; D1, D2, D5, and D8. The numbers in the header are estimation
window sizes.

Mean Standard Error

60 120 240 360 600 60 120 240 360 600

MV* 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000
MV 1.276 1.115 1.054 1.035 1.020 0.127 0.049 0.022 0.014 0.008
DPMV(0) 1.220 1.103 1.051 1.034 1.020 0.099 0.044 0.021 0.014 0.008
DPMV(1) 1.281 1.230 1.202 1.192 1.183 0.071 0.046 0.030 0.023 0.018

(a) Expected Variance

Mean Standard Error

60 120 240 360 600 60 120 240 360 600

MV* 1.000 1.000 1.000 1.000 1.000 0.129 0.129 0.130 0.130 0.129
MV 1.277 1.116 1.054 1.035 1.021 0.176 0.146 0.137 0.134 0.131
DPMV(0) 1.220 1.103 1.051 1.034 1.020 0.163 0.144 0.137 0.134 0.131
DPMV(1) 1.280 1.230 1.201 1.192 1.183 0.159 0.154 0.153 0.153 0.152
DPMVc(0) 1.240 1.106 1.051 1.033 1.020 0.172 0.145 0.137 0.134 0.131
DPMVc(1) 1.222 1.102 1.051 1.034 1.021 0.169 0.145 0.137 0.134 0.132

(b) Sample Variance
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Table VIII: Utility Loss due to Model Parameter Uncertainty

This table compares the certainty equivalents obtained from true (True) and estimated (Estd) model pa-
rameters of the four shrinkage models, KZ, TZML, TZKZ, and DPML. The reported values are normalized
utilities averaged across the datasets; D1, D2, D5, and D8. The numbers in the header are estimation
window sizes.

60 120 240

True Estd True Estd True Estd

KZ 0.176 0.058 0.447 0.388 0.633 0.596
TZML 0.360 0.184 0.491 0.401 0.635 0.581
TZKZ 0.372 0.256 0.507 0.439 0.649 0.585
DPML(0) 0.371 0.203 0.498 0.406 0.640 0.581
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Table IX: Certainty Equivalent: Variance Targeting

This table reports the normalized CE’s from variance targeting. ‘Mean CE’ is the mean of the normalized
CE’s across the datasets in Table I, and ‘N(>EW)’ is the number of the datasets in which a portfolio
outperforms EW. δ∗ indicates the models use a calibrated δ.

Before Cost After Cost

Mean CE N(>EW) Mean CE N(>EW)

60 120 240 60 120 240 60 120 240 60 120 240

W* 1.000 1.000 1.000 13 13 13 1.000 1.000 1.000 13 13 13
EW 0.183 0.242 0.302 0 0 0 0.170 0.246 0.319 0 0 0
MKT 0.335 0.335 0.335 11 10 7 0.361 0.361 0.361 12 10 8
SP500 0.365 0.365 0.365 12 12 9 0.394 0.394 0.394 12 12 10
ML 0.433 0.649 0.571 9 10 9 -0.891 0.135 0.301 4 6 6
ML+ 0.469 0.474 0.407 12 13 10 0.419 0.460 0.407 12 13 8
MV -0.124 0.315 0.316 4 9 8 -1.886 -0.284 0.069 1 3 5
MV+ 0.229 0.321 0.390 8 9 12 0.172 0.310 0.405 5 8 11
VT 0.205 0.252 0.334 10 10 12 0.191 0.255 0.354 10 9 12
OC 0.591 0.717 0.668 10 11 9 -0.469 0.303 0.469 5 7 7
OC+ 0.418 0.398 0.387 13 12 11 0.379 0.377 0.386 12 11 10
KZ 0.402 0.742 0.668 9 13 11 -1.036 0.241 0.441 2 7 6
KZ(δ∗) 0.774 0.873 0.733 13 13 13 0.132 0.597 0.592 7 12 11
KZc(δ∗) 0.422 0.743 0.669 9 13 11 -0.429 0.386 0.505 5 8 8
TZML 0.653 0.735 0.653 11 12 10 -0.329 0.346 0.463 5 9 6
TZML(δ∗) 0.771 0.797 0.691 13 13 13 0.224 0.558 0.566 7 11 10
TZMLc(δ∗) 0.663 0.736 0.655 11 12 10 0.086 0.481 0.524 8 9 8
TZKZ 0.597 0.784 0.685 12 13 13 -0.561 0.385 0.513 4 8 9
TZKZ(δ∗) 0.770 0.829 0.704 13 13 13 0.251 0.594 0.578 7 13 11
TZKZc(δ∗) 0.604 0.786 0.686 12 13 13 -0.018 0.524 0.571 7 10 10
DPML(δ∗) 0.739 0.800 0.688 13 13 13 0.199 0.553 0.561 8 11 9
DPMLc(δ∗) 0.366 0.510 0.545 7 9 8 -0.013 0.328 0.451 7 8 8
DPMLK(δ∗) 0.748 0.793 0.679 13 13 12 0.194 0.562 0.566 7 12 10
DPML+(δ∗) 0.464 0.479 0.423 13 13 12 0.431 0.470 0.432 13 13 9
DPMV(δ∗) 0.380 0.464 0.467 13 13 13 0.211 0.361 0.419 7 10 11
DPMVc(δ∗) 0.240 0.319 0.283 8 9 8 -0.461 -0.065 0.062 4 8 7
DPMV+(δ∗) 0.450 0.466 0.421 13 13 13 0.439 0.473 0.432 13 13 13
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Table X: Certainty Equivalent: Utility Maximization

