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How Much Training is Needed in Multiple-Antenna
Wireless Links?

Babak Hassibi and Bertrand M. Hochwald

Abstract—Multiple-antenna wireless communication links example of a training-based scheme that has attracted recent
promise very high data rates with low error probabilities, espe- attention is BLAST [4], [5], where an experimental prototype
cially when the wireless channel response is known at the receiver. has achieved 20-b/s/Hz data rates with eight transmit and twelve

In practice, knowledge of the channel is often obtained by sending - t The | bound all i te th
known training symbols to the receiver. We show how training '€CEIVE antennas. fhe lower bound allows us o compute the

affects the capacity of a fading channel—too little training and Optimal amount of training as a function @f7", M, andN. We

the channel is improperly learned, too much training and there are also able to identify some occasions where training imposes
is no time left for data transmission before the channel changes. a substantial information-theoretic penalty, especially when the
We compute a lower bound on the capacity of a channel that .,harence interval is only slightly larger than the number of

is learned by training, and maximize the bound as a function . - .
of the received signal-to-noise ratio (SNR), fading coherence transmit antennas/, or when the SNR is low. In these regimes,

time, and number of transmitter antennas. When the training training to learn the entire channel matrix is highly suboptimal.
and data powers are allowed to vary, we show that the optimal Conversely, if the SNR is high aril is much larger tha/,

number of training symbols is equal to the number of transmit  then training-based schemes can come very close to achieving
antennas—this number is also the smallest training interval length capacity

that guarantees meaningful estimates of the channel matrix. When . L ..

the training and data powers are instead required to be equal, the We S_hOW that if optlmlzathn over the tra'”'!‘g and data
optimal number of symbols may be larger than the number of powers Is allowed, then the Optlmal number of training SymbOlS
antennas. We show that training-based schemes can be optimal atis always equal to the number of transmit antennas. If the

high SNR, but suboptimal at low SNR. training and data powers are instead required to be equal, then
Index Terms—BLAST, high-rate wireless communications, re- the optimal number of symbols can be larger than the number
ceive diversity, space—time coding, transmit diversity. of antennas. The reader can get a sample of the results given in

this paper by glancing at the figures in Section IV. These figures

present a capacity lower bound (that is sometimes tight) and

the optimum training intervals as a function of the number of
ULTIPLE-ANTENNA wireless communication links transmit antennad/, receive antenna¥’, the fading coherence
promise very high data rates with low error probabiltime T and SNRp.

ities, especially when the wireless channel response is known

at the receiver [1], [2]. To learn the channel, the receiver often ||, CHANNEL MODEL AND PROBLEM STATEMENT

requires the transmitter to send known training signals during

some portion of the transmission interval. An early stud X 4 )
of the effect of training on a multiantenna channel capaciﬁ)OCk'fadmglaW' where the channel is constant for some dis-

is [3], where it is shown that, under certain conditions, by'¢t€ time interval’, after which it changes to an independent
choosing the number of transmit antennas to maximize thglue thgt it holds for ar?otherilrlt.er\/ﬂ, an_d so on. This is an
throughput in a wireless channel, one generally spends half gRpropriate model for time-division multiple access (TDMA)

coherence interval training. We, however, address a differdjt"eduency-hopping systems, and is a tractable approximation
problem: given a multiantenna wireless link wit transmit ©f @ continuously fading channel model such as Jakes’ [6]. We

antennas) receive antennas, coherence interval of lerith further assume that channel estimation (via training) and data
(in symbols), and a signal-to-noise ratio (SNRhow much of transmission is to be done within the inter#glafter which new
the coherence interval should be spent training? training allows us to estimate the channel for the rigx@ym-

Our solution is based on a lower bound on the informatiof©!S; @nd so on.

theoretic capacity achievable with training-based schemes. AnVithin one block ofI” symbols, the multiple-antenna model
is

. INTRODUCTION

We assume that the channel obeys the simple discrete-time
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antennas, antl’ is a7’ x N matrix of additive noise. The ma- Two examples include the maximum-likelihood (ML) and linear
trices H andV both comprise independent random variablasinimum mean-square error (LMMSE) estimates
whose mean square is unity. We also assume that the entries of

the transmitted signa have, on the average, unit mean square N M .

(see, e.g., (4)). Thug, is the expected received SNR at each H=\[— (S75:)" S7X-

receive antenna. We let the additive nolsehave zero-mean i

unit-variance independent complex-Gaussian entries. Although . M (M . -t .

we often also assume that the entriedbfire also zero-mean H=. p_r <_T I + STST> Sr X ™

complex-Gaussian distributed, many of our results do not re-

quire this assumption. (To obtain a meaningful estimate Bf, we need at least as many
measurements as unknowns, which impliesai’, > N-M

A. Training-Based Schemes or 7, > M.) In many training-based receivers, the channel

SinceH is not known to the receiver, training-based schem@stimate is then used as if it were the true channel, and data
dedicate part of the transmitted matfxo be a known training is sent oveiS,. Other conceivable receivers might process
signal from which we can learH. In particular, training-based and X, jointly with knowledge ofS; to estimateS; without
schemes are composed of the following two phases. explicitly forming H.

