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Abstract—This paper considers training-based transmissions
in massive multi-input multi-output (MIMO) systems with one-
bit analog-to-digital converters (ADCs). We assume that each
coherent transmission block consists of a pilot training stage and
a data transmission stage. The base station (BS) first employs
the linear minimum mean-square-error (LMMSE) method to
estimate the channel and then uses the maximum-ratio combining
(MRC) receiver to detect the data symbols. We first obtain an
approximate closed-form expression for the uplink achievable
rate in the low SNR region. Then based on the result, we
investigate the optimal training length that maximizes the sum
spectral efficiency for two cases: i) The training power and the
data transmission power are both optimized; ii) The training
power and the data transmission power are equal. Numerical
results show that, in contrast to conventional massive MIMO
systems, the optimal training length in one-bit massive MIMO
systems is greater than the number of users and depends on
various parameters such as the coherence interval and the
average transmit power. Also, unlike conventional systems, it
is observed that in terms of sum spectral efficiency, there is
relatively little benefit to separately optimizing the training and
data power.

I. INTRODUCTION

Channel state information (CSI) plays a crucial role for high

data rate transmission in wireless communications, especially

for massive multi-input multi-output (MIMO) systems. It has

been shown that with CSI known at the base station (BS),

massive MIMO techniques can average out the noise and

interference among the terminals, and hence significantly

improve the spectral efficiency even when employing simple

signal processing techniques such as maximum-ratio combin-

ing (MRC) [1], [2].

However, with a large number of antenna elements deployed

at the BS, system cost and power consumption will be

excessive if each antenna element and corresponding radio-

frequency (RF) chain is equipped with a high-resolution and

power-hungry analog-to-digital converter (ADC). In addition,

as huge bandwidths and correspondingly high sampling rates

will be required in next generation wireless systems, high-

speed ADCs are either unavailable or too costly for practical

implementation [3]. Therefore, finding alternative approaches

is needed.

One-bit ADCs are of particular interest since they consist of

a simple comparator, and hence have the lowest cost and power

consumption. In addition, it has been shown in [4], [5] that

the capacity of MIMO systems is not severely reduced by the

coarse quantization and the power penalty due to the one-bit

quantization is approximately equal to only π/2 at low signal-

to-noise ratio (SNR). Therefore, one-bit ADCs can potentially

make massive MIMO more viable in practice, especially in

low SNR scenarios where such systems are likely to operate.

There has been some recent work on one-bit massive

MIMO, particularly focused on pilot-based channel estimation

[6]–[11], and several different channel estimators have been

proposed. In particular, [11] investigated the optimal training

length for uplink massive MIMO systems with low-resolutions

ADCs. However, it employed the additive quantization noise

model (AQMN) and only considered the case where training

power and data transmission power are the same. In this

paper, we evaluate the training duration that optimizes the

sum spectral efficiency in one-bit massive MIMO at low

SNR by employing Bussgang decomposition. We derive an

approximate closed-form expression for the uplink achievable

rate with the linear minimum mean-square-error (LMMSE)

channel estimate in the low SNR region. Based on the ap-

proximation, we focus on the problem of how much of the

coherence interval should be spent on training to maximize the

sum spectral efficiency for two cases: (i) where the users can

employ different power during training and data transmission,

and (ii) where the users employ the same training and data

transmission power. Numerical results show that the optimal

training duration in one-bit massive MIMO system depends

on various system parameters. In particular, using the same

power for training and data transmission is seen to achieve a

sum spectral efficiency close to that in the case where power is

optimized, and hence we conclude that using the same power

should be preferred since in practice the users often do not

have the luxury of varying the power during the training and

data transmission stages.

II. SYSTEM MODEL AND CHANNEL ESTIMATION

A. System Model

We consider a single-cell one-bit massive MIMO system

with K single-antenna terminals and an M -antenna BS. For

http://arxiv.org/abs/1608.05468v1


uplink data transmission, the received signal at the BS is

y =
√
ρd Hs+ n, (1)

where the elements of the channel H are distributed as

vec(H) = h ∼ CN (0, I) is the M × K channel matrix,

n ∼ CN (0, I) ∈ CM×1 denotes additive white Gaussian noise,

and s is a vector containing the signal transmitted by each user.

