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How Much Training is Needed in Multiple-Antenna
Wireless Links?

Babak Hassibi and Bertrand M. Hochwald

Abstract—Multiple-antenna wireless communication links
promise very high data rates with low error probabilities, espe-
cially when the wireless channel response is known at the receiver.
In practice, knowledge of the channel is often obtained by sending
known training symbols to the receiver. We show how training
affects the capacity of a fading channel—too little training and
the channel is improperly learned, too much training and there
is no time left for data transmission before the channel changes.
We compute a lower bound on the capacity of a channel that
is learned by training, and maximize the bound as a function
of the received signal-to-noise ratio (SNR), fading coherence
time, and number of transmitter antennas. When the training
and data powers are allowed to vary, we show that the optimal
number of training symbols is equal to the number of transmit
antennas—this number is also the smallest training interval length
that guarantees meaningful estimates of the channel matrix. When
the training and data powers are instead required to be equal, the
optimal number of symbols may be larger than the number of
antennas. We show that training-based schemes can be optimal at
high SNR, but suboptimal at low SNR.

Index Terms—BLAST, high-rate wireless communications, re-
ceive diversity, space–time coding, transmit diversity.

I. INTRODUCTION

M ULTIPLE-ANTENNA wireless communication links
promise very high data rates with low error probabil-

ities, especially when the wireless channel response is known
at the receiver [1], [2]. To learn the channel, the receiver often
requires the transmitter to send known training signals during
some portion of the transmission interval. An early study
of the effect of training on a multiantenna channel capacity
is [3], where it is shown that, under certain conditions, by
choosing the number of transmit antennas to maximize the
throughput in a wireless channel, one generally spends half the
coherence interval training. We, however, address a different
problem: given a multiantenna wireless link with transmit
antennas, receive antennas, coherence interval of length
(in symbols), and a signal-to-noise ratio (SNR), how much of
the coherence interval should be spent training?

Our solution is based on a lower bound on the information-
theoretic capacity achievable with training-based schemes. An
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example of a training-based scheme that has attracted recent
attention is BLAST [4], [5], where an experimental prototype
has achieved 20-b/s/Hz data rates with eight transmit and twelve
receive antennas. The lower bound allows us to compute the
optimal amount of training as a function of, , , and . We
are also able to identify some occasions where training imposes
a substantial information-theoretic penalty, especially when the
coherence interval is only slightly larger than the number of
transmit antennas , or when the SNR is low. In these regimes,
training to learn the entire channel matrix is highly suboptimal.
Conversely, if the SNR is high and is much larger than ,
then training-based schemes can come very close to achieving
capacity.

We show that if optimization over the training and data
powers is allowed, then the optimal number of training symbols
is always equal to the number of transmit antennas. If the
training and data powers are instead required to be equal, then
the optimal number of symbols can be larger than the number
of antennas. The reader can get a sample of the results given in
this paper by glancing at the figures in Section IV. These figures
present a capacity lower bound (that is sometimes tight) and
the optimum training intervals as a function of the number of
transmit antennas , receive antennas , the fading coherence
time and SNR .

II. CHANNEL MODEL AND PROBLEM STATEMENT

We assume that the channel obeys the simple discrete-time
block-fadinglaw, where the channel is constant for some dis-
crete time interval , after which it changes to an independent
value that it holds for another interval, and so on. This is an
appropriate model for time-division multiple access (TDMA)
or frequency-hopping systems, and is a tractable approximation
of a continuously fading channel model such as Jakes’ [6]. We
further assume that channel estimation (via training) and data
transmission is to be done within the interval, after which new
training allows us to estimate the channel for the nextsym-
bols, and so on.

Within one block of symbols, the multiple-antenna model
is

(1)

where is a received complex signal matrix, the di-
mension representing the number of receive antennas. The
transmitted signal is , a complex matrix where is
the number of transmit antennas. The matrix repre-
sents the channel connecting the transmit to the receive
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antennas, and is a matrix of additive noise. The ma-
trices and both comprise independent random variables
whose mean square is unity. We also assume that the entries of
the transmitted signal have, on the average, unit mean square
(see, e.g., (4)). Thus, is the expected received SNR at each
receive antenna. We let the additive noisehave zero-mean
unit-variance independent complex-Gaussian entries. Although
we often also assume that the entries ofare also zero-mean
complex-Gaussian distributed, many of our results do not re-
quire this assumption.