We cannot say whether any particular transmitter/receiver
structure (with a partitioned) can achieve the bound we

compute, but we can say that there exists some structure whose
X, = ,/% S H +V,,

1) Training Phase: Here we may write

performance is at least as good as our bound. Receivers that
assume the channel estimate after training to be perfect are
generally suboptimal (sometimes also called “mismatched”)
and their analyses can be complicated [7], [8]. We do not
pursue such analyses here; our bound does not directly apply
. . _ to the best mismatched receiver—instead, our bound applies to
du_rmg the “Ta'”'”g phase, anld_, € T Vis _the " the optimal transmitter/receiver combination. Such a rFe):Féeiver
celyed matrix. (We allow for dlﬁerenF transmit POWETSyould, for example, exploit any statistical dependence between
during thg trammg and data transr_mssmn phasgs.) B{ﬂ’e channel estimation error and the data signal. However, it is
causes- |s_f|x¢d and known, there is no expectation Neasonable to expect that at high SNR, when the channel esti-
the normalization of (2). mate after training is accurate, our bound accurately portrays

S, ect-*M 18,8 = MT, (2

whereS.. is the matrix of training symbols sent oVér
time samples and known to the receiver,is the SNR

2) Data Transmission PhaseHere we may write the best performance achievable by receivers that assume the
channel estimate to be perfect. R
Pd Whether or not an explicit or implici#/ is formed, it is clear
Xa= /5 SaH + Vg, . X | ) . L
d M + Ve, that increasindl’; improves the quality of{, but if 7’; is too

Sq et M EirS,8% = MT; (3) large, therll; = T — T, is small and too little time is set aside
for data transmission. Similarly, dedicating too much power
where S; is the matrix of data symbols sent ov&; to training compromises the power available to transmit data.
time samplesy, is the SNR during the data transmissioiWe compute the, and7’. that optimize our capacity bound.
phase, and(; € CT+*¥ is the received matrix. Because
S4 is random and unknown, the normalization in (3) has IIl. CAPACITY AND CAPACITY BOUNDS

an expectation. o . .
The capacity in bits per channel use is the maximum over the

This two-part training and data process is equivalent to partiistribution of the transmit signa, of the mutual information

tioning the matrices in (1) as between the known and observed signéls S, X, and the
unknown transmitted signdl,;. This is written as
S
S * ) x <X’> 1% (V’) @) 1
B Pd Sd ’ B Xq ’ B Vi ’ Cr = sup f I(X7'7 S’r» Xd; Sd)
p Psy (), EllSallF<MTy

Conservation of time and energy yield Now

T =T, + 1Ty, pT = p: T + paTy. (5) I(X;, Sry Xa;Sq) =1(Xq; Sa| X-, S;) + I(X,, Sr;Sq)

—_———
We establish a lower bound on the capacity of encoding/de- =0

coding rules that use a transmitted sigfiglartitioned as in (4). =I(Xg4; Sal X+, S-),
One possible receiver usés and X, to generate an estimate
of the channel wherel (X ., S;; S4) = 0 becauseS; is independent of. and

R X-. Thus, the capacity is the supremum (over the distribution of
H = f(X;, S;). (6) Sa) of the mutual information between the transmittgdand
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receivedXy, given the transmitted and received training signals Theorem 1 (Worst Case Uncorrelated Additive Nois€pn-
S, and X, sider the matrix-valued additive noise known channel

1 _ P
. = sup —I(X4; Sal X+, S;). (8) X=\a SHAV
ps, () ElSalz<mry T

whereH € CM*V is the known channel, and where the signal

The capacity depends on the conditional distributioflafiven g ¢ ¢1xM and the additive nois€ € C1*V satisfy the power
S; and X . constraints

For receiver structures that form an expliéit as long as in-
formation is not “thrown away” in the process, it is possible to
achieveC as given in (8). However, some data transmissiand are uncorrelated
schemes that employ training do throw away information be- ES*V =0 ]
cause they form an explicﬁl and use it as if it were correct. T M

Our method for finding a lower bound f6t, computes an ex- Let Ry = EV*V andRs = E 5*5. Then the worst case noise
plicit 1, relegates the estimation error of this channel estimd18S & zero-mean Gaussian distribution~ CN(0, Ry, opt),
to the additive noise, and then considers only the correlati¥fere v, op¢ is the minimizing noise covariance in
(and not the full statistical dependence) between the resultiog,,. =  min max  Elog
noise and the transmitted signal. We then obtain a lower bound Ry, tr Ry =N Rs, tr Rs=M
by replacing the resulting noise by a worst case (but analytically -det (IN + % R;lH*RSH) . (11)
tractable) noise with this same correlation.