This table reports the normalized CE’s from utility maximization. ‘Mean CE’ is the mean of the normalized
CE’s across the datasets in Table I, and ‘N(>EW)’ is the number of the datasets in which a portfolio
outperforms EW. δ∗ indicates the models use a calibrated δ.

Before Cost After Cost

Mean CE N(>EW) Mean CE N(>EW)

60 120 240 60 120 240 60 120 240 60 120 240

W* 1.000 1.000 1.000 13 13 13 1.000 1.000 1.000 13 13 13
EW 0.240 0.240 0.240 0 0 0 0.305 0.305 0.305 0 0 0
MKT 0.222 0.222 0.222 4 4 4 0.284 0.284 0.284 4 4 4
SP500 0.244 0.244 0.244 5 5 5 0.311 0.311 0.311 5 5 5
ML -23.657 -2.919 -0.783 0 0 0 -70.533 -11.742 -3.146 0 0 0
ML+ -0.585 0.037 0.094 0 5 4 -1.046 -0.093 0.052 0 2 3
MV 0.224 0.270 0.256 6 10 10 0.006 0.229 0.263 0 5 5
MV+ 0.244 0.251 0.250 9 9 9 0.286 0.305 0.311 7 9 8
VT 0.246 0.248 0.251 12 12 12 0.314 0.317 0.320 12 12 12
OC -18.741 -2.576 -0.564 0 0 0 -57.187 -10.148 -2.480 0 0 0
OC+ 0.275 0.251 0.268 7 8 8 0.288 0.281 0.322 7 8 8
KZ -0.310 0.349 0.234 1 9 7 -3.005 -0.855 -0.428 0 1 1
KZ(δ∗) 0.506 0.669 0.559 13 13 13 0.115 0.504 0.521 4 9 9
KZc(δ∗) -0.272 0.350 0.233 2 9 7 -2.041 -0.611 -0.346 0 1 1
TZML 0.022 0.419 0.317 4 9 7 -2.060 -0.575 -0.226 0 1 1
TZML(δ∗) 0.506 0.627 0.548 12 12 12 0.169 0.480 0.517 5 9 9
TZMLc(δ∗) 0.053 0.420 0.320 5 9 7 -1.244 -0.319 -0.133 0 1 2
TZKZ 0.166 0.545 0.391 7 12 8 -1.385 -0.114 0.039 0 5 3
TZKZ(δ∗) 0.503 0.642 0.532 13 13 13 0.219 0.508 0.516 6 10 9
TZKZc(δ∗) 0.179 0.545 0.391 7 12 8 -0.715 0.087 0.113 0 6 4
DPML(δ∗) 0.487 0.618 0.545 12 12 12 0.161 0.475 0.515 5 9 9
DPMLc(δ∗) -4.894 -1.411 -0.306 0 0 4 -14.786 -3.766 -1.035 0 0 0
DPMLK(δ∗) 0.496 0.615 0.531 12 12 12 0.172 0.483 0.509 4 10 9
DPML+(δ∗) 0.347 0.359 0.333 13 13 11 0.394 0.418 0.409 13 12 9
DPMV(δ∗) 0.312 0.335 0.314 10 10 10 0.295 0.345 0.357 5 10 10
DPMVc(δ∗) 0.267 0.272 0.245 9 10 8 0.284 0.308 0.279 8 8 8
DPMV+(δ∗) 0.276 0.276 0.265 10 10 10 0.332 0.340 0.333 10 10 10
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Table XI: δ Calibration