A. Training-Based Schemes

Since is not known to the receiver, training-based schemes
dedicate part of the transmitted matrixto be a known training
signal from which we can learn . In particular, training-based
schemes are composed of the following two phases.

1) Training Phase: Here we may write

(2)

where is the matrix of training symbols sent over
time samples and known to the receiver, is the SNR
during the training phase, and is the re-
ceived matrix. (We allow for different transmit powers
during the training and data transmission phases.) Be-
cause is fixed and known, there is no expectation in
the normalization of (2).

2) Data Transmission Phase:Here we may write

(3)

where is the matrix of data symbols sent over
time samples, is the SNR during the data transmission
phase, and is the received matrix. Because

is random and unknown, the normalization in (3) has
an expectation.

This two-part training and data process is equivalent to parti-
tioning the matrices in (1) as

(4)

Conservation of time and energy yield

(5)

We establish a lower bound on the capacity of encoding/de-
coding rules that use a transmitted signalpartitioned as in (4).
One possible receiver uses and to generate an estimate
of the channel

(6)

Two examples include the maximum-likelihood (ML) and linear
minimum mean-square error (LMMSE) estimates

(7)

(To obtain a meaningful estimate of, we need at least as many
measurements as unknowns, which implies that
or .) In many training-based receivers, the channel
estimate is then used as if it were the true channel, and data
is sent over . Other conceivable receivers might process
and jointly with knowledge of to estimate without
explicitly forming .

We cannot say whether any particular transmitter/receiver
structure (with a partitioned ) can achieve the bound we
compute, but we can say that there exists some structure whose
performance is at least as good as our bound. Receivers that
assume the channel estimate after training to be perfect are
generally suboptimal (sometimes also called “mismatched”)
and their analyses can be complicated [7], [8]. We do not
pursue such analyses here; our bound does not directly apply
to the best mismatched receiver—instead, our bound applies to
the optimal transmitter/receiver combination. Such a receiver
would, for example, exploit any statistical dependence between
the channel estimation error and the data signal. However, it is
reasonable to expect that at high SNR, when the channel esti-
mate after training is accurate, our bound accurately portrays
the best performance achievable by receivers that assume the
channel estimate to be perfect.

Whether or not an explicit or implicit is formed, it is clear
that increasing improves the quality of , but if is too
large, then is small and too little time is set aside
for data transmission. Similarly, dedicating too much power
to training compromises the power available to transmit data.
We compute the and that optimize our capacity bound.

III. CAPACITY AND CAPACITY BOUNDS

The capacity in bits per channel use is the maximum over the
distribution of the transmit signal of the mutual information
between the known and observed signals and the
unknown transmitted signal . This is written as

Now

where because is independent of and
. Thus, the capacity is the supremum (over the distribution of
) of the mutual information between the transmittedand
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received , given the transmitted and received training signals
and

(8)

The capacity depends on the conditional distribution ofgiven
and .

For receiver structures that form an explicit, as long as in-
formation is not “thrown away” in the process, it is possible to
achieve as given in (8). However, some data transmission
schemes that employ training do throw away information be-
cause they form an explicit and use it as if it were correct.

Our method for finding a lower bound for computes an ex-
plicit , relegates the estimation error of this channel estimate
to the additive noise, and then considers only the correlation
(and not the full statistical dependence) between the resulting
noise and the transmitted signal. We then obtain a lower bound
by replacing the resulting noise by a worst case (but analytically
tractable) noise with this same correlation.