We assume E{|sk|2} = 1 and hence we define the scale factor

ρd to be the uplink SNR. The quantized signal obtained after

the one-bit ADCs is represented as

r = Q(y) = Q(
√
ρd Hs+ n), (2)

where Q(.) represents the one-bit quantization operation,

which is applied separately to the real and imaginary parts

of the signal. The outcome of the one-bit quantization thus

lies in the set R = 1/
√
2{1 + 1j, 1− 1j,−1 + 1j,−1− 1j}.

B. Channel Estimation

In a practical system, the channel H has to be estimated

at the BS. In the uplink transmission phase, we assume that

the channel coherence interval is divided into two parts: one

dedicated to training and the other to data transmission.

For the training stage, we assume all users simultaneously

transmit pilot sequences of τ symbols to the BS, which yields

Yp =
√
ρpHΦT +Np, (3)

where Yp ∈ CM×τ is the received signal, ρp is the transmit

power of each pilot symbol, and Φ ∈ Cτ×K is the matrix of

pilot symbols. Vectorizing the received signal yields

yp = vec(
√
ρpHΦT +Np)

= (Φ⊗√
ρpIM )h+ np = Φ̄h+ np, (4)

where np = vec(Np). We can see from (2) that after the

nonlinear operation Q(.) of the one-bit ADCs, the amplitude

information of the the received signal is lost and only the sign

information remains. However, using the Bussgang decompo-

sition [12], we can reformulate the nonlinear quantization with

a statistically equivalent linear operator that will simplify the

channel estimator and the resulting analysis. In particular, for

the one-bit quantizer in (2), the Bussgang decomposition is

written

rp = Q(yp) = Apyp + qp = Φ̃h+ ñp, (5)

where the ith element of rp takes values from the set R,

Φ̃ = Ap(Φ ⊗ √
ρpI), ñp = Apnp + qp, Ap is the linear

operator of the Bussgang decomposition, and qp the statisti-

cally equivalent quantization noise. The matrix Ap is chosen

to make qp uncorrelated with (but still dependent on) yp

[12], or equivalently, to minimize the power of the equivalent

quantization noise. For one-bit quantization, we have [10]

Ap =

√

2

π
diag(Cypyp

)−
1
2

=

√

2

π
diag

((

ΦΦH ⊗ ρpIM
)

+ IMτ

)− 1
2 . (6)

Remark 1: We can see from (6) that Ap is related to the

diagonal terms of Cypyp
and therefore to the pilot matrix.

In order to obtain a simple expression for Ap, in [10]

random pilot sequences with τ = K were chosen. In this

paper, however, we relax this constraint and allow for the

possibility of τ ≥ K . In addition, we consider pilot sequences

composed of submatrices of the discrete Fourier transform

(DFT) operator. The benefits of using DFT pilot sequences

are: i) all the elements of the matrix have the same magnitude,

which simplifies peak transmit power constraints, and ii) the

diagonal terms of ΦΦH are always equal to K , which results

in a simple expression for Ap, as follows:

Ap =

√

2

π

1

Kρp + 1
I = αpI. (7)

According to [13] and the fact that qp is uncorrelated with

the channel h [10], the LMMSE channel estimate of h can be

expressed as

ĥ = Φ̃HC−1

rprp
rp, (8)

where Crprp
is the auto-correlation matrix of rp given by

Crprp
=
2

π

(

arcsin
(

Σ
− 1

2
ypypℜ

(

Cypyp

)

Σ
− 1

2
ypyp

)

+j arcsin
(

Σ
− 1

2
ypyp

ℑ
(

Cypyp

)

Σ
− 1

2
ypyp

))

. (9)

