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This paper compares three approaches to estimating equity covariance

matrices: a factor model, a market model and an unstructured asset-by-

asset model. These approaches make different trade-offs between estimation

variance and model specification error. We explore this trade-off with

a simulation experiment and with an empirical analysis of UK equity

portfolios. The factor model is found to perform best for large investment

universes and typical sample lengths. The market model underperforms due

to excessive specification error while an asset-by-asset model with a short

half-life of 22 days underperforms due to high estimation variance. The

importance of properly accounting for serial correlation is highlighted.

1 INTRODUCTION

An important issue in covariance matrix estimation is how much structure should be

imposed on the estimated matrix. This issue arises because of the need to forecast

the risk of equity portfolios in markets with thousands of assets from only a limited

amount of historical returns data. Estimating a covariance matrix without imposing

any structure allows for any possible relationship between individual equity returns,

but this flexibility comes at the cost of high estimation variance. Imposing some

structure on the matrix reduces the number of parameters and thereby can decrease

the estimation variance. However, structured estimators are likely to exhibit some

specification error since it is highly improbable that the imposed structure exactly

mirrors the underlying return-generating process for all assets. Assessing how much

structure should be imposed on the matrix is therefore equivalent to exploring the

trade-off between estimation variance and model specification error.

In the past, several authors have investigated this trade-off by comparing

structured and unstructured covariance matrices. Elton and Gruber (1973), Elton

et al (1978) and Elton et al (2006) argue that a tightly structured covariance
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matrix with constant correlations between all assets outperforms less structured

models. However, Elton et al (2006) also find that combining their constant-

correlation structure with industry and characteristic-based variables improves the

risk forecasting accuracy. Chan et al (1999) compare a range of unstructured to

tightly structured models. In general, they find that more structured models provide

better forecasts, but they also emphasize that the optimal model choice depends

upon the particular risk forecasting application.

Ledoit and Wolf (2003, 2004) propose a Bayesian mixing method. They select

a structured covariance matrix, which is used as a Bayesian prior and linearly

combined with an unstructured sample covariance matrix. The resulting mixture

produces a posterior estimate that is “close” to the prior but does not exactly obey

the imposed structure. Bayesian mixing is appealing as it provides a theoretically

optimal way of combining a misspecified prior with a correctly specified but noisy

sample covariance matrix.

Jagannathan and Ma (2003) compare structured and unstructured covariance

estimators. They assess how portfolio constraints influence the accuracy of these

estimators for portfolio optimization. They show that imposing portfolio constraints

such as bounds on individual asset weights can improve the performance of an

unstructured estimator. Using a clever change of variables, Jagannathan and Ma

show that the portfolio constraints can be reinterpreted as Bayesian priors along the

lines of Ledoit and Wolf.

Random matrix theory (RMT) has also been applied to analyze and filter

covariance matrices – see, for example, Laloux et al (1999), Plerou et al (2002)

and Papp et al (2005). RMT defines bounds for the eigenvalue spectrum of “pure

noise” correlation matrices, that is, correlation matrices calculated from samples

of uncorrelated time series. By identifying and retaining only eigenvalues beyond

the upper limit of the noise spectrum, RMT eliminates components of sample

correlation matrices that are indistinguishable from noise. A limitation of this

method is that it works only for correlation matrices and cannot provide information

about the noise of the estimated variances.

Structured covariance matrices offer an essential advantage from a portfolio

construction perspective. They reduce the dimensionality of the covariance esti-

mator to a manageably small number of parameters. If the portfolio construction

process uses categories such as regions or sectors to forecast expected returns,

it is helpful to budget risk along the same dimensions. The market and factor

models both share this practical advantage of low dimensionality. Even though

the Bayesian mixing models also use a prior with low dimensionality, they do not

offer the benefit of dimension reduction because they combine the prior with the

unstructured estimator.

This paper examines three fundamental approaches to covariance matrix model-

ing that are of particular interest to practitioners. We compare the tightly structured

market model, a moderately structured multi-factor model and an unstructured

asset-by-asset model. These models are widely used for equity portfolio risk

analysis, and they are building blocks for advanced approaches such as Bayesian

mixing or RMT. After describing the three approaches from a statistical perspective,
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we analyze the trade-off between estimation variance and specification error with

a simulation experiment and with empirical results for the UK equity market. To

complement the discussion of the three base models, we also provide simulation

results and selected empirical data for a Bayesian mixing model that uses the market

model as its prior. Bayesian mixing can be applied to a wide variety of priors. For

example, a multi-factor prior could be used instead of the market model.

In the empirical part, our performance metric is the ability of an estimated

covariance matrix to predict monthly portfolio volatilities over horizons of one to

six months. Results are presented for a diversified market portfolio and for con-

centrated industry, style and random portfolios. We also analyze the performance

of the market, multi-factor and asset-by-asset models in portfolio construction by

using them to create beta hedged versions of the concentrated portfolios. Beta-

hedged portfolios are evaluated by measuring their ex post betas and by calculating

the portfolio turnover associated with readjusting the beta hedge. As part of the

empirical investigation, it is shown how serial correlation between daily asset

returns influences the monthly risk forecasts, and how important it is to properly

correct for serial correlation.

Section 2 presents the three estimation methods and discusses why structured

estimates may sometimes outperform unstructured ones even when the structural

restrictions are not exactly correct. In Section 3, we use a simulation experiment to

compare the forecasting performance of the three estimation methods for various

data frequencies and sample lengths. In Section 4, we calculate monthly covariance

matrices for models that represent the three methods, and we apply these matrices

to forecast the risk of UK equity portfolios.

2 THREE ESTIMATION METHODS

2.1 Setting the stage: a univariate example

Before confronting the more complex multivariate problem of portfolio risk fore-

casting it is helpful to illustrate the trade-off between estimation variance and

specification error with a simpler univariate example: the forecasting of individual

asset betas.

Consider a market with n assets and suppose that the return of each asset i obeys

the following process:

ri(t) = ci + βirm(t) + εi(t) (1)

where ci is an arbitrary constant, βi is the market beta of asset i, which is

assumed to be constant over time, rm(t) is the market return and εi(t) is the non-

market return of asset i. Let the set {εi(t)}i=1,...,n be independent and identically

distributed, normally distributed through time, and assume that non-market returns

are statistically independent from market returns.