We assume that is the conditional mean of (which is the
minimum mean-square error (MMSE) estimate), givenand

. During the data transmission phase, we may then write

(9)

where is the zero-mean channel estimation error,
and combines the additive noise and residual channel estima-
tion error. By well-known properties of the conditional mean,

and are uncorrelated. The estimateis known to the re-
ceiver and assumed by our lower bound computation to be cor-
rect; hence, the channel capacity of a training-based system is
lower-bounded by the capacity of aknown channelsystem, sub-
ject to additive noise with the power constraint

(10)

There are two important differences between (9) and (1). In (9),
the channel is known to the receiver whereas in (1) it is not.
In (1), the additive noise is Gaussian and independent of the
data whereas in (9) it is possibly neither. Finding the capacity
of the known-channel system requires us to examine the worst
effect the additive noise can have during data transmission. We
therefore wish to find

A similar argument for lower-bounding the mutual information
in a scalar multiple-access wireless channel is given in [9]. The
worst case noise is the content of the next theorem, which is
proven in the Appendix.

Theorem 1 (Worst Case Uncorrelated Additive Noise):Con-
sider the matrix-valued additive noise known channel

where is the known channel, and where the signal
and the additive noise satisfy the power

constraints

and

and are uncorrelated

Let and . Then the worst case noise
has a zero-mean Gaussian distribution ,
where is the minimizing noise covariance in

(11)

We also have the minimax property

(12)

where is the maximizing signal covariance matrix in
(11). When the distribution on is left rotationally invariant,
i.e., when for all such that

, then

When the distribution on is right rotationally invariant, i.e.,
when for all such that ,
then

The notion that Gaussian additive noise is the worst for mu-
tual information is not new [10]–[12]. Theorem 1 is, however,
tailored for our purposes since the noise is uncorrelated with the
signal (rather than independent as is usually assumed in these
references), and we are also able to compute the optimal
and .

In our case, the additive noise and signal are uncorrelated
when the channel estimate is the MMSE estimate

because

since

The MMSE estimate is the only estimate with this property.
The noise term in (9), when is the MMSE estimate,

is uncorrelated with but is not necessarily Gaussian. The-
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orem 1 says that a lower bound on the training-based capacity
is obtained by replacing by independent zero-mean addi-
tive Gaussian noise with the same power constraint

. Because , (10) becomes

(13)

where . Using (11), we may, there-
fore, write

where the coefficient reflects the fact that the data trans-
mission phase has a duration of time symbols.
Since is zero mean, its variance can be defined as

. By the orthogonality principle for MMSE es-
timates

(14)

where . Define thenormalized channel
estimateas

We may write the capacity bound as

(15)

The ratio

(16)

can, therefore, be considered as aneffectiveSNR. This bound
does not require to be Gaussian.

The remainder of this paper is concerned with maximizing
this lower bound. We consider choosing the following:

1) the training data ;

2) the training power ;

3) the training interval length .

This is, in general, a formidable task since computing the con-
ditional mean for a channel with an arbitrary distribution can
itself be difficult. However, when the elements of are inde-
pendent then the computations become manageable.
In fact, in this case we have

where

and

(The operator stacks all of the columns of its arguments
into one long column; the above estimate ofcan be rearranged
to coincide with the LMMSE estimate given in (7).) Moreover,
the distribution of is rotationally in-
variant from the right ( , for all unitary )
since the same is true of and . This implies that and

, are rotationally invariant from the right. Therefore, applying
Theorem 1 yields .

The choice of that maximizes the lower bound (15)
depends on the distribution of which, in turn, depends on
the training signal . Thus, in principle, one needs to perform
a joint optimization over and . But we are interested
in designing , and hence we turn the problem around by
arguing that the optimal depends on . That is, the choice
of training signal depends on how the antennas are to be used
during data transmission, which is perhaps more natural to
specify first. We specify that the antennas are to be used such
that , which is the same as saying that we are using
them independently and with equal power. This choice is
reasonable because the transmitter does not know the channel,
and it allows us to obtain a valid and tractable lower bound on
capacity. In fact, Theorem 1 (see also [1]) says that
is best when the distribution of is left rotationally invariant.
Section III-A shows that the choice of that maximizes
gives this property. Thus, even though we cannot claim joint
optimality over and , we can claim that our choice of
training signal and are consistent. With , we have

(17)

A. Optimizing Over

The first parameter over which we can optimize the capacity
bound is the choice of the training signal . From (17), it is
clear that primarily affects the capacity bound through the
effective SNR . Thus, we propose to choose to maximize

1

It, therefore, follows that we need to chooseto minimize the
mean-square error .