We assume that is the conditional mean af (which is the
minimum mean-square error (MMSE) estimate), gienand Ty e (0, Ry, ope), (X5 9)
X-. During the data transmission phase, we may then write S IVACN (0, Ry, opt), S~CN (0, B, op) (X35)

Pd R Pd . = Cyworst S IV, S~CN (0, Rs,om)(X;S) (12)
Xa= \/%S‘IH + \/;SJH +Va, ©) where Rg, op¢ IS the maximizing signal covariance matrix in
— (11). When the distribution ofif is left rotationally invariant,
¢ i.e., whenp(©H) = p(H) for all © such tha®O* = ©0*O =
whereH = H — H is the zero-mean channel estimation errof, then
andV; combines the additive noise and residual channel estima-
tion error. By well-known properties of the conditional mean,
H andH are uncorrelated. The estimateis known to the re- \When the distribution o is right rotationally invariant, i.e.,
ceiver and assumed by our lower bound computation to be Chenp(HO) = p(H) for all © such thal®O* = ©*6 = Iy,
rect; hence, the channel capacity of a training-based systengisn
lower-bounded by the capacity okaown channetystem, sub-

1 1
E—SS* =1 and E—~VV*=1
M and by

We also have the minimax property

Bs opt = Iu-

ject to additive noise with the power constraint Ry, opt = IN.
1
0%, = tr EVV* The notion that Gaussian additive noise is the worst for mu-
NTy . L .
1 P 1 tual information is not new [10]-[12]. Theorem 1 is, however,
=NT Etr [M HH* j‘;Sd} + NT Etr VaVy tailored for our purposes since the noise is uncorrelated with the
pj o d signal (rather than independent as is usually assumed in these
= tr I:E(HH*)E(SSSJ)} + 1. (10) references), and we are also able to compute the optitgal
MNTa andR
V.

There are two important differences between (9) and (1). In (9),In our case, the additive noise and signal are uncorrelated
the channel is known to the receiver whereas in (1) it is natthen the channel estimate is the MMSE estimate

In (1), the additive noise is Gaussian and independent of the J=E - "

data whereas in (9) it is possibly neither. Finding the capacity X, 7255
of the known-channel system requires us to examine the wop§cause

effect the additive noise can have during data transmission. WE I% Pd o 7+ *
X i SV =FEix s S — SIH*+V
therefore wish to find [Xr 87 2dbd = BN, 5, 2d (\/ Mot d)

Cr 2 Cyorst = inf = pa - *[T* - *
. pvé(-),trér&l’;v;*=1\’Td ”M Eix, s, SaSiH" + Eix, s, SV,

: sup I(Xq; Sq|H). = /Py o) H* 40

po, () B S8 MT, M X S:PdRd X, S, +

A similar argument for lower-bounding the mutual information =0, sinceE|x, s, (H — H) = 0.

in a scalar multiple-access wireless channel is given in [9]. THde MMSE estimate is the only estimate with this property.
worst case noise is the content of the next theorem, which isThe noise terni’; in (9), whenH is the MMSE estimate,
proven in the Appendix. is uncorrelated withS; but is not necessarily Gaussian. The-
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orem 1 says that a lower bound on the training-based capaaitd

is obtained by replacind’; by independent zero-mean addi- Rx. = E(vec X, )(vec X,)*.
tive Gaussian noise with the same power consttaifty, op, = .
No2,. Becaus& S35, = TyRs, (10) becomes (Thevec () operator stacks all of th'e columns of its arguments
into one long column; the above estimatdbtan be rearranged
0% =1+ Mﬂj\(fiT tr [(E EU?*)TdRS} to coincide with the LMMSE estimate given in (7).) Moreover,
) d the distribution of X, = \/%STH + V., is rotationally in-
=1+ Pa9f Rrs (13)  variant from the right {(X,0) = p(X;), for all unitary ©)
whereoz . A B 1" Rs . Using (11), we may, there- since the same is.true'(ﬂ andV. Th.is implies thatd and_
H, Rs H, are rotationally invariant from the right. Therefore, applying
fore, write Theorem 1 yieldSRy opt = In.
Cr = Cyorst The choice of Rg that maximizes the lower bound (15)
. T-T; depends on the distribution ¢ which, in turn, depends on
= min max E log . . . L
Ry,tr Ry=N Rg,tr Rg=M T the training signab.-. Thus, in principle, one needs to perform
p RAE*RII a joint optimization overRs and S,.. But we are interested
-det <IN + "2 v s ) in designingS,, and hence we turn the problem around by
1+ Pd%% R M arguing that the optima, depends om?s. That is, the choice

where the coefficien’ — T’ reflects the fact that the data transof training signal depends on how the antennas are to be used
mission phase has a duration®f = T — T, time symbols. during data transmission, which is perhaps more natural to
Since H is zero mean, its variance can be definedg%s — specify first. We specify that the antennas are to be used such

ﬁ Etr H*H. By the orthogonality principle for MMSE es- that Rs = I, which is the same as saying that we are using

timates them independently and with equal power. This choice is
reasonable because the transmitter does not know the channel,
afq =1- 012;[ (14) and it allows us to obtain a valid and tractable lower bound on

o . _ capacity. In fact, Theorem 1 (see also [1]) says Rat= 1),
whereo? = 47 Etr H*H. Define thenormalized channel is best when the distribution d is left rotationally invariant.