We compare two models for estimating βi for the time period [T + 1, T + H ]
using observations of asset and market returns over the interval [1, T ]. The first
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model is the maximum likelihood estimator β̂ ML
i . It equals the ordinary least-

squares regression coefficient:

β̂ ML
i =

∑T
t=1(ri(t) − ri)(rm(t) − rm)

∑T
t=1(rm(t) − rm)2

(2)

where ri denotes the average return over the sample interval [1, T ]. We define the

model specification error as:

�i = E[β̂i − βi] (3)

The maximum likelihood estimator has zero specification error for all assets:

� ML
i = 0 for all i. The maximum likelihood estimator is also consistent and

efficient. It has minimal estimation variance, (Ŵi)
2, among all members in the set,

{C}, of unbiased estimators that rely on the same sample data:

(Ŵi)
2 = E[(β̂i − E[β̂i])2]

(ŴML
i )2 = min

X∈{C}
(ŴX

i )2 (4)

Given these desirable properties, it may seem that β̂ ML
i is the best possible forecast

for βi over the subsequent time period. However, the maximum likelihood estimator

has one weakness: it relies only on information contained in the sample of returns.

From prior analysis of similar data sets, for example, we might know that the

average of βi across all assets is fairly close to 1. Based on this prior knowledge we

could construct a tightly restricted estimator:

β̂R
i = 1 (5)

This estimator completely ignores all sample data and relies only on prior know-

ledge. If we view it as a classical estimator, it has poor statistical properties. It is

biased and inconsistent for all βi �= 1, since E[β̂R
i − βi] = 1 − βi for all sample

sizes. Despite its poor statistical properties, this restricted estimator can outperform

the maximum likelihood estimator: β̂R
i can exhibit less forecasting error than the

efficient estimate β̂ ML
i . This is straightforward to see, remembering that for an

arbitrary estimator, X, the squared forecast error is the sum of squared specification

error and estimation variance:

E[(β̂X
i − βi)

2] = (�X
i )2 + (ŴX

i )2 (6)

If a model introduces some specification error but compensates for this with a sharp

reduction of estimation variance, it can outperform a correctly specified model.

Figure 1 illustrates this point for the restricted estimator β̂R
i , which obviously

has zero estimation variance. Figure 1 shows a histogram of the root-mean-square

(RMS) forecast error for 480 UK stocks, based on a 12-month estimation period and

a subsequent 12-month forecasting period. It is evident that the restricted estimator

β̂R
i = 1 exhibits a lower average forecast error than the maximum likelihood

estimator β̂ ML
i .
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FIGURE 1 RMS error of asset beta forecasts for 480 UK stocks.
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12-monthly returns in 2003 were used to calculate forecasts of beta for the subsequent year. The

maximum likelihood estimator (dark bars) shows a larger average error and a broader error distribution

than the biased estimator (light bars).

The outperformance of the estimator (5) can also be explained from a Bayesian

perspective. Suppose that each asset’s true beta is known to be the realization of a

random variable with expected value of 1 and standard deviation σ 2. If σ 2 is small

relative to the estimation variance of the maximum likelihood estimator (4), then

the restricted estimator will usually outperform even though it is misspecified and

inconsistent. Although the restriction imposed on beta is false, it is “close enough

to true” for improving the estimation accuracy in most cases.

2.2 Three methods of estimating covariance matrices

To forecast covariance matrices of equity returns, we consider three modeling

approaches that differ by their amount of structure.

The asset-by-asset model:

ĈU =
1

T
R′R (7)

calculates a covariance matrix from a (T × n) sample of n de-meaned asset returns,

R, observed over a look-back horizon of T periods. This model is unstructured

and has zero specification error; the true covariance matrix will always belong

to the set of estimates of the form (7). The asset-by-asset model has 1
2n(n + 1)
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parameters. For an investment universe of several hundred assets, this model

contains a very large number of parameters. Using this approach to cover global

equity markets would mean estimating about 108 parameters – a truly daunting task.

The dependence on so many parameters is the main drawback of the asset-by-asset

model – remember that estimation variance generally increases with the number of

parameters in a model. For small investment universes and long samples, that is, if

T ≫ n, the asset-by-asset model exhibits good performance because its estimation

variance vanishes for T/n → ∞.

The tightly structured market model:

ĈMM = ββ ′var(rm) + Diag(var(ε1), . . . , var(εn)) (8)

assumes that the parameters β and var(rm) completely describe all asset covari-

ances. The market model has (2n + 1) parameters: a vector of n market betas,

n asset-specific variances, var(εi), and the market variance, var(rm). Betas are

estimated via time series regression as indicated in (2) for the univariate case. The

market model is parsimonious as it has so few parameters. Its main drawback is

the fact that, in practice, it is likely to have considerable specification error. The

market model cannot accommodate the fact that non-market returns tend to be

more correlated for firms in the same industry than across different industries. The

market model also ignores so-called style effects, for example, the observation that

non-market returns of firms with similar market capitalizations or similar book-to-

price ratios tend to be positively correlated (see, for example, Fama and French

(1993)). Even though the exact definition of such sources of systematic non-market

covariance may be debatable, the fact that they exist is empirically well established,

which means that (8) provides a simplified and misspecified covariance model.

The moderately structured factor model:

ĈFM = BCF B ′ + Cε (9)

describes asset covariances through (n × k) exposures, B, to k hidden factors.

It decomposes the covariance matrix into a common factor part, BCF B ′, and an

asset-specific part, Cε, which is assumed to be diagonal. The number of parameters

depends on how the factor exposures, B, and the factor returns covariance matrix,

CF , are determined. In Section 4 we use a fundamental factor model that predefines

the exposures from external information such as industry classifications or balance

sheet data – this is conceptually similar to (5) where a beta of one is predefined.

Alternatively, a statistical or macroeconomic factor model could be used to investi-

gate the reduction of estimation noise through application of a factor structure. For

a comparison of the different types of factor models we refer the reader to Connor

(1995).

With respect to the restrictiveness of its structural assumptions, the factor model

is positioned between the market model and the unstructured model. Because the

factor model has more parameters, it offers more flexibility than the market model

in approximating the true returns-generating process. However, factor models are

also likely to exhibit some specification error. To achieve the goal of reducing
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the estimation variance, k needs to be much smaller than n, which means that

the factor model must focus on the strongest sources of return covariance. For

example, a factor model with a banking industry factor might miss a systematically

higher covariance between banks with similar regional loan exposures or similar

concentrations of mortgage lending versus corporate lending. A factor model could

also be misspecified because factors might be of a transitory nature and lose

their explanatory power over time. The choice of k is another potential source

of misspecification. We already saw that the market model (which could also be

described as a factor model with k = 1) misses systematic sources of covariance.