Because , we compute the covariance ma-

trix of the MMSE estimate (which in
this case is also the LMMSE estimate)

1Maximizing SNRs has been studied in many other contexts as well; for a
study in intersymbol interference (ISI) channels see [21].
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where we have used the equation to
compute , , and . It follows that we need to
choose to solve

In terms of , the eigenvalues of , this mini-
mization can be written as

which is solved by setting . This yields

(18)

as the optimal solution; i.e.,the training signal must be a mul-
tiple of a matrix with orthonormal columns. A similar conclu-
sion is drawn in [3] when training for BLAST and [13] when
training with so-called “shift-invariant” sequences to minimize
total estimation error.

With this choice of training signal, we obtain

and (19)

In fact, we have the stronger result

and

(20)

which implies that has independent en-
tries, and is, therefore, rotationally invariant.

Thus, (17) can be written as

(21)

where

(22)

and where has independent entries.

B. Optimizing Over the Power Allocation

Recall that the effective SNR is given by

and that the power allocation enters the capacity for-
mula via only. Thus, we need to choose to maxi-
mize . To facilitate the presentation, letdenote the fraction
of the total transmit energy that is devoted to the data

(23)

Therefore, we may write

To maximize over we consider the following
three cases.

1) :

It readily follows that

(24)

and, therefore, that

2) : We write

Differentiating and noting that yields

from which it follows that

(25)

3) : We write

Differentiating and noting that yields

from which it follows that

(26)

We summarize these results in a theorem.

Theorem 2 (Optimal Power Distribution):The optimal
power allocation in a training-based scheme is given
by

for

for

for

(27)

where . The corresponding capacity lower bound

is

(28)
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where

for

for

for
(29)

These formulas are especially revealing at high and low SNR.
At high SNR, we have

and at low SNR

so that we obtain the following results.

Corollary 1 (High and Low SNR):

1) At high SNR

(30)

2) At low SNR

(31)

At low SNR, since , halfof the transmit energy
is devoted to training, and the effective SNR (and, consequently,
the capacity) is quadratic in.

C. Optimizing Over

All that remains is to determine the length of the training in-
terval . We show that setting is optimal for any
and (provided that we optimize and ). There is a simple
intuitive explanation for this result. Increasing beyond
linearly decreases the bound through the term in (28),
but only logarithmically increases the bound through the higher
effective SNR . We, therefore, have a natural tendency to
make as small as possible. Although making small loses
accuracy in estimating , we can compensate for this loss by
increasing (even though this decreases). We have the fol-
lowing result, which is the last step in our list of optimizations.

Theorem 3 (Optimal Training Interval):The optimal length
of the training interval is for all and , and the
capacity lower bound is

(32)

where

for

for

for

(33)

The optimal allocation of power is as given in (27) with
and can be approximated at high SNR by

(34)

and the power allocation becomes

(35)

To show this, we examine the case and omit the
cases and since they are handled similarly.
Let and let denote an arbitrary nonzero
eigenvalue of the matrix . Then we may rewrite (28) as

where the expectation is over. The behavior of as a function
of is studied. Differentiating yields

(36)

After some algebraic manipulation of (25), it is readily verified
that

which we plug into (36) and use the equality

to get

(37)

The proof concludes by showing that ; for then
making as large as possible (or, equivalently,as small as
possible) maximizes .

It suffices to show that the argument of the expectation in (37)
is nonnegative for all . Observe that because

This is readily seen by isolating the term

on the left-hnad side of the inequality and squaring both sides.
From (37), it therefore suffices to show that
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But the function because it is zero
at and its derivative is for all .

The formulas in (34) and (35) are verified by setting
in (30). This concludes the proof.

This theorem shows that the optimal amount of training is the
minimum possible , provided that we allow the training
and data powers to vary. In Section III-D, it is shown that if the
constraint is imposed, the optimal amount of
training may be greater than .

We can also make some conclusions about the transmit
powers.