estimateas Section IlI-A shows that the choice &f. that maximizeg.s
—a 1 givesH this property. Thus, even though we cannot claim joint
H= P H. optimality over Rs and S, we can claim that our choice of
" training signal and?s are consistent. WitliRs = I,;, we have
We may write the capacity bound as S —
’ e T 03B LT oot 1y + P9 HH (17)
— = og de _— .
Cr > min max E ~ log T 8 NI pacs M
Ry,tr Ry=N Rg,tr Re=M T H
2 —177% IT7 ..
- det (]N + p””gf Ry ILRSH> . (15) A Optimizing Overs,
t PTG g The first parameter over which we can optimize the capacity

The ratio bound is the choice of the training sign&l. From (17), it is
clear thatS, primarily affects the capacity bound through the

2
pett = deI;I (16) effective SNRo.g. Thus, we propose to chooSe to maximize
+ pda’ﬁ[, Rs poﬂl
2 2

can, therefore, be considered asedfectiveSNR. This bound post = pavy pal—og)  14ps
does not requird] to be Gaussian. ' 1+ de%I 1+ pda% 1+ pda%

The remainder of this paper is concerned with maximizing therefore, follows that we need to chogseto minimize the
this lower bound. We consider choosing the following: mean-square errar2, .

1) the training datss, ; Becauser% = w7 tr Rz, we compute the covariance ma-

2) the training powep.; trix Ry 2 E(vec H)(vec H)* of the MMSE estimate (which in

this case is also the LMMSE estimate)

I _ —1
This is, in general, a formidable task since computing the convir =Ttu = Rax By Rx.u

ditional mean for a channél with an arbitrary distribution can _ _ Pr o«
) o . =Iy ®INn SreINn
itself be difficult. However, when the elements Hf are inde- M
pendenCN (0, 1) then the computations become manageable.

pT * -1 pT
In fact, in this case we have ' (IM ®In+ 8- 375 ® IN) (57'\/ % IN)

vec H = RHX,RT\& (vec X,),

3) the training interval lengtf’, .

-1
.
- (IM + pM 5:57) ® In
where
IMaximizing SNRs has been studied in many other contexts as well; for a
Ryx, = E(vec H)(vec X,)* study in intersymbol interference (ISI) channels see [21].
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where we have used the equatidn = /2= S, H + V; to _(pT)* a(l-a)
computeRyx_, Rx_, and Rx_g. It follows that we need to Ta M+ pT - pT (1 — M) a
chooses.. to solve T
1 ) B o7 a(l —a)
T % - — : — M+pT -
5,,trs o, Mtr (IM + 3o ) ) Ta=M —a+ o7 (1-4E)
In terms of Ay, ..., Ay, the eigenvalues af7 Sy, this mini- 1o maximizep.s over0 < o < 1 we consider the following
mization can be written as three cases.
i - - 1) Ty = M:
WM 2 T g .
SoAm<MT, T Peff = T a(l —a)
i : o T MM+ pT '
which is solved by setting; = --- = Ay = 1. This yields ) ( oT)
It readily follows that
SESr =T 1y (18)
. . . .. . a = % (24)
as the optimal solution; i.ethe training signal must be a mul-
tiple of a matrix with orthonormal columng\ similar conclu- and, therefore, that
sion is drawn in [3] when training for BLAST and [13] when T T (pT)?

training yvith_so-called “shift-invariant” sequences to minimize P4 = 537> Pr = —2(T — M) Py Peft = 74M(M T
total estimation error.

With this choice of training signal, we obtain 2) Ta > M: We write
, 1 , o ) pT all —a) y M + pT .
o2 =————  and o2 =_M"T (19) eff:T_M-_ s :—M .
H- T4 =T, ) a @+ pT( —T—d)
In fact, we have the stronger result Differentiating and noting that > 1 yields
RﬁZfIM@IN (1_a) _ _
1+ 27, arg max — =" =1 (v — 1),
and pr from which it follows that
Ry=—"_TIyxly (20) T 2
2 P
L+ 5 T- peHZTd_M(ﬁ—\/'y—l) . (25)
=L -
which implies that = - I has independert\/ (0, 1) en 3) T, < M: We write
tries, and is, therefore, rotat|onally|nvar|ant
Thus, (17) can be written as ot = pT ol = a). y = M + pT < 0.
T-T HH* M -Ti oy PT( —9—'1)
C.>E ~ log det (IM + Pett —) (21) !
T M Differentiating and noting that < 0 yields
where
a(l —a)
= V4 -1
pest = pap-Tr 22) Mzt a—ny 7 TVl =D
M1+ pa) + p- T from which it follows that
and whereH has independeri\/ (0, 1) entries. T 2
P (0,1) Peft = (\/—v— \/—'v+1) (26)
B. Optimizing Over the Power Allocation
Recall that the effective SNR is given by We summarize these results in a theorem.
pap-Tr Theorem 2 (Optimal Power Distribution)The optimal
Peft = M(1+ pa) + p. T; power allocationy = ”Z# in a training-based scheme is given