The normalized MSE of the BLMMSE channel estimate is

thus

MSE =
1

MK
E

{

∥

∥

∥
h− ĥ

∥

∥

∥

2

2

}

=
1

MK
tr
(

I− Φ̃HC−1

rprp
Φ̃
)

. (10)

Remark 2: Each element of ĥ can be expressed as a

summation of a large number of random variables, i.e.,

[ĥ]n =
∑Mτ

i=1
[Φ̃HCrprp

]n,irp,i. Although the elements of

the channel estimate (8) are not exactly Gaussian distribution

due to the one-bit quantization, we can approximate it as

Gaussian according to Cramér’s central limit theorem [14].

Therefore, in the sequel we model each element of the

channel estimate ĥ as Gaussian with zero mean and variance

η2 = tr
(

Φ̃HC−1
rprp

Φ̃
)

/MK .

III. UPLINK ACHIEVABLE RATE ANALYSIS

In the data transmission stage, we assume K users simul-

taneously transmit their data symbols, represented as s, to the

BS. After one-bit quantization, the signal at the BS can be



expressed as

rd = Q(yd) = Q(
√
ρdHs+ nd)

=
√
ρdAdHs+Adnd + qd, (11)

where the same definitions as in previous sections apply,

but with the subscript p replaced with d. Following the

same reasoning as in Section II.B, in order to minimize the

quantization noise (or equivalently, to make it uncorrelated

with yd), we can use the Bussgang decomposition to represent

the model with Ad = αdI and αd =
√

2/(π(1 +Kρd))I.

Next, we assume that the BS regards the LMMSE channel

estimate as the true channel and employs the MRC receiver

to detect the data symbols transmitted by the K users. For

the MRC receiver, the quantized signal is separated into K
streams by multiplying it with Ĥ = vec−1(ĥ):

ŝ = ĤHrd

=
√
ρdĤ

HAd(Ĥs+ Es) + ĤHAdnd + ĤHqd, (12)

where E = H − Ĥ denotes the channel estimation error.

As such, the kth element of ŝ is used to decode the signal

transmitted from the kth user:

ŝk =
√
ρdĥ

H
k Adĥksk +

√
ρdĥ

H
k

∑K

i6=k
Adĥisi

+
√
ρdĥ

H
k

∑K

i=1
Adεisi + ĥH

k Adnd + ĥH
k qd, (13)

where ĥi and εi are the ith column of Ĥ and E , respectively.

The last four terms in (13) correspond respectively to user

interference, channel estimation error, AWGN noise and the

quantization noise.

Note that although qd is not Gaussian due to the one-bit

quantization, the worst-case additive noise that minimizes the

input-output mutual information is Gaussian [15], and hence a

lower bound for the achievable rate can be found by modeling

qd as Gaussian with the same covariance matrix:

Cqdqd
= Crdrd

−AdCydyd
AH

d . (14)

Thus, the ergodic achievable rate of the uplink transmission

in one-bit massive MIMO is lower bounded by (15), shown

on the top of next page. Since there is no efficient way to

directly calculate the achievable rate in (15), we provide an

approximation in the following theorem:

Theorem 1: For an MRC receiver based on the LMMSE

channel estimate, the uplink achievable rate of the kth user in

a one-bit massive MIMO system can be approximated by

Rk = log
2

(

1 +
ρdα

2

dη
2(M + 1)

ρdα2

d(K − η2) + α2

d + 1− 2/π

)

, (16)

where η2 = tr
(

Φ̃HC−1
rprp

Φ̃
)

/MK .

Proof: See Appendix A.

IV. OPTIMAL TRAINING LENGTH IN LOW SNR REGION

Although [11] investigated the optimal training length for

uplink massive MIMO systems with low-resolutions ADCs.

However, it employed the AQMN and only considered the

case where training power and data transmission power are

the same. In the analysis below, we first derive the approxi-

mation of sum spectral efficiency at low SNR. Based on the

approximation, we then evaluate the optimal training length

that maximizes the sum spectral efficiency considering two

case: i) the training power and data transmission power are

both optimized; ii) the training power and data transmission

power are the same.