Corollary 2 (Transmit Powers):The training and data power
inequalities

hold for all SNR .
To show this, we concentrate on the case , and omit

the remaining two cases since they are similar. From the defini-
tion of (23), we have

We need to show that or, equivalently

Using (27), we can transform this inequality into

or

But this is readily verified by squaring both sides, cancelling
common terms, and applying the formula for(33). We also
need to show that . We could again use (23) and show
that

But it is simpler to argue that conservation of energy
where immediately implies that

if then , and conversely.
Thus, we spend more power for training when , more

power for data transmission when , and the same power
when . We note that there have been some proposals for
multiple-antenna differential modulation [14], [15] that use
transmit antennas and an effective block size of . These
proposals can be thought of as a natural extension of standard
single-antenna differential phase-shift keying (DPSK), where
the first half of the transmission (comprising time samples
across transmit antennas) acts as a reference for the second
half (also comprising time samples). A differential scheme
using orthogonal designs is proposed in [16]. In these proposals,
both halves of the transmission are given equal power. But be-
cause , Corollary 2 says that giving each half equal

power maximizes the capacity lower bound. Thus, these dif-
ferential proposals fortuitously follow the information-theoretic
prescription that we derive here.

1) Low SNR: We know from Theorem 3 that the optimum
training interval is . Nevertheless, we show that at
low SNR, the bound is actually not sensitive to the length of
the training interval. We use Theorem 2, (28) and (29), and ap-
proximate

for small to obtain

(38)

(39)

where in the first step we use , and in the
second step we use the expansion

for any matrix with eigenvalues strictly
inside the unit circle. Observe that the last expression is indepen-
dent of . From Corollary 1, at low SNR optimum throughput
occurs at . We, therefore, have the freedom to choose
and in any way such that . In partic-
ular, we may choose and , which
implies that when we choose equal training and data powers,
half of the coherence interval should be spent training. The next
section has more to say about optimizingwhen the training
and data powers are equal.

At low power, the capacity lower bound (39) decays asbe-
cause the effective SNR (31) decays as ; the quality of the
channel estimate is very poor. The true channel capacity, how-
ever, (which does not necessarily require training to achieve) de-
cays as , rather than as [17], [18]. These simple power con-
siderations therefore suggest that training and using the channel
estimate as if it were correct is highly suboptimal whenis
small.

D. Equal Training and Data Power

A communication system often does not have the luxury of
varying the power during the training and data phases. If we
assume that the training and data symbols are transmitted at the
same power then (21) and (22) become

(40)

The effects and tradeoffs involving the training interval length
can be inferred from the above formula. As we increase,

our estimate of the channel improves and so
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Fig. 1. The training-based lower bound on capacity as a function ofT when SNR� = 6 dB andM = N = 10, for optimized� and� (upper solid curve,
(32)) and for� = � (lower solid curve, (40) optimized forT ). The dashed line is the capacity when the receiver knows the channel.

increases, thereby increasing the capacity. On the other hand,
as we increase the time available to transmit data decreases,
thereby decreasing the capacity. Since the decrease in capacity
is linear (through the coefficient ), whereas the increase in
capacity is logarithmic (through ), it follows that the length
of the data transmission phase is a more precious resource than
the effective SNR. Therefore, one may expect that it is possible
to tolerate lower as long as is long enough. Of course,
the optimal value of in (40) depends on, , , and , and
can be obtained by evaluating the lower bound in (40) (either
analytically, see, e.g., [1], or via Monte Carlo simulation) for
various values of . In fact, it can be shown that if the SNR is
sufficiently high then , and if the SNR is sufficiently
low then . In general, decreasingrequires increasing

.
Some further insight into the tradeoff can be obtained by ex-

amining (40) at high and low SNRs.

1) At high SNR:

(41)

Computing the optimal value of requires eval-
uating the expectation in the above inequality for

.
2) At low SNR:

(42)

This expression is maximized by choosing ,
from which we obtain

(43)

This expression coincides with the expression obtained in
Section III-C1. In other words, at low SNR, if we transmit
the same power during training and data transmission, we
need to devote half of the coherence interval to training,
and the capacity is quadratic in.