and that the power allocatiofp,, p-} enters the capacity for-
mula viap.g only. Thus, we need to choo$e,, o} to maxi- =y =1), forTy > M

mizep.g. To facilitate the presentation, letdenote the fraction w=d1 for T, = M 27)
of the total transmit energy that is devoted to the data 2
v+ -1, forTy < M
paly = apT, pTr =(1—a)pT, 0<a<l. (23
M+pT
Therefore, we may write Yvherey = aG-90)" The corresponding capacity lower bound
is
ap- T a”T 1—a)pT o
pest = 2P = (1= a) T-T, A
M+ pa) +p-Tr  pp (1 +a %) +(1—a)pT C-2E 7 logdet | Ins + pes i (28)
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where The optimal allocation of power is as given in (27) with =
2 T —T. =T — M and can be approximated at high SNR b
(VI -V =1)7, forTy > M i PP 1 9 y
— (PT)2 — = —_ =
Peft =\ TR (M+oT) for Ty = M T+ " (\/ﬁ+ W)Z p
e (VA -/ FL)E, forTy< M T T 3
(29)

These formulas are especially revealing at high and low SN the power allocation becomes
At high SNR, we have

P p
1y Pd = i T u M\ M
V=T -7 +/(1-F) 7 TV (A-7)F
and at low SNR (35)
MT, To show this, we examine the ca$g > M and omit the
Y= m casesl; = M andT,; < M since they are handled similarly.
_ . Let @ = min(M, N) and letA denote an arbitrary nonzero
so that we obtain the following results. eigenvalue of the matri¥.Z-. Then we may rewrite (28) as
Corollary 1 (High and Low SNR): QTy
1) At high SNR Cr > 5 Elog (1 + peg))
o=__Vid V1a __.r (30) c
VT, + VM’ Pett (\/TH- m)2 P where the expegtation_is ovAar.The bghqvioro(_?t as afunction
N of T; = T — T; is studied. Differentiating’; yields
2) Atlow SNR A0, _ Qo (14 perh) + QT4 dpes 1 A
1 o, ey T BT et T dT; |1+ pegh|”
o= — off = .
> e = P (36)

Atlow SNR, sincex = 1/2, half of the transmit energgp-1') After some algebraic manipulation of (25), it is readily verified
is devoted to training, and the effective SNR (and, consequen{rﬁl","t
the capacity) is quadratic in dpeg  PT (\/7 -y -1 )2 M. /v 1
dT; ~ (Ty — M)? <Td\/—7 = )

hich we plug into (36) and use the equality

C. Optimizing OvefT,
All that remains is to determine the length of the training inY
terval 7. We show that setting- = M is optimal for anyp  1—M/v/(Ts\/7—1)=1- \/M(M + o1 /[Ta(pT + Ty)]
andT (provided that we optimizg, andpy). There is a simple
intuitive explanation for this result. Increasiig beyond M

to get

linearly decreases the bound through the= term in (28), ic,  Q

but only logarithmically increases the bound through the higheg- = — E| log(1 + pesr))

effective SNRp.g. We, therefore, have a natural tendency to d

makeT’, as small as possible. Although makiifig small loses Dot A Ty M(M + pT)

accuracy in estimating/, we can compensate for this loss by Tt pegh Ty — M - m (37)

increasing.. (even though this decreases. We have the fol-
lowing result, which is the last step in our list of optimizationsThe proof concludes by showing théf; /dT,; > 0; for then
makingT}, as large as possible (or, equivalenily,as small as
possible) maximizes’;.

It suffices to show that the argument of the expectation in (37)
is nonnegative for alh > 0. Observe that becaudg > M

Theorem 3 (Optimal Training Interval)The optimal length
of the training interval isI’: = M for all p and T, and the
capacity lower bound is

- HH*
0> BT oot (I + o ) (32 n (_ [worea |
where To—M Ta(pT + Ta)

TfigM (\/7 B \/Vj) 2 7 for T > 2M This is readily seen by isolating the term

P or T — 201 VMM + p1)/[Ta(pT + Ta)]

T 9 on the left-hnad side of the inequality and squaring both sides.
arr (V=Y —v=y+I)",  forT <2M From (37), it therefore suffices to show that
M (T - M
= M+ 7Y ). (33) log(1 + pegh) — —Peft2 A>0.

pT(T — 2M) L+ pegh ~
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But the functionlog(1 + =) — 2 /(1 + ) > 0 because it is zero power maximizes the capacity lower bound. Thus, these dif-

atr = 0 and its derivative is:/(1 + )2 > 0 for all = > 0. ferential proposals fortuitously follow the information-theoretic
The formulas in (34) and (35) are verified by settifig = prescription that we derive here.
T — M in (30). This concludes the proof. 1) Low SNR:We know from Theorem 3 that the optimum