A. Low SNR Sum Spectral Efficiency Approximation

We first define the sum spectral efficiency as the sum rate

per channel use. Let T be the length of the coherence interval

in symbols. During each coherence interval, τ symbols are

used for pilot training and the remaining T − τ symbols

are used for data transmission. Therefore, the sum spectral

efficiency is given by

S =
T − τ

T

K
∑

k=1

Rk. (17)

We can see that the closed-form expression for the achiev-

able rate in Theorem 1 involves the auto-correlation matrix

of Crprp
, which, according to (9), is complicated due to the

arcsin operation. However, it is expected that massive MIMO

systems will operate at low SNR due to the availability of

a large array gain. In what follows, we show that using a

low SNR assumption allows us to derive an approximation for

Crprp
to avoid the arcsin operation in the low SNR region.

According to (5), we can rewrite the auto-correlation matrix

Crprp
as

Crprp
= Φ̃Φ̃H +ApA

H
p +Cqpqp

, (18)

where

Cqpqp
= Crprp

−ApCypyp
AH

p

=
2

π
(arcsin(X) + j arcsin(Y)) − 2

π
(X+ jY), (19)

and where we define

X = Σ
− 1

2
ypypℜ

(

Cypyp

)

Σ
− 1

2
ypyp (20)

Y = Σ
− 1

2
ypyp

ℑ
(

Cypyp

)

Σ
− 1

2
ypyp

. (21)

Note that the “arcsin” is an element-wise operation, and it

can be approximated as

2

π
arcsin(a) ∼=

{

1, a = 1
2a/π, a < 1

(22)

Since the non-diagonal elements of X and Y are far smaller

than 1 in the low SNR region, we can approximate (19) as

Cqpqp
∼= (1− 2/π)I. (23)
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Adĥi

∣

∣

∣

2

+ ρd
∑

K

i=1

∣

∣

∣ĥ
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(15)

Substituting (23) and (18) into the expression for η2, we have

η2 ∼= tr
(

Φ̃H(Φ̃Φ̃H + (α2

p + 1− 2/π)I)−1Φ̃
)

/MK

= (α2

pτρp + α2

p + 1− 2/π)−1α2

pτρp = σ2. (24)

The equation on the second line holds due to the matrix

inversion identity (I+AB)−1A = A(I+BA)−1. Therefore

in the low SNR region, we can approximate the sum spectral

efficiency as

Slow =
(T − τ)K

T
log2

(

1 +
ρdα

2

d
σ2(M + 1)

ρdα
2

d
(K − σ2) + α2

d
+ 1− 2/π

)

. (25)

B. Optimal Training Duration for One-Bit Massive MIMO

Systems

Let ρ be the average transmit power and P = ρT be the

total energy budget for each user over the coherence interval,

which satisfies the constraint τρp + (T − τ)ρd ≤ P . For any

power allocation in which some users do not expend their

full energy budget, such users could increase their training

power to improve their own achievable rate without causing

interference to other users. Thus, we can replace the inequality

constraint on the total energy budget with the equality con-

straint τρp +(T − τ)ρd = P . Thus, the optimization problem

can be expressed as

maximize S low

subject to τρp + (T − τ)ρd = P,

K ≤ τ ≤ T. (26)

Next we focus on the optimal training duration problem

and consider two cases: (i) The training power and data

transmission power are both optimized; (ii) The training power

is equal to the data transmission, ρp = ρd = ρ. The latter case

is of interest since the users may not have the ability to change

their transmit power from the training to the data transmission

phases.