This table reports the calibrated δ’s for each model with and without transaction costs. The reported values
are the mean across the sample period and datasets.

Variance Targeting Utility Maximization

Before Cost After Cost Before Cost After Cost

60 120 240 60 120 240 60 120 240 60 120 240

KZ 4.49 2.49 1.83 8.08 5.58 4.91 4.55 2.66 3.20 8.49 6.21 5.95
KZc 3.84 1.71 1.82 9.23 8.68 8.55 3.84 1.08 1.42 9.07 7.86 6.69
TZML 3.19 2.32 1.80 7.76 6.11 5.05 3.75 2.11 2.82 8.48 6.23 5.76
TZMLc 2.24 1.37 1.90 9.23 9.05 8.77 3.82 0.98 1.24 9.03 8.31 7.57
TZKZ 2.85 1.51 0.86 7.23 4.74 3.76 3.02 1.59 2.30 7.86 5.19 5.20
TZKZc 1.74 1.00 1.44 9.20 8.85 8.53 3.40 0.85 1.15 8.93 8.17 7.12
DPML 3.20 2.11 1.88 7.82 5.92 5.12 3.82 1.81 2.71 8.60 6.07 5.54
DPMLc 5.71 3.76 3.14 6.99 5.76 4.83 7.43 6.48 5.59 8.15 8.02 7.32
DPMLK 2.89 1.69 1.47 7.89 5.53 4.98 3.63 1.61 2.62 8.47 5.90 5.40
DPML+ 1.00 2.84 3.28 2.40 3.47 3.98 0.89 1.61 4.21 1.76 2.11 4.78
DPMV 2.13 2.45 2.42 5.90 3.84 2.94 3.64 3.09 3.41 8.04 4.94 4.34
DPMVc 3.76 3.62 4.65 4.76 4.13 4.27 5.50 4.66 5.24 7.16 5.33 5.38
DPMV+ 2.22 1.71 1.69 3.07 2.22 1.86 5.22 5.31 5.60 5.95 5.76 5.86
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Table XII: Certainty Equivalent: Variance Targeting: Economic Cycle

This table reports the normalized CE’s from variance targeting for two samples: recession months and the
remaining months. The NBER recession indicator is used to identify recession months. ‘Mean CE’ is the
mean of the normalized CE’s across the datasets in Table I, and ‘N(>EW)’ is the number of the datasets in
which a portfolio outperforms EW. δ∗ indicates the models use a calibrated δ.

Before Cost After Cost

Mean CE N(>EW) Mean CE N(>EW)

60 120 240 60 120 240 60 120 240 60 120 240

Recession months
W* 1.000 1.000 1.000 12 12 12 1.000 1.000 1.000 12 12 12
EW -0.633 -0.523 -0.457 0 0 0 -0.774 -0.646 -0.550 0 0 0
KZ -0.462 0.329 0.086 7 12 12 -2.123 -0.304 -0.276 2 9 10
KZ(δ∗) -0.104 0.296 0.018 11 12 12 -0.885 -0.060 -0.236 3 12 12
KZc(δ∗) -0.458 0.271 0.052 8 12 12 -1.615 -0.218 -0.249 2 9 11
TZML -0.198 0.256 0.037 10 12 12 -1.280 -0.227 -0.271 3 11 11
TZML(δ∗) -0.165 0.184 -0.022 11 12 12 -0.773 -0.143 -0.266 3 11 12
TZMLc(δ∗) -0.295 0.204 0.002 10 12 12 -1.080 -0.172 -0.253 3 11 12
TZKZ -0.338 0.240 0.050 9 12 12 -1.702 -0.295 -0.255 2 9 11
TZKZ(δ∗) -0.046 0.207 -0.008 12 12 12 -0.683 -0.123 -0.261 5 12 12
TZKZc(δ∗) -0.418 0.185 0.020 8 12 12 -1.329 -0.204 -0.228 2 10 11
DPML(δ∗) -0.088 0.117 -0.022 12 12 12 -0.673 -0.214 -0.269 5 11 11
DPMLc(δ∗) -0.138 0.284 0.073 12 12 11 -0.692 0.062 -0.096 6 12 11
DPMLK(δ∗) -0.088 0.079 -0.047 11 12 12 -0.666 -0.246 -0.288 6 11 12
DPML+(δ∗) -0.363 -0.191 -0.317 10 12 12 -0.527 -0.294 -0.414 10 12 11