Including too many factors can be equally detrimental because this could mean

overfitting the sample data by keeping factors without any persistent forecasting

power.

Bayesian mixing is an alternative approach to control for the optimal amount of

structure in a covariance matrix estimator. Ledoit and Wolf (2003, 2004) show that

a linear combination of a tightly structured prior and the unstructured covariance

matrix can perform better than either of these on its own. Letting λ denote a real

number between zero and one, we consider the estimator:

ĈLW = λĈMM + (1 − λ)ĈU (10)

The mixing coefficient λ is determined by a Bayesian method following Ledoit and

Wolf (2004). An appealing feature of Bayesian mixing is that it holds the promise

to improve the accuracy of a simple, tightly structured prior without the need for

constructing a more complex factor model. Bayesian mixing is therefore often used

in conjunction with simple priors such as the market model or a constant correlation

matrix. In line with this practice, we use the market model matrix ĈMM as a prior.

2.3 Forecasting portfolio risk

The usual purpose of estimating a covariance matrix is to predict the future

volatility for a broad range of portfolios. An arbitrary portfolio can be described

by an n-vector of asset weights, w. The estimated portfolio volatility is:

σ̂w = (w′Ĉw)1/2 (11)

In analogy to the univariate case, we write the following expressions for the

specification error, estimation variance and squared estimation error of σ̂w:

�w = E[ σ̂w − σw]

(Ŵw)2 = E[( σ̂w − E[ σ̂w])2]

E[( σ̂w − σw)2] = (�w)2 + (Ŵw)2 (12)

Here σw = (w′Cw)1/2 denotes the true portfolio volatility, which is assumed to

be constant over time. Note that both components of the estimation error in (12)

now depend not only on the estimation method but also on the particular portfolio

being examined. One estimation method may work best for the market portfolio
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or other broadly diversified portfolios, but a different estimation method may be

advantageous for portfolios that contain only few assets or are highly concentrated

in some industries.

The specification error of the asset-by-asset model is zero for all portfolios. As

we impose a tighter structure by using a factor model with a decreasing number

of factors, the estimation variance will decrease but the specification error is

likely to increase. Because the optimal compromise between specification error

and estimation variance depends on w, it is essential to test any model with a

broad range of different portfolios. For example, the market model might produce

adequate forecasts for a broadly diversified portfolio but fail to forecast portfolio

variance correctly for portfolios that are concentrated in single industries.

For simplicity of notation, the analysis so far has been based on the idealized

assumption of a constant true covariance matrix. Knowing that real-world variances

and correlations exhibit temporary fluctuations, practitioners often prefer to use

exponentially weighted averages for calculating sample covariances. This method

places more weight on recent observations and therefore responds more quickly

to any unknown dynamic variation in the true covariance matrix.1 However, the

advantage of better responsiveness comes at the price of reducing the effective

sample size because distant observations receive only little weight. We can write

the effective sample size of an exponentially weighted sum with weights wt = λt−1,

t = 1, . . . , T , λ < 1 as:

Teff =
(1 − λT )2(1 − λ2)

(1 − λ)2(1 − λ2T )
(13)

Exponential weighting is used for the empirical analysis in Section 4 to account

for the dynamic variations of variances and correlations exhibited by real-world

financial returns. It could also be used in the theoretical and simulation parts but

this would not change any of the basic findings.

3 A SIMULATION-BASED ANALYSIS

In this section we use a simulation experiment to examine the trade-off between

estimation variance and specification error. We assume in this experiment that the

true return-generating process follows an 11-factor model with 10 industry factors

and one market factor:

ri(t) = βimfm(t) + βijfj (t) + εi(t) (14)

Each asset, i = 1, . . . , 200, is associated with one industry, j = 1, . . . , 10, that is,

each asset has a single non-zero industry beta in addition to its market beta. We

repeatedly draw a set of T random returns for a universe of n = 200 assets and then

apply different models to estimate the true covariance matrix from the time series

of simulated returns.

1This method has been popularized by RiskMetrics, see Mina and Xiao (2001).
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To fully specify the model (14), we first define a constant reference covariance

matrix of market and industry factor returns. Factor returns are assumed to be

independent and follow a normal distribution with zero mean. Market and industry

factor annual volatilities are set to 20%. We note that factor models that are cal-

ibrated to empirical data typically exhibit inter-industry correlations. Inclusion of

such correlations is, however, not necessary to demonstrate the relative importance

of estimation variance and specification error. Therefore, we select the simplest

possible factor model covariance matrix in these simulations.

Market and industry betas are drawn from a normal distribution with mean of one

and standard deviation of 10%. This parameter choice approximately corresponds

to the dispersion of betas that is found for empirical equity data.2 Asset-specific

returns εi(t) are assumed to be independent and have a constant annualized

volatility of 35%.

The simulated (T × n) matrix of sample returns is then used to build the

following five models that represent the three estimation methods discussed in the

last section:

(a) an unstructured asset-by-asset model with equal weighting;

(b) the true 11-factor model (14) with market and industry betas estimated via

time series regression;

(c) a market model that estimates the market betas, βim, via time series regression

and ignores the industry betas, ie, this model assumes that all non-market

returns are asset-specific and independent;

(d) a Bayesian mixing model that uses (c) as a prior and combines it with the

asset-by-asset model (a); and

(e) an 11-factor model that replaces the market and industry betas by dummy

values of zero or one. This model is misspecified in a similar way as (5).

It ignores the fact that the true betas are not uniformly equal to one. It is,

however, quite close to the true process in the sense that it uses the correct

number of industries and “knows” the correct industry of each asset.

Models (a) and (b) are correctly specified while models (c)–(e) exhibit some

degree of misspecification. The dispersion of the randomly drawn true betas

in (14) is intentionally set to a relatively high level to include a sizable amount

of misspecification in model (e).