. . ... training interval isT, = M. Nevertheless, we show that at
This theorem shows that the optimal amount of training is ﬂfgw SNR, the bound is actually not sensitive to the length of

minimum possibld’. = M, provided that we allow the training S i
and data powers to vary. In Section IlI-D, it is shown that if thl‘ahe training interval. We use Theorem 2, (28) and (29), and ap

constraintp, = pg = p is imposed, the optimal amount Ofproxmate
training may be greater thaw . —\2  pT(Ty— M)
We can also make some conclusions about the transmit (ﬁ_ ta 1) = AMTy
powers. :
for smallp to obtain
Corollary 2 (Transmit Powers):The training and data power T 7 T
inequalities C.>"2Etrlog ( I, 2 38
T2 rlog M‘|‘4Mpo Vi (38)
pa<p<pr (T>2M) i o (T2 L HT
pr<p<pa (T <2M) ~ 7 loge) Btr aMT,” M
Pd =p = Pr (T =2M) Ty T?loge ,
hold for all SNRp. T 4AMT;
To show this, we concentrate on the cdse 2, and omit _ NTloge , (39)
the remaining two cases since they are similar. From the defini- 4M
tion of a (23), we have where in the first step we udeg det(-) = trlog(-), and in the
apT second step we use the expansiog(/ + A) = (loge)(A —
Pd= T3 A?/2 + A%/3 — - -.) for any matrixA with eigenvalues strictly

inside the unit circle. Observe that the last expression is indepen-

We need to show that; < p or, equivalently dent ofT.. From Corollary 1, at low SNR optimum throughput

aT <1 occurs aty = 3. We, therefore, have the freedom to chodse
T—-—M ' andp. in any way such thap,T; = p. T, = %pT. In partic-
Using (27), we can transform this inequality into ular, we may choose, = pa = p andT: = T, = T'/2, which

implies that when we choose equal training and data powers,

Y=y -1) < r-m half of the coherence interval should be spent training. The next
or T section has more to say about optimizifigwhen the training
T_M and data powers are equal.
Yy —1) > - T At low power, the capacity lower bound (39) decaygpabe-

. 9 ;
But this is readily verified by squaring both sides, cancellin@l";ujse the ef_'fectlve_ SNR (31) decays ag”; the quality of_the
annel estimate is very poor. The true channel capacity, how-

common terms, and applying the formula foi(33). We also hichd i . . hi q
need to show that, > p. We could again use (23) and shovEVen (which does not necessarily require training to ac ieve) de-
4 ' cays a9, rather than ag? [17], [18]. These simple power con-

that siderations therefore suggest that training and using the channel
(1-a)T > 1 estimate as if it were correct is highly suboptimal wheis
M ' small.

But it is simpler to argue that conservation of enepgy =

paTq + p. T, whereT = T; + T, immediately implies that

if pa < pthenp, > p, and conversely. A communication system often does not have the luxury of
Thus, we spend more power for training wigén- 2M, more varying the power during the training and data phases. If we

power for data transmission wh&h< 2M, and the same power assume that the training and data symbols are transmitted at the

whenT = 2M. We note that there have been some proposals &ame powep, = pq = p then (21) and (22) become

multiple-antenna differential modulation [14], [15] that uke T

transmit antennas and an effective block siz€ef 2. These C,. >E -1 p*1 /M LRl >

proposals can be thought of as a natural extension of standard L+ +T/M)p M

single-antenna differential phase-shift keying (DPSK), where (40)

the first half of the transmission (comprising time samples Thde effects and tradeoffs involving the training interval length

acrossM transm}t .antenhas) acts as a refe.rence for the secoqu can be inferred from the above formula. As we increfise

ha_If (also comprlsmg_w tlme samples)_. A differential schemec1ur estimate of the channel improves and so

using orthogonal designs is proposed in [16]. In these proposals,

both halves of the transmission are given equal power. But be- T, /M

causel’ = 2M, Corollary 2 says that giving each half equal Peft = 7 1+ T, /M)y

D. Equal Training and Data Power

log det (IM +
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Fig. 1. The training-based lower bound on capacity as a functidh when SNRyp = 6 dB andM = N = 10, for optimizedp, andp. (upper solid curve,
(32)) and forp. = p (lower solid curve, (40) optimized fdF, ). The dashed line is the capacity when the receiver knows the channel.

increases, thereby increasing the capacity. On the other hand, ST g p*Trloge HH*

as we increas®; the time available to transmit data decreases, T M M

thereby decreasing the capacity. Since the decrease in capacity _ NT (T —T;)loge , 49
is linear (through the coefficied='=), whereas the increase in - MT P (42)
capacity is logarithmic (througp.s), it follows that the length This expression is maximized by choosiity = 7'/2,
of the data transmission phase is a more precious resource than from which we obtain

the effective SNR. Therefore, one may expect that it is possible NTloge ,

to tolerate lowen.q as long asl}; is long enough. Of course, Cr2—pnmr 7 (43)

the optimal value of’; in (40) depends op, T', M, andN, and
can be obtained by evaluating the lower bound in (40) (either
analytically, see, e.g., [1], or via Monte Carlo simulation) for
various values of-. In fact, it can be shown that if the SNR is
sufficiently high thenT’. = M, and if the SNR is sufficiently
low thenT’. = T'/2.In general, decreasingrequires increasing
T-.