Case I: For the first case, we assume the users can vary

the training power and the data transmission power and jointly

choose {τ, ρp, ρd} to maximize the sum spectral efficiency. To

facilitate the presentation, let γ ∈ (0, 1) denote the fraction

of the total energy budget that is devoted to pilot training,

such that γP = τρp and (1 − γ)P = (T − τ)ρd. Thus the

optimization problem of (26) can be rewritten as

maximize S low|
ρp=

γP
τ

,ρd=
(1−γ)P
T−τ

,

subject to 0 < γ < 1, K ≤ τ ≤ T. (27)

Note that previous work [15] has shown that for con-

ventional MIMO systems with infinite precision ADCs, the

optimal training duration is always τ∗ = K . However, we will

see that this is not the case for one-bit massive MIMO. First

we rewrite the sum spectral efficiency of (25) as a function

with respect to γ and τ :

Slow(γ, τ) =
(T − τ)K

T
log2

(

1 +
a1τ

a2τ2 + a3τ + a4

)

, (28)

where we define

a1 =4(M + 1)(γ − γ2)P 2, a2 = (π2 + 2Pπγ),

a3 =4P 2(−1 + γ)γ +KPπ(π − 2πγ + 2γ(1 + P − Pγ))

+ π2T + 2PπγT,

a4 =K2P 2(π2 − 2π)(γ − γ2) +KP (π2 − 2π)γT.

Then we denote {γ∗, τ∗} to be the solution of (27), such

that γ∗P = τ∗ρ∗p is the optimal energy for training, and

(1 − γ∗)P = (T − τ∗)ρ∗d is the optimal amount for data

transmission. Next we choose τ̄ = K , ρ̄p = γ∗P/τ̄ and

ρ̄d = (1−γ∗)P/(T − τ̄). Clearly, the function of (28) is not a

monotonic function with respect to τ with a given γ∗. That is

to say, it is difficult to compare the values of S low(γ∗, τ∗)
and S low(γ∗, τ̄). Although we cannot obtain a closed-form

expression for τ∗, we can numerically determine τ∗ and γ∗.

For the simulations in the next section, we used the fmincon

function in Matlab for the optimization. As we will show in the

next section, unlike conventional MIMO systems, the optimal

training duration depends on the coherence interval T and the

total energy budget P .

Case II: In this case, the optimization problem of (26)

simplifies to

maximize S low|ρp=ρd=ρ,

subject to K ≤ τ ≤ T. (29)

Obviously, there exists a tradeoff between the training duration

τ and the data transmission duration T − τ . As we increase

τ , the accuracy of the channel estimate improves, thereby

increasing the sum spectral efficiency. On the other hand, as

τ increases, the data transmission duration decreases, thereby

decreasing the sum spectral efficiency. As in the previous case,

we obtain the optimal τ by solving (29) numerically.

V. NUMERICAL RESULTS

For the simulations, we assume a one-bit massive MIMO

system with M = 128 BS antennas and K = 8 users. In all

plots, the curves for conventional massive MIMO are obtained

using the approximate closed-form expression of the uplink

achievable rate from [2].

We first evaluate the validity of our obtained approximate

expression of the achievable rate with the ergodic expressions

given in (15) and (25), respectively. Figure 1 illustrates the

sum spectral efficiency versus SNR with different numbers
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Fig. 2. Sum spectral efficiency versus the length of the coherence interval T
for conventional and one-bit massive MIMO systems with M = 128, K = 8
and ρ = −10dB.

of transmit antennas M = {32, 64, 128} for T = 200, and

τ = 16. The results show that the gap between the approximate

expression and the ergodic achievable rate can be neglected,

and thus in the following plots we use the approximation.

Figure 2 shows the sum spectral efficiency versus the length

of the coherence interval for conventional and one-bit massive

MIMO systems with ρ = −10dB. We see that the performance

gap between the case of optimized ρp and ρd and the case of

ρp = ρd = ρ is large for conventional massive MIMO system,

but almost negligible for one-bit massive MIMO systems. One

may conclude from this that the power optimization is not

useful for one-bit systems since allowing different power levels

between training and data transmission may be a complicated

feature to implement at the user terminals.