Simulations are run for different sample lengths to explore how the estimation

variance depends on the sample size. We approximate a year with 250 trading days

and draw returns for five sample sizes corresponding to 24 months, 60 months,

250 days, 500 days and 2500 days. A big advantage of the simulations is the fact

that the true covariance matrix, C, is available (conditioning on the true random

draw of betas). This allows us to directly compare the different models (a)–(e) with

the true covariance matrix. Following Ledoit and Wolf (2003), we use the Frobenius

2Note that the dispersion of estimated betas is substantially higher than the dispersion of true

betas due to estimation variance in the time series regression.
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norm |M| as a metric of estimation error between true and estimated covariance

matrices:

M = Ĉ − C

|M| =
[(

1

n

)2 n∑

j=1

n∑

i=1

M2
ij

] 1
2

(15)

µ = E[|M|]

The expected value of the Frobenius norm, µ, can be interpreted as the average

standard deviation of estimation error in a typical component of the estimated

covariance matrix. This interpretation is valid in the following sense: if all com-

ponents of the error matrix M have the same standard deviation, then µ will equal

this standard deviation. For each model, |M| is averaged over 100 simulation runs.

Figure 2 compares the five models for five different sample sizes. For sample

lengths of up to one year of daily data, the zero-one factor model (e) outperforms

all other models. This indicates that the reduction of estimation variance by

predefining zero-one betas more than compensates for the specification error of this

simplified factor model. For two years of daily data, the zero-one factor model (e) is

marginally outperformed by the true factor model (b) with estimated betas. Only for

the longest sample, which uses 10 years of daily data, do the asset-by-asset model

and the true factor model clearly outperform the zero-one factor model. With such

a long sample, the estimation variance of the correctly specified models (a) and (b)

becomes small.

The market model (c) also outperforms the asset-by-asset model for up to five

years of monthly data. This again emphasizes the advantage of reducing estimation

variance through selection of a suitably structured estimator. However, for one year

of daily data, the specification error of the market model becomes too large, making

(c) the least accurate estimate. It is clearly advantageous to include the industry

factors in the model as can be seen by comparing models (c) and (e).

The Bayesian mixing model (d) outperforms the asset-by-asset model (a) for

all but the longest sample. This illustrates the ability of Bayesian mixing to

improve estimates by reducing estimation variance. The Bayesian mixing model

also outperforms its prior except for the shortest sample, where it is almost identical

to the prior. These results confirm the merits of Bayesian mixing in optimally

combining the unstructured estimator (a) with the structured prior (c). We note,

however, that the zero-one factor model (e) outperforms the Bayesian mixing

model for sample lengths of up to two years of daily data. The reason for this

outperformance lies in the fact that the market model (c) prior exhibits a large

specification error. This highlights the need for selecting a sufficiently accurate

prior for Bayesian mixing.

In summary, these simulations illustrate the trade-off between estimation vari-

ance and model specification error. They indicate an advantage to selecting a

moderately structured factor model to estimate risk for large investment universes

and moderate sample lengths, that is, for T/n < 1. For large samples and small
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FIGURE 2 Simulation results for n = 200 assets.
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investment universes, the unstructured asset-by-asset estimator performs best. We

note that these simulation results depend on the exact investment universe and

structure as well as on the sample length.

4 EMPIRICAL ANALYSIS USING UK EQUITY DATA

Simulations provide clear insight into the subtle balance between specification error

and estimation variance, but they rely on an artificial return-generating process and

cannot fully reflect the behavior of real-world financial markets. Therefore, it is

important to explore the forecasting accuracy of the different modeling methods

as they are applied to real data. In this section we demonstrate that the trade-off

between specification error and estimation variance strongly influences indeed the

accuracy of empirical risk forecasts. Empirical results also reveal how differences

between the “imperfect” real-world data and the idealized theoretical assumptions

impact the forecasts. In particular, we discuss the influence of serial correlation of

daily stock returns on the risk forecasting accuracy.

4.1 Experimental framework

The empirical analysis uses daily UK equity returns over the period from 1997

to 2006. The universe includes all stocks of the FTSE All-Share index for which
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at least 900 successive daily returns are available. Stocks with fewer returns are

excluded from the universe to avoid problems with missing data when calculating

asset-by-asset covariance matrices.3 The resulting universe varies in size between

485 and 684 assets over the backtesting period.

We calculate and analyze four different sets of covariance matrices that rep-

resent the tightly structured, moderately structured and unstructured modeling

approaches. All matrices are calculated monthly, and their forecasting power is

explored over a look-ahead horizon of one to six months. Two data points with large

negative outlier returns (August 1998 and September 2001) are excluded from the

bias tests because they would unduly distort the results.

To explore the multi-factor modeling approach, we use a commercial factor

model for the UK market (MSCIBarra (2006)). This model contains 43 industry

factors and the following 11 style factors: size, momentum, volatility, trading activ-

ity, leverage, value, yield, foreign sensitivity, growth, midcap indicator and non-

estimation universe indicator. The model uses a 90-day half-life for the diagonal

elements of the factor covariance matrix. Off-diagonal elements are modeled with

a longer half-life of 180 days, based on the notion that correlations between factors

tend to vary less rapidly than single factor variances. Specific risks are forecast

with a structural model of cross-sectional asset-specific return heteroskedasticity.

We henceforth refer to this model as the factor model.

Unstructured asset-by-asset matrices are calculated with exponential weighting.

This is done to allow for the fact that real-world variances and correlations change

over time, in contrast to the theoretical framework where true covariances are

assumed constant. For this analysis we calculate asset-by-asset matrices using 900

trading days of returns data. Returns are truncated to ±20% to limit the influence

of outliers on the covariance matrices. Daily risk forecasts are then scaled to a

monthly forecasting horizon using a serial correlation correction, which will be

further discussed below.

We present results for two sets of asset-by-asset covariance matrices. The first

set uses the same 90- and 180-day half-lives as the factor model. This facilitates

comparison between the models and ensures that both models exhibit the same

responsiveness to sudden volatility changes. The second set of matrices uses a

single half-life of 22 days. This half-life corresponds to a decay constant of

λ = 0.97, a value that has been suggested as best practice for one-month forecasts

by Mina and Xiao (2001) and is widely used by practitioners. We henceforth refer

to these two models as the slow asset model (90/180-day split half-lives) and the

fast asset model (22-day half-life), respectively.

Changing the half-life also has the effect of altering the effective sample size.

According to (13), the effective sample size is only 63 days for a half-life of 22 days

and T = 900 data points. For a half-life of 180 days we get Teff = 488. Differences

3The inclusion of time series with missing data would introduce specification error into the

covariance matrices. This is a common problem in the practical application of asset-by-asset

matrices, which we want to avoid here. The reader should, however, be aware of this shortcoming

when using asset-by-asset matrices to model real-world data.
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TABLE 1 Characteristics and half-lives of models investigated in the empirical
section.