IV. PLOTS OFTRAINING INTERVALS AND CAPACITIES

Figs. 1 and 2 display the lower bound obtained as a func-
tion of the block length for when and

are optimized versus . These figures assume
that has independent entries. We see that approx-
imately 5–10% gains in capacity are possible by allowing the
training and data transmitted powers to vary. We also note that
even when , we are approximately 15–20% from the
capacity achieved when the receiver knows the channel. The
curves for optimal and were obtained by plotting (32) in
Theorem 3, and the curves for were obtained by
maximizing (40) over .

We know that if and are optimized, then the optimal
training interval , but when the constraint
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Fig. 2. Same as Fig. 1, except with� = 18 dB.

is imposed then . Fig. 3 displays the that maxi-
mizes (40) for different values of with . We
see the trend that as the SNR decreases, the amount of training
increases. It is shown in Section III-D that as the training
increases until it reaches .

Fig. 4 shows the variation of and with the block length
for 18 dB and . We see the effects described

in Corollary 2 where when and
when and when .

For sufficiently long , the difference in SNR can apparently be
more than 6 dB.

For a given SNR , coherence interval , and number of re-
ceive antennas , we can calculate the capacity lower bound
as a function of . For , the training-based capacity is
small because there are few antennas, and for , the ca-
pacity is again small because we spend the entire coherence in-
terval training. We can seek the value of that maximizes this
capacity. Figs. 5 and 6 show the capacity as a function offor

18 dB, , and two different values of . We see that
the capacity when peaks at whereas it peaks
at when . We have included both optimized
and and equal for comparison. It is perhaps
surprising that the number of transmit antennas that maximizes
capacity often appears to be quite small. We see that choosing
to train with the wrong number of antennas can severely hurt
the data rate. This is especially true when , where the
capacity for the known channel is greatest, but the capacity for
the system that trains all antennas is least.

V. DISCUSSION ANDCONCLUSION

The lower bounds on the capacity of multiple-antenna
training-based schemes show that optimizing over the power
allocation and makes the optimum length of the training
interval equal to for all and . At high SNR, the
resulting capacity lower bound is

(44)

where has independent entries.
If we require the power allocation for training and transmis-

sion to be the same, then the length of the training interval can
be longer than , although simulations at high SNR suggest
that it is not much longer. As the SNR decreases, however, the
training interval increases until at low SNR it converges to half
the coherence interval.

The lower bounds on the capacity suggest that training-based
schemes perform poorly whenis “close” to . In fact, when

, the capacity bound is zero since the training phase
occupies the entire coherence interval. Figs. 5 and 6 suggest that
it is beneficial to use a training-based scheme with a smaller
number of antennas . We may ask what is the optimal
value of ? To answer this, we suppose thatantennas are
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Fig. 3. The optimal amount of trainingT as a function of block lengthT for three different SNRs�, forM = N = 10 and constraining the training and data
powers to be equal� = � = �. The curves were made by numerically finding theT that maximized (40).

Fig. 4. The optimal power allocation� (training) and� (data transmission) as a function of block lengthT for � = 18 dB (shown in the dashed line) with
M = N = 10. These curves are drawn from Theorem 2 and (27) forT = M .
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Fig. 5. Capacity as a function of number of transmit antennasM with � = 18 dB andN = 12 receive antennas. The solid line is optimized overT for
� = � = � (see (40)), and the dashed line is optimized over the power allocation withT = M (Theorem 3). The dash-dotted line is the capacity when the
receiver knows the channel perfectly. The maximum throughput is attained atM � 15.

Fig. 6. Same as Fig. 5, except withT = 20. The maximum throughput is attained atM � 7. Observe that the difference between optimizing over� and�
versus setting� = � = � is negligible.
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available but we elect to use only of them in a training-
based scheme. Equation (44) is then rewritten as

(45)

Defining and to be an arbitrary nonzero
eigenvalue of

we write

At high SNR, the leading term involvingbecomes

if

if .