Remaining months

W* 1.000 1.000 1.000 12 12 12 1.000 1.000 1.000 12 12 12
EW 0.346 0.379 0.413 0 0 0 0.347 0.392 0.433 0 0 0
KZ 0.531 0.744 0.699 9 11 9 -0.744 0.294 0.495 3 6 5
KZ(δ∗) 0.772 0.833 0.759 12 12 12 0.267 0.619 0.651 6 10 9
KZc(δ∗) 0.527 0.719 0.688 9 11 9 -0.218 0.421 0.548 5 8 7
TZML 0.706 0.773 0.696 9 10 9 -0.178 0.424 0.528 4 8 6
TZML(δ∗) 0.734 0.794 0.733 12 12 12 0.339 0.612 0.635 7 10 9
TZMLc(δ∗) 0.683 0.753 0.685 9 10 9 0.191 0.543 0.578 7 8 7
TZKZ 0.711 0.815 0.727 11 12 10 -0.320 0.454 0.572 4 8 7
TZKZ(δ∗) 0.742 0.810 0.747 12 12 12 0.363 0.634 0.642 6 10 9
TZKZc(δ∗) 0.687 0.789 0.716 10 11 10 0.161 0.579 0.619 6 9 8
DPML(δ∗) 0.718 0.798 0.729 12 12 11 0.324 0.612 0.632 7 10 9
DPMLc(δ∗) 0.451 0.537 0.564 7 8 8 0.116 0.367 0.475 7 8 8
DPMLK(δ∗) 0.725 0.801 0.725 12 12 12 0.328 0.625 0.640 7 10 9
DPML+(δ∗) 0.566 0.554 0.527 12 12 12 0.538 0.551 0.537 12 12 9
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Figure 1: Optimal Deviation Penalty: No Transaction Costs

This figure displays the certainty equivalents of the four shrinkage portfolio strategies for different values of
δ and estimation window sizes. Portfolios are assumed to be rebalanced monthly and managed for ten years.
The vertical axis represents the normalized certainty equivalent averaged across the datasets; D1, D2, D5,
and D8.
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Figure 2: Optimal Deviation Penalty: 30 bp Transaction Costs

This figure displays the certainty equivalents of the four shrinkage portfolio strategies for different values
of δ and estimation window sizes in the presence of 30 bp transaction costs. Portfolios are assumed to
be rebalanced monthly and managed for ten years. The vertical axis represents the normalized certainty
equivalent averaged across the datasets; D1, D2, D5, and D8.
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Figure 3: Optimal Deviation Penalty from wew and wt−: 30 bp Transaction Costs

This figure displays the certainty equivalents of the four shrinkage portfolio strategies extended using Equa-
tion (34) for different values of δ and estimation window sizes in the presence of 30 bp transaction costs. κ
is the loading on wt−. Portfolios are assumed to be rebalanced monthly and managed for ten years. The
vertical axis represents the normalized certainty equivalent averaged across the datasets; D1, D2, D5, and
D8.
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Figure 4: Sub-Period Performance: CE

This figure visualizes the performance of the deviation penalty models in sub-periods (horizontal axis). Each
sub-period is ten-year long and five-years apart from each other, except the last sub-period, SP13, which ends
in 2015.12. Each chart displays the normalized CE’s before transaction costs. The dotted lines represent
EW. The results are averages across the datasets, D2-D13 (D1 is omitted due to its shorter sample period),
and T = 120 is used.
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