Some further insight into the tradeoff can be obtained by ex-

Section IlI-C1. In other words, at low SNR, if we transmit

and the capacity is quadratic jn

IV. PLOTS OF TRAINING INTERVALS AND CAPACITIES

amining (40) at high and low SNRs. Figs. 1 and 2 display the lower bound obtained as a func-
1) At high SNR: tion of the block lengthl’ for M = N = 10 whenp, and
pq are optimized versug, = pg = p. These figures assume
T-T, p HH* that H has independer@/\ (0, 1) entries. We see that approx-
Cr2E logdet IM+1+—M SV (41) imately 5-10% gains in capacity are possible by allowing the
T,

This expression coincides with the expression obtained in

the same power during training and data transmission, we
need to devote half of the coherence interval to training,

training and data transmitted powers to vary. We also note that

uating the expectation in the above inequality fofapacity achieved when the receiver knows the channel. The

T =M, ... T—1. curves for optimap, andp, were obtained by plotting (32) in
2) At low S/NR:7 Theorem 3, and the curves fpr = p; = p were obtained by
maximizing (40) ovefr,.
. SE T-T; trlow (I N T, ﬁﬁ*) We know that ifp, andp, are optimized, then the optimal
Tz T S\'MT T T training intervall’. = M, but when the constraipt- = pg = p
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Fig. 2. Same as Fig. 1, except with= 18 dB.
is imposed theri: > M. Fig. 3 displays theél’. that maxi- V. DISCUSSION ANDCONCLUSION

mlzet?] (‘to) f(c;rﬂ:ﬁftferem Vgllldl%sdcﬁ with M t:h N = mt. V]Yf .. The lower bounds on the capacity of multiple-antenna
see the reTt_ ﬁ ast eS " ?ﬁrgatiei’ eoathOl:n 0 r"’“[Pll‘[s]\ﬁﬁing-based schemes show that optimizing over the power
Increases. 1t1s shown In section fii- atas> € training allocationp, andpy; makes the optimum length of the training

increases until it reach&s/2. : .
) L ) interval 7°- equal toM for all p and 7. At high SNR, the
Fig. 4 shows the variation of. andp, with the block length Jesulting capacity lower bound is

T forp =18dBandV = N = 10. We see the effects describe
in Corollary 2 wherep, < p < pg whenT < 2M = 20 and M

pr = pa = pwhenT = 2M andp, > p > pg whenT > 2M. C(p, T, M, N) > <1 - ?> Elog
For sufficiently londT’, the difference in SNR can apparently be

more than 6 dB. 1 *
For a given SNRy, coherence interval’, and number of re- ~det | Iny + 2P (44)
. . M M

ceive antenna®/, we can calculate the capacity lower bound (\/ 1-F +\7T )

as a function of\/. For M = 1, the training-based capacity is

small because there are few antennas, andfor T, the ca- whereH has independer@\/ (0, 1) entries.

pacity is again small because we spend the entire coherence inf we require the power allocation for training and transmis-
terval training. We can seek the valueldfthat maximizes this sion to be the same, then the length of the training interval can
capacity. Figs. 5 and 6 show the capacity as a functio dbr be longer thanV/, although simulations at high SNR suggest
p =18 dB,N = 12, and two different values df. We see that that it is not much longer. As the SNR decreases, however, the
the capacity whefl’ = 100 peaks af\/ = 15 whereas it peaks training interval increases until at low SNR it converges to half
at M =~ 7 whenT = 20. We have included both optimized the coherence interval.

andpy and equap, = pgq = p for comparison. It is perhaps The lower bounds on the capacity suggest that training-based
surprising that the number of transmit antennas that maximizhemes perform poorly whéhis “close” to M. In fact, when
capacity often appears to be quite small. We see that choosing= M, the capacity bound is zero since the training phase
to train with the wrong number of antennas can severely hutcupies the entire coherence interval. Figs. 5 and 6 suggest that
the data rate. This is especially true whigh~ T, where the it is beneficial to use a training-based scheme with a smaller
capacity for the known channel is greatest, but the capacity fuumber of antennak/’ < M. We may ask what is the optimal
the system that trains alll antennas is least. value of M’ ? To answer this, we suppose thidtantennas are
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pr = pa = p (see (40)), and the dashed line is optimized over the power allocatiorifwita M (Theorem 3). The dash-dotted line is the capacity when the
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available but we electto use only’ < M ofthemin atraining- because the effective SNR and capacity lower bound decay as

based scheme. Equation (44) is then rewritten as p?, whereas the actual capacity decays.aEhe exact transition
M between what should be considered “high” SNR where this form
C(p, T, M, N) > max <1 - —) Elog of processing can yield acceptable performance versus “low”
M'SM T . . L
SNR where it does not, is not yet clear. Nevertheless, it is clear
1 T that a communication system that tries to achieve capacity at
~det | Iy + 5P (45) low SNR cannot rely on the accuracy of the channel estimate.