The expression is maximized by the choice
when , and by the choice

when . This means that the
expression is maximized when . The
expression , on the other hand, is maximized
when (since in this case ).
Defining , we conclude that

When the first term is larger, and when
the two terms are equal. Thus,

(46)

This argument implies that, at high SNR, the optimal number of
transmit antennas to use is . We see in-
dications of this result in Fig. 5 where the maximum throughput
is attained at versus the predicted high SNR value of

, and in Fig. 6 at versus the predicted .
We now ask whether the high-SNR bound (46) is tight? The

answer to this question can be found in the recent work [19]
of Zheng and Tse, where it is shown that at high SNR, the
leading term of the actual channel capacity (without imposing
any constraints such as training) is . Thus, in
the leading SNR term (as ), training-based schemes can
be optimal, provided we use transmit
antennas. (A similar conclusion is also drawn in [19].) Thus,
it is possible to achieve capacity at high SNR by designing a
transmitter/receiver pair that dedicates part of the transmission
interval to training antennas.

We note in Section III-C1 that, at low SNR, training and then
using the channel estimate as if it were correct performs poorly

because the effective SNR and capacity lower bound decay as
, whereas the actual capacity decays as. The exact transition

between what should be considered “high” SNR where this form
of processing can yield acceptable performance versus “low”
SNR where it does not, is not yet clear. Nevertheless, it is clear
that a communication system that tries to achieve capacity at
low SNR cannot rely on the accuracy of the channel estimate.

APPENDIX

PROOF OFWORSTCASE NOISE THEOREM

Consider the matrix-valued additive noise known channel

(A1)

where is the known channel, is the
transmitted signal, and is the additive noise. Assume
further that the entries of and on the average have unit
mean-square value, i.e.,

and (A2)

The goal in this appendix is to find the worst case noise distri-
bution for in the sense that it minimizes the capacity of the
channel (A1) subject to the power constraints (A2).

The arguments of [1], [2], which assume , can be
generalized in a straightforward manner to find the capacity of
the channel (A1) when has a zero-mean complex Gaussian
distribution with variance (additive Gaussian
noise channel). The result is

(A3)

We obtain the worst case noise distribution when the noise
and the signal are uncorrelated

(A4)

Let

Any particular distribution on yields an upper bound on the
worst case; choosing to be zero-mean complex Gaussian with
some covariance and using (A3) yields

(A5)

To obtain a lower bound on , we compute the mutual
information for the channel (A1) assuming thatis zero-mean
complex Gaussian with covariance matrix , but that the dis-
tribution on is arbitrary. Thus,

Computing the conditional entropy requires an ex-
plicit distribution on . However, if the covariance matrix
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of the random variable is known, has the
upper bound

since, among all random vectors with the same covariance ma-
trix, the one with a Gaussian distribution has the largest entropy.

The following lemma gives a crucial property of
. Its proof can be found in, for example, [20].

Lemma 1 (Minimum Covariance Property of ): Let
beanyestimate of given and . Then we

have

(A6)

where the matrix inequality means that is positive
semidefinite.

Substituting the LMMSE estimate in this
lemma yields

With the channel model (A1)–(A4), we see that

Thus,

from which it follows that, when is complex Gaussian dis-
tributed, then for any distribution on we have

(A7)

Since the above inequality holds for any and , we there-
fore have

(A8)

The combination of this inequality and (A5) yields

(A9)

To prove the inequalities in (12), we note that the inequality
on the left follows from the fact that in an additive Gaussian
noise channel the mutual-information-maximizing distribution
on is Gaussian. The inequality on the right follows from (A7),
where is Gaussian.

All that remains to be done is to compute the optimizing
and , when is rotationally invariant. Consider

first . There is no loss of generality in assuming that
is diagonal: if not, take its eigenvalue decomposition

, where is unitary and is diagonal, and note that
has the same distribution asbecause is left rotation-

ally invariant. Now suppose that is diagonal with pos-
sibly unequal entries. Then form a new covariance matrix

where the are all possible permutation
matrices. Since the “expected log-det” function in (A9) is con-
cave in (see also [1]), the value of the function cannot de-
crease with the new covariance. We, therefore, conclude that

. A similar argument holds for because
the “expected log-det” function in (A9) is convex in .
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