Figure 3 compares the optimal training duration versus the

average transmit power for conventional and one-bit massive

MIMO systems assuming T = {100, 200}. For conventional

massive MIMO systems, the optimal training duration is τ∗ =
K for Case I, while it changes with the total energy budget

for Case II. However, for one-bit massive MIMO systems,
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Fig. 3. Optimal training duration versus average transmit power ρ for
conventional and one-bit massive MIMO systems with M = 128, K = 8
and T = {100, 200}.
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Fig. 4. Optimal training duration versus the length of coherent interval for
two cases in conventional massive MIMO and one-bit massive MIMO systems
with M = 128, K = 8 and ρ = −10dB.

the optimal training duration changes with transmit power in

both cases. In addition, sum spectral efficiency is enhanced

with more training in one-bit massive MIMO compared with

conventional systems for all power levels, indicating that more

training is necessary to combat the quantization noise.

Figure 4 shows the optimal training duration versus the

length of coherence interval with ρ = −10dB for conventional

and one-bit massive MIMO systems. We again see that, for

Case I, the optimal training duration in conventional massive

MIMO systems always equals K , while in one-bit massive

MIMO it increases with T . We also see again that the one-bit

system requires a larger proportion of the coherence interval

devoted to training than in a conventional system.

VI. CONCLUSIONS

This paper has investigated the optimal training duration

and training vs. data power allocation that maximizes the sum

spectral efficiency for massive MIMO systems with one-bit

ADCs. Assuming the BS employs LMMSE channel estimation



and the MRC receiver to detect the data symbols, we first

obtained an approximate expression for the uplink achievable

rate in the low SNR region. Then we optimized this expression

over the amount of the coherence interval spent on training for

two different power allocations: optimized training and data

transmission power, and equal training and data transmission

power. When the power allocation is optimized, conventional

systems always choose the number of training symbols equal

to the number of users, while for one-bit systems the optimal

training duration depends on both the coherence interval and

the power budget. For equal power allocation, the optimal

training duration also varies with these parameters, but one-bit

systems always appear to require a higher fraction of symbols

devoted to training in order to maximize the sum spectral

efficiency.
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APPENDIX A

According to [16, Lemma 1], we can approximate the

ergodic achievable rate R̃k by

Rk = log2
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, (30)

where we define

UIk = ρd
∑K

i6=k
E
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∣

∣

∣ĥ
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2
}

(31)

ANk = E

{

∥

∥

∥
ĥ
H

k
Ad

∥

∥

∥

2
}

, QNk = E
{

ĥ
H

k
Cqdqd

ĥk

}

, (32)

and where the expectation is taken with respect to the channel

realizations. For different channel realizations, the covariance

matrix of the quantization noise qd is given by

E{qdq
H
d } = E{rdrHd } − α2

dE{ydy
H
d } = (1 − 2/π)I . (33)

By choosing Ad = αdI according to the Bussgang decompo-

sition, qd is not only uncorrelated with the received signal yd,

but it is also uncorrelated with the channel H. Therefore, we

have
E
{

ĥ
H

k
Cqdqd

ĥk

}

= (1 − 2/π)E
{

‖ĥk‖
2

}

. (34)

Next we calculate the expectation terms shown above.

Recall that we model each element of the channel estimate

ĥ as Gaussian with zero mean and variance η2. Hence, each

element of the channel estimation error E can be modeled

as Gaussian with zero mean and variance 1 − η2. Therefore,

according to the law of large numbers, we can obtain

E
{

‖ĥk‖
2

}

= η2M ; E

{

∣

∣

∣
ĥ
H

k
hi

∣

∣

∣

2
}

= η2M, i 6= k (35)

E

{

∣

∣

∣ĥ
H

k
Adεk
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2
}

∼= α2

d
η2(1− η2)M (36)

E

{

∣

∣

∣ĥ
H

k
Adĥk

∣

∣

∣

2
}

= α2

d
η4(M2 +M) . (37)

Substituting (35)-(37) into (30), we arrive at the result of

Theorem 1.
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