Model Characteristics Half-life

Slow asset model Unstructured 90 and 180 days
Fast asset model Unstructured 22 days
Factor model Moderately structured 90 and 180 days

Market model Tightly structured 90 and 180 days

between the performance of the fast and slow asset models reflect the impact of

sample size on estimation variance.

Finally, we define a market model to investigate the real-world performance of

the tightly structured modeling approach. We extract predicted betas, β̂i , for each

stock, i, using the covariance forecasts of the slow asset model:

β̂i =
cov(ri, rm)

var(rm)
(16)

The market returns, rm, are defined as the returns of the capitalization-weighted

universe portfolio. To complete the market model as described in (8), we calibrate

its specific variances such that the market model and the slow asset model exhibit

the same total asset variances. This is done to create a close relationship between

both models. The market model can be interpreted as the result of imposing the

maximum amount of structure on the matrices of the slow asset model. Table 1

gives an overview of the four models.

4.2 Risk forecasts of long-only portfolios

Before we apply the different models to forecast the risk of concentrated portfolios,

we show that all four models generate reasonably accurate risk forecasts for

a diversified market portfolio. The market is defined here as the cap-weighted

universe portfolio. Figure 3 compares market risk forecasts of all four models with

the realized volatility, which is calculated using six months of equally weighted

daily returns. A serial correlation correction is applied to scale the realized volatility

from a daily to a monthly horizon. Realized volatility data is then lagged by six

months. This means that the realized volatility is a truly out-of-sample measure that

has no overlap with the data used for deriving the forecasts. The slow asset model,

market model and factor model exhibit very similar characteristics. On average

these models predict market volatility well. Their forecasts do not overshoot in the

high-volatility phase from 1999 to 2003 but they fail to quickly track the rapid

volatility drop in early 2003. The factor model has a slight edge as it tracks the

volatility peak in 2002 better than the slow asset model, but the differences are

rather small. Owing to its short half-life, the fast asset model is able to quickly

follow the volatility drop in early 2003, but this responsiveness comes at the price

of additional noise. This is particularly evident in 1999 and 2002 where the forecast

Research Paper www.thejournalofrisk.com
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FIGURE 3 Comparison of forecasts (continuous lines) with realized volatility
(dashed lines) of the UK market portfolio. Realized volatility is lagged by six months
and uses six months of equally weighted daily returns.

V
o

la
ti

lit
y

(%
,

a
n
n
u
a
li
ze

d
)

Date

0%

10%

20%

30%
Factor model

0%

10%

20%

30%

1
9
9
7

1
9
9
9

2
0
0
1

2
0
0
3

2
0
0
5

1
9
9
7

1
9
9
9

2
0
0
1

2
0
0
3

2
0
0
5

Market model

Slow asset model

Fast asset model

TABLE 2 Overview of portfolio categories investigated in the empirical part.
Industry and style portfolios use the classification scheme of the factor model.

Portfolio group Number of assets Number of portfolios

Random portfolios 30 100

Industry portfolios 7–98 19
Style portfolios 48–69 18

overshoots considerably. However, if we set aside its higher noise level, the fast

asset model also produces usable market volatility forecasts.

In the next step we investigate the forecasting accuracy of all models for the

three groups of concentrated long-only portfolios listed in Table 2.

All portfolios are equally weighted to avoid dominance of a few large-cap stocks.

Random portfolios are built by selecting 30 stocks from the 1997 universe and

keeping these stocks as long as they remain in the universe. When a stock drops

out of the universe it is replaced by another random draw. Industry portfolios are
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based on the industry scheme of the factor model. Only industries with at least six

assets over the entire 10-year backtesting period are included. This explains why

we use only 19 industry portfolios, although the factor model contains 43 industry

factors. Some industry portfolios (eg, banks or pharmaceutical companies) are very

concentrated with 7–13 assets, whereas other industry portfolios such as retail or

trusts are more diversified with up to 98 assets. Style portfolios use nine of the 11

style factors of the factor model. They contain either the top or the bottom decile of

all assets ranked according to their exposure to a style factor. The style portfolios

arguably could put the factor model at an advantage because they use its native

factors. While industry portfolios also use the industry scheme of the factor model,

we regard this subdivision as a more generic and model-independent categorization

than in the case of the style portfolios. Random portfolios are of course entirely

model independent.

Bias tests are conducted to determine the one-month forecasting accuracy of the

different models. The bias statistic, bp(T , h), of portfolio p, at time T over a look-

back horizon h, is defined as the sample standard deviation of the standardized

outcomes zp(t). A standardized outcome is calculated by dividing the realized

monthly portfolio return, rp(t), by the forecast portfolio volatility, σ̂p(t − 1), at

previous month-end:

zp(t) =
rp(t)

σ̂p(t − 1)
(17)

bp(T , h) =

√√√√ 1

h − 1

T∑

t=T −h+1

(zp(t) − zp)2 (18)

If risk forecasts are exact, and if the true volatility is not time dependent, the

bias statistic has an expected value of one. Assuming normality of returns and no

estimation error in σ̂p, the bias statistic is approximately normal for large sample

sizes, with standard error 1/
√

2h, where h denotes the number of sample points

(see Connor (2000) for a derivation). Using this large sample approximation and

determining bp for a set of different portfolios, 95% of all observations should

fall within the two-sided confidence interval4 of 1 ±
√

2/h. If observations of

bp are clustered above (below) the confidence interval, this is evidence of model

specification error that creates a downward (upward) bias in the risk forecasts.

If observations are spread widely across both tail regions, this is evidence of

estimation variance in the risk forecasts.

Figures 4(a) (industry and style portfolios) and 4(b) (random portfolios) present

bias test results over the entire backtesting period of h = 10 years. Dark bars

indicate observations outside the 95% confidence interval. Neither the factor model

nor the slow asset model exhibit any statistically significant bias; no more than 5%

of portfolios fall outside the confidence limits. In contrast, the market model and

4For notational simplicity we write the confidence interval as 2.0 standard deviations above and

below the mean rather than using the exact value of 1.96 standard deviations.
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the fast asset model both underforecast risk for a sizable fraction of all portfolios.