W)

Defining @ = min(M’, N) and\ to be an arbitrary nonzero
eigenvalue of

APPENDIX
ProOOF OFWORST CASE NOISE THEOREM

H* Consider the matrix-valued additive noise known channel

H
w_i_ Sy X:\/%SH+V, (A1)

we write whereH € CM*¥ is the known channel§ € C**M is the
M’ transmitted signal, and € C**¥ is the additive noise. Assume
,T, M, N) > 1-— | QElog(1 o ' .
Clo, T, M, N) MM < ) QElog(L+pA). further that the entries of and V' on the average have unit
mean-square value, i.e.,

At high SNR, the leading term involving becomes

- . L ooow _ R
(1_%)Mf10gp7 it M'<N E-;88"=1 and E-VV* =1 (A2)

C(p, T, M, N) > max / . o ) . .
M'<M (1 _ %)Nlogp, if M’~N. Thegoalin this appendix is to find the worst case noise distri-

bution for V' in the sense that it minimizes the capacity of the
The expressioiil — )M log p is maximized by the choice channel (A1) subject to the power constraints (A2).
= T/2 whenmin(M, N) > T/2, and by the choicas’ =  The arguments of [1], [2], which assun#g, = I, can be
min(M, N) whenmin(M, N) < T/2. This means that the generalized in a straightforward manner to find the capacity of
expression is maximized whel’ = min(M, N, T/2). The the channel (Al) whef¥ has a zero-mean complex Gaussian

express|0r(1 _ —)NlOg p, 0N the other hand, is max|m|zeddlstr|but|0n with VarlanCdgV EV*V (addltlve Gaussian

whenM’ = N = min(M, N) (since in this cas@/ > N). noise channel). The result is

Defining K = mm(M, N, T/2), we conclude that C max E log det (IN n ﬁ R;IH*RSH) . (A3)
S, tr lvg =1

C(p, T, M, N) > max [(1 — %) K log p,
(1 min(M, N)

We obtain the worst case noise distribution when the ndise
and the signab' are uncorrelated

T > min(M, N)logp| .

ES*V =0pxn- (A4)
Whenmin(M, N) > T/2 the first term is larger, and when
min(M, N) < T/2 the two terms are equal. Thus, Let
K Cworst = inf sup I(X7 S|H>
Clp, T, M, N) > <1 - —) K log p. (46) pv(),EVV*=N () ESS =M

@py particular distribution or¥/ yields an upper bound on the
worst case; choosing to be zero-mean complex Gaussian with
gpme covarianc®y and using (A3) yields

This argument implies that, at high SNR, the optimal number
transmit antennas to useA§ = min(M, N, T/2). We see in-
dications of this result in Fig. 5 where the maximum throughp

is attained at\/ ~ 15 versus the predicted high SNR value oy . < min max  Elog
K =12, and in Fig. 6 atV/ ~ 7 versus the predicted” = 10. Ry, tr Ry=N Rs, tr Rg=M
We now ask whether the high-SNR bound (46) is tight? The -det (]N + ﬁ R;IH*R5H> . (A5)

answer to this question can be found in the recent work [19]

of Zheng and Tse, where it is shown that at high SNR, the To obtain a lower bound 06',,..s;, Wwe compute the mutual
leading term of the actual channel capacitjtioutimposing information for the channel (A1) assuming thfats zero-mean
any constraints such as training)(is— &) K log p. Thus, in complex Gaussian with covariance matfix, but that the dis-
the leading SNR term (gs— oo), training-based schemes cariribution onV" is arbitrary. Thus,

be optimal, provided we usE = min(M, N, T/2) transmit

antennas. (A similar conclusion is also drawn in [19].) Thus, I(X;S|H) =h(S|H) - h(S|X, H)
it is possible to achieve capacity at high SNR by designing a = logdet reRs — h(S|X, H).

transmitter/receiver pair that dedicates part of the transmiss'@amputing the conditional entropy(S| X, H) requires an ex-
interval to trainingK antennas. '

. . . Rlicit distribution onV'. However, if the covariance matrix
We note in Section I11-C1 that, at low SNR, training and the

using the channel estimate as if it were correct performs poorly cov(S|X, H) = E|x, (S — E|x, 55)"(S — E|x, & 5)
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of the random variablés|x g is known,h(S|X, H) has the ally invariant. Now suppose thdts .. is diagonal with pos-

upper bound sibly unequal entries. Then form a new covariance matrix
h(S|X, H) < Elog det we cov(S|X, H) 1 X
_ o . _ Rs ==Y PuRsopPy =1Iu
since, among all random vectors with the same covariance ma- Ml L=
trix, the one with a Gaussian distribution has the largest entrogyhere theP;, ..., Py are all possiblel/ x M permutation

The following lemma gives a crucial property ofmatrices. Since the “expected log-det” function in (A9) is con-
cov(S|X, H). Its proof can be found in, for example, [20].  cave inRs (see also [1]), the value of the function cannot de-
Lemma 1 (Minimum Covariance Property®fy. ;;S): Let crease with the new covariance. We, therefore, conclude that

S = f(X, H) beanyestimate ofS given X and H. Then we Rs, opt = - A S|m|!,ar argument holds forty, ., because
have the “expected log-det” function in (A9) is convex ity .
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