The forecast error is larger for the industry and style portfolios than for the random

portfolios. The fact that the tightly structured market model exhibits substantially

more bias than the factor model is fully in line with our expectations: it has been

explained in Section 2 that the market model is likely to have a fair amount of

specification error, which can lead to biased risk forecasts.

Note that the fast asset model also exhibits bias. This may seem surprising: the

fast asset model is unstructured and has no specification error; it should be noisy,

but unbiased on average. Recall our remark earlier that the bias test relies on a

constant true risk level though time. If true variances and correlations fluctuate

over the estimation period and/or forecast period, the bias test results can exhibit

one-sided tails outside the confidence bands even for a correctly specified model.

To illustrate this point, we consider the univariate case of forecasting a single asset

variance. Suppose for simplicity that, over a finite sample and forecast period, the

true variance increases linearly through time:

σ 2(t) = σ 2
0 + γ t (19)

If we estimate σ 2(t) using an equally weighted sample on the interval [t − h,

t − 1], we find that this estimator has an expected value of σ 2
0 + 1

2
γ h, that is,

it underestimates the true variance at time t by 1
2
γ h. The dynamic behavior of

real-world market returns is of course more complex than this simplistic example.

Nevertheless, this example illustrates how temporary volatility fluctuations can

induce temporary biases and hamper the interpretation of bias test results. In princi-

ple, a given model can underforecast over one observation period and overforecast

over the following period. If a bias test aggregates over both periods, it could cancel

these forecast errors with opposite sign, and the results could deceivingly suggest

the absence of any bias. To avoid such misinterpretations, it is essential that bias

tests are performed using different look-back horizons. Figure 5 shows bias tests

for the random portfolios that were generated with a sliding look-back window of

h = 2 years. The upper panel of Figure 5 shows the average bias of all 100 random

portfolios, the lower panel displays the percentage of portfolios that are either

underforecast or overforecast. Values below the 5% threshold are insignificant in

the lower panel, because confidence bounds were set to 95%.

We find that the factor model and the slow asset model provide the best forecasts

most of the time. In 1999 and in 2005 the factor model slightly outperforms the slow

asset model. These two models both exhibit a tendency towards overforecasting in

late 2000 and in early 2005. In contrast, the fast asset model and the market model

heavily underforecast in 1999 and in 2003, but perform well in 2005. Figure 5

illustrates the dynamic nature of the bias tests, but it also confirms our previous

findings that the factor model and the slow asset model provide more accurate

forecasts. For the sake of brevity we do not show sliding-window bias tests of the

industry and style portfolios because they exhibit very similar characteristics.

To illustrate how well the different models perform if the forecasting horizon

is extended beyond one month, we also present bias statistics that were calculated
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How much structure is best? 19

FIGURE 4 Histogram of bias statistics for (a) 37 long-only industry and style
portfolios and (b) 100 random portfolios with 30 stocks, determined from 1997
to 2006. Dark bars indicate portfolios outside the 95% confidence interval.
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20 B. G. Briner and G. Connor

FIGURE 5 Bias statistics for random portfolios, using a sliding two-year look-back
window.
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The upper panel displays the average bias statistic of all 100 portfolios. The lower panel indicates the

percentage of all portfolios that exhibit bias statistic values outside the 95% confidence band.

from standardized outcomes with six months lag between forecast volatility and

realized return:

z(6)
p (t) =

rp(t + 5)

σ̂p(t − 1)
(20)

Results for the industry and style portfolios are shown in Figure 6. They are directly

comparable to the one-month bias statistics of Figure 4(a). We find that, for the

six-month forecasting horizon, the factor model continues to produce unbiased

forecasts while the quality of the slow asset model deteriorates somewhat: it now

underforecasts risk for six out of 37 portfolios. We note that, for the random

portfolios, the slow asset model and the factor model both generate accurate six-

month forecasts. These findings indicate that the forecasting advantage of the factor
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FIGURE 6 Forecast accuracy over a six-month horizon: a histogram of six-month
bias statistics for 37 long-only industry and style portfolios, 1997 to 2006. Dark
bars indicate portfolios outside the 95% confidence interval.
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model over longer time horizons is not universal but related to the fact that the

industry and style portfolios were built using its native factors. Industry and style

factors are routinely used to budget active risk in portfolio management by over or

underweighting exposures to these factors. The results shown in Figure 6 suggest

that it is advantageous to use the same risk model for portfolio construction and risk

control.

Bias test results for the three base models can be summarized as follows. Overall,

the factor model and the slow asset model produce the most accurate forecasts.

The market model is limited by its specification error, whilst the fast asset model

suffers from high estimation variance. In Section 3 we have shown with a simulation

experiment that Bayesian mixing can improve the forecasting accuracy of the base

models. To explore how Bayesian mixing performs with empirical data, we build a

set of covariance matrices that combine the market model prior with the slow asset

model. Calculation of the mixing coefficient λ follows Ledoit and Wolf (2004) and

adjusts for the fact that exponential weighting is used for the prior and for the slow

asset model. We find an average λ of 0.45 over the 10-year backtesting period.
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22 B. G. Briner and G. Connor

Risk forecasts from the Bayesian mixing matrices are then generated for the same

equal-weighted industry and style portfolios shown in Figure 4(a).

Table 3 presents one-month bias test results for the entire 10-year backtesting

period and for three shorter subperiods. The table indicates the percentage of

all portfolios that exhibit bias statistic values outside the 95% confidence band.

Values below 5% in Table 3 are not statistically significant. Table 3 compares the

performance of Bayesian mixing with the factor, market and slow asset models.

Over the entire backtesting period the slow asset model and the factor model

perform best. Bayesian mixing performs worse as it is limited by the modest

accuracy of the market model, which serves as its prior. Results for the low-

volatility period from 2004 to 2006 shed further light on the subtle interdependence

between the accuracy of the prior and the performance of Bayesian mixing. In

this period Bayesian mixing outperforms all other approaches. From 2004 to

2006, the market model underforecasts the risk of some portfolios while the slow

asset model tends to overforecast. This creates an ideal situation for Bayesian

mixing, which, in this case, can counterbalance the errors of both base models.

The opposite situation is observed in the high-volatility period from 2000 to 2003.

Here the slow asset model provides accurate forecasts whereas the market model

exhibits a strong tendency towards underforecasting. Even though Bayesian mixing

yields much better results than the market model, it still underperforms the factor

model and the slow asset model in the high-volatility period. These results are

in line with the simulation results where we also found that the performance of

Bayesian mixing strongly depends upon the choice of an accurate prior. With

empirical data, Bayesian mixing can underperform one of its constituents. This

somewhat contrasts with the simulations where Bayesian mixing is always at

least as accurate as the prior and the unstructured asset model. The reason for

this different behavior lies in the fact that empirical covariances change over

time while the simulations work with constant true covariances. We note that the

results shown here are not generally representative of Bayesian mixing, they only

indicate how Bayesian mixing performs with a market model prior. Selecting a

prior with a more complex structure and less specification error is likely to improve

the forecasting performance of Bayesian mixing. Indeed, the combination of a

factor model prior with Bayesian mixing may hold promising potential in terms

of forecasting accuracy.

4.3 Influence of serial correlation between daily returns

It has become common practice to calculate asset-by-asset covariance matrices for

risk forecasting from daily returns because daily returns are now readily available

for many equity markets. A stylized fact of daily stock returns is, however, that

they exhibit a fair amount of serial correlation, whereas monthly returns tend to be

serially uncorrelated (see, for example, Lo and MacKinlay (1988) and Campbell

et al (1993)). Serial correlation needs to be taken into account when creating

monthly covariance forecasts from daily data. The covariance matrices that are
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TABLE 3 Performance of the Bayesian mixing model compared to the asset,
market and factor models by one-month bias tests for 37 long-only industry
and style portfolios. The table indicates the percentage of all portfolios with bias
statistic values outside the 95% confidence band.

% Outside % Over Under
Period Model confidence forecast forecast

1997–2006 Slow asset model 2.7 0.0 2.7
Market model 89.2 0.0 89.2

Bayesian mixing 51.4 0.0 51.4
Factor model 5.4 5.4 0.0

1997–1999 Slow asset model 22.9 0.0 22.9

Market model 91.7 0.0 91.7
Bayesian mixing 64.6 0.0 64.6
Factor model 2.1 2.1 0.0

2000–2003 Slow asset model 0.0 0.0 0.0

Market model 66.7 0.0 66.7
Bayesian mixing 7.7 0.0 7.7
Factor model 5.1 5.1 0.0

2004–2006 Slow asset model 14.6 14.6 0.0

Market model 12.2 2.4 9.8
Bayesian mixing 4.9 4.9 0.0
Factor model 9.8 9.8 0.0

generated from daily returns correspond to one-day forecasts. To scale these one-

day matrices to a larger forecasting horizon we follow Newey and West (1987):

C(m) = n

[
C

(d)
0 +

n−1∑

l=1

(
1 −

l

n

)
(C

(d)
l + C

(d)
−l )

]
(21)

Here C(m) denotes the monthly covariance matrix, C
(d)
0 the contemporaneous daily

covariance matrix and C
(d)
l the lagged daily matrix for lag l. The aggregation

period, n, is set to 21, assuming an average of 21 trading days per month. All

matrices in this empirical analysis have been corrected for serial correlation. Terms

for l > 5 were ignored because it was found that serial correlations between asset

returns tend to be negligible for lags beyond five days.

The existence of serial correlation is well known in the academic community.

Nevertheless, from a practitioner’s perspective it may seem tempting to reduce

model complexity by omitting the calculation of lagged covariance matrices. This

approximation corresponds to using the popular “square root of time” rule for

scaling volatilities. Figure 7 demonstrates that this simplification introduces strong

forecasting biases, which can dominate the more subtle biases shown in Figures

4–6. Figure 7 compares 10-year bias test results for industry and style portfolios

that were generated with serial correlation correction (left column) and with square-

root-of-time scaling (right column). It is evident that the good forecasting accuracy
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FIGURE 7 Influence of serial correlation correction on the bias statistics.
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The left column depicts results for industry and style portfolios that were obtained after applying serial

correlation correction. The right column depicts results that were obtained without correcting for serial

correlation.

of the slow asset model is completely lost when serial correlations are ignored.

With serial correlation correction, the slow asset model produces far more accurate

forecasts than the fast asset model. This is expected because the effective sample

size is so different between these models. However, when square-root-of-time

scaling is applied, the slow and fast asset models both produce inadequate forecasts.

The error introduced by assuming daily returns to be uncorrelated is much larger

than the error due to a small effective sample size.

Without providing further results we note that the same behavior was found for

the market model and for the random portfolios. The factor model already includes

a serial correlation correction in the calculation of the factor returns covariance

matrix. We did not reverse this correction to explore how much the factor model

would deteriorate, but we expect results that are similar to the findings for the other

models.
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4.4 Beta-hedged long-short portfolios

Beta-hedging is a method to neutralize the directional market exposure of a

portfolio. It involves estimating the beta of a portfolio and then taking an offsetting

position in the market index, or equivalently in an index future contract, to set the

beta of the combined portfolio equal to zero. With the increasing popularity of long-

short equity portfolios, full or partial beta hedging is now routinely used as a means

to reduce the market exposure of an equity portfolio.5

Ex post empirical analysis of beta hedging is a powerful method to evaluate a

risk model as a tool for portfolio construction, since beta hedging relies on a risk

model to provide a beta forecast. The model performance can be determined along

two dimensions:

1) by measuring the ex post beta of a beta hedged portfolio, that is, by testing

how much market exposure the portfolio had in hindsight, given that the

model predicted zero exposure; and

2) by investigating the turnover needed to periodically readjust the hedge, that

is, by measuring how costly it is to maintain a hedged portfolio.

Beta-hedged versions of the industry, style and random portfolios that were

discussed earlier are created by subtracting β̂p times the market portfolio. Each

of the four risk models is used to construct a different beta hedged version of these

portfolios. All hedges are readjusted monthly. As before, we use the cap-weighted

universe portfolio as a proxy for the market.

Bias test results for the beta hedged portfolios are not shown here as the findings

simply confirm the trends already discussed for the long-only portfolios. The factor

model and the slow asset model provide unbiased forecasts, whereas the fast asset

model and the market model tend to underforecast risk for a significant fraction of

all portfolios.

Results of the investigation of ex post betas are shown in Figure 8 and Table 4.

Ex post betas were determined by regressing the monthly portfolio returns against

the market returns over the entire 10-year backtesting period. If the risk models

were perfect, the ex post betas would be close to zero. In reality, the ex post betas

will deviate from zero due to estimation variance and specification error in the

risk model. Figure 8 illustrates that ex post betas for the beta hedged industry and

style portfolios vary considerably. We note, for example, that all models over-hedge

the pharmaceutical industry portfolio and the top10 momentum portfolio. Table 4

shows summary statistics of the ex post betas separately for each portfolio group.

It indicates average, minimum and maximum ex post beta, and also lists the RMS

forecast errors.

Table 4 corroborates our finding that the factor model and the slow asset

model provide more accurate forecasts than the fast asset model and the market

model, but the differences between the results of the four models are relatively

5Equity long-short products have gained much popularity after the decision of several European

regulatory bodies to permit the application of so-called 130/30 strategies in mutual funds.
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FIGURE 8 Ex post betas of (a) beta hedged industry and (b) style portfolios, 1997
to 2006.
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TABLE 4 Summary statistics of ex post betas for beta hedged industry, style and
random portfolios.

Portfolio Average RMS error Minimum Maximum
group Model ex post beta of betas ex post beta ex post beta

Industry Factor model −0.013 0.121 −0.264 0.233

Slow asset model −0.017 0.136 −0.367 0.214
Fast asset model 0.049 0.163 −0.327 0.319
Market model 0.133 0.189 −0.311 0.310

Style Factor model 0.036 0.112 −0.188 0.268

Slow asset model 0.043 0.125 −0.274 0.244
Fast asset model 0.089 0.160 −0.214 0.348
Market model 0.053 0.129 −0.282 0.283

Random Factor model −0.053 0.267 −0.305 0.241
Slow asset model −0.054 0.287 −0.356 0.215
Fast asset model −0.029 0.293 −0.439 0.288

Market model −0.032 0.296 −0.469 0.256

Ex post betas are determined by equally weighted time series regression from 1997 to 2006.

small. For the industry portfolios, the factor model produces the smallest average

ex post betas and the smallest RMS errors. Average ex post beta is worst for the

market model, which tends to underestimate the betas. This is in line with its

tendency of underforecasting risk seen in Figure 4(a). As expected, the factor model

also performs best for the style portfolios that are tilted along its native factors.

Surprisingly, here the market model outperforms the fast asset model by producing

a smaller average ex post beta and RMS error. For the random portfolios, the results

are somewhat inconclusive. On one hand, the market model and the fast asset model

exhibit the lowest average ex post betas; on the other hand, these models show

substantially larger extreme values of ex post beta than the factor model, which

again has the smallest RMS error of all models.

Finally, we look at the amount of turnover needed to readjust the hedges. Table 5

presents average turnover data for all four models. Turnover is defined here as the

average weight of each portfolio that needs to be traded per month, with the average

taken over the 10-year backtesting period and over all portfolios. Table 5 indicates

that the turnover of the fast asset model is always much higher than the turnover

of the other three models; for the industry portfolios the fast asset model generates

more than three times the turnover of the market model. High turnover is indicative

of the use of a noisy covariance matrix for hedging. As explained in Section 3, the

fast asset model is expected to exhibit a much higher estimation variance than the

other models because it uses only a short effective sample size. By imposing a tight

structure, the market model suppresses noise most radically and generates by far the

lowest turnover for the industry portfolios. However, this desirable property of the

market model comes at the price of less accurate beta forecasts as shown in Table 4.

The factor model and the slow asset model generate very similar turnover for these

portfolios, which gives the factor model a slight edge because it produces more
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TABLE 5 Average monthly turnover for readjusting the hedges of the beta hedged
industry, style and random portfolios.

Industry Style Random
Model portfolios portfolios portfolios

Factor model 3.27% 9.97% 2.57%

Slow asset model 3.28% 10.09% 2.55%
Fast asset model 8.13% 12.83% 5.78%
Market model 2.20% 10.12% 2.50%

accurate beta hedges. Note that the level of turnover is much lower for the industry

and random portfolios than for the style portfolios. This is a consequence of the

quasi-static character of the industry and random portfolios. The style rankings can

change every month and consequently more turnover is required to rebalance the

more dynamic style portfolios.

5 SUMMARY AND CONCLUSIONS

The trade-off between misspecification and estimation variance is a fundamental

and easily underappreciated issue in risk forecasting. Risk models that impose

no structure on returns are superficially appealing since they avoid any misspec-

ification associated with structural restrictions. However, this advantage usually

comes at the cost of higher estimation variance because unstructured models need

to estimate a large number of parameters. Structured models always have some

specification error, since no structural assumption can hold exactly across the

entire set of security returns, but this disadvantage can be compensated by a sharp

reduction in estimation variance.

In this paper we compare unstructured asset-by-asset covariance matrices,

moderately structured multi-factor models and a tightly structured market model.

In addition, we present results for a Bayesian mixing model combining the market

model and the asset-by-asset model. Simulation results show that imposing some

structure can be beneficial even if the imposed structure is not exactly correct.

Empirical results for UK equity portfolios reinforce these findings and emphasize

their practical relevance. They illustrate that the high estimation variance of an

unstructured model with short half-life and the excessive specification error of a

tightly structured market model both can produce inaccurate risk forecasts. We

find that a moderately structured factor model tends to outperform the other two

approaches. The performance of an unstructured model with long half-life trails

the performance of the factor model only slightly. This is a consequence of the

moderate-sized investment universe (n ≈ 600) used in the empirical experiments;

for large investment universes, the performance of the unstructured model would

deteriorate further. Of course, all empirical results depend upon the selected market,

the backtesting period and the model parameters. It therefore is not possible to state

with complete generality that any one covariance matrix model will outperform in

every possible circumstance.
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In the case of Bayesian mixing, empirical results and simulations both point

to the importance of selecting an accurate prior. With the market model prior,

Bayesian mixing is outperformed by the factor model.

Besides comparing the accuracy of different model approaches, the empirical

analysis also highlights the importance of correcting for serial correlation between

daily returns when building monthly forecasts from daily returns data. It is shown

that the omission of serial correlation corrections results in severe estimation errors

that can mask the more subtle relationship between structural restrictions and

forecasting accuracy.

Finally, the performance of the different models for beta hedging is investigated.

It is shown that the use of a noisy, unstructured model results in excessive trading

due to the need to periodically rebalancing the hedge.

So, how much structure is best? If we had the luxury of very long time series

in markets with only few assets, an unstructured model would be the optimal

choice. However, forecasting risk in larger investment universes and with samples

of moderate lengths benefits from the application of a structured model as long as

its misspecification does not outweigh the reduction of estimation variance.
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