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Abstract

In this paper, we show that Multilingual BERT

(M-BERT), released by Devlin et al. (2019)

as a single language model pre-trained from

monolingual corpora in 104 languages, is

surprisingly good at zero-shot cross-lingual

model transfer, in which task-specific annota-

tions in one language are used to fine-tune the

model for evaluation in another language. To

understand why, we present a large number of

probing experiments, showing that transfer is

possible even to languages in different scripts,

that transfer works best between typologically

similar languages, that monolingual corpora

can train models for code-switching, and that

the model can find translation pairs. From

these results, we can conclude that M-BERT

does create multilingual representations, but

that these representations exhibit systematic

deficiencies affecting certain language pairs.

1 Introduction

Deep, contextualized language models provide

powerful, general-purpose linguistic represen-

tations that have enabled significant advances

among a wide range of natural language process-

ing tasks (Peters et al., 2018b; Devlin et al., 2019).

These models can be pre-trained on large corpora

of readily available unannotated text, and then

fine-tuned for specific tasks on smaller amounts of

supervised data, relying on the induced language

model structure to facilitate generalization beyond

the annotations. Previous work on model prob-

ing has shown that these representations are able to

encode, among other things, syntactic and named

entity information, but they have heretofore fo-

cused on what models trained on English capture

about English (Peters et al., 2018a; Tenney et al.,

2019b,a).
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In this paper, we empirically investigate the

degree to which these representations generalize

across languages. We explore this question us-

ing Multilingual BERT (henceforth, M-BERT), re-

leased by Devlin et al. (2019) as a single language

model pre-trained on the concatenation of mono-

lingual Wikipedia corpora from 104 languages.1

M-BERT is particularly well suited to this probing

study because it enables a very straightforward ap-

proach to zero-shot cross-lingual model transfer:

we fine-tune the model using task-specific super-

vised training data from one language, and evalu-

ate that task in a different language, thus allowing

us to observe the ways in which the model gener-

alizes information across languages.

Our results show that M-BERT is able to

perform cross-lingual generalization surprisingly

well. More importantly, we present the results of

a number of probing experiments designed to test

various hypotheses about how the model is able to

perform this transfer. Our experiments show that

while high lexical overlap between languages im-

proves transfer, M-BERT is also able to transfer

between languages written in different scripts—

thus having zero lexical overlap—indicating that

it captures multilingual representations. We fur-

ther show that transfer works best for typolog-

ically similar languages, suggesting that while

M-BERT’s multilingual representation is able to

map learned structures onto new vocabularies, it

does not seem to learn systematic transformations

of those structures to accommodate a target lan-

guage with different word order.

2 Models and Data

Like the original English BERT model (hence-

forth, EN-BERT), M-BERT is a 12 layer trans-

former (Devlin et al., 2019), but instead of be-

1https://github.com/google-research/bert
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Fine-tuning \ Eval EN DE NL ES

EN 90.70 69.74 77.36 73.59
DE 73.83 82.00 76.25 70.03
NL 65.46 65.68 89.86 72.10
ES 65.38 59.40 64.39 87.18

Table 1: NER F1 results on the CoNLL data.

ing trained only on monolingual English data with

an English-derived vocabulary, it is trained on the

Wikipedia pages of 104 languages with a shared

word piece vocabulary. It does not use any marker

denoting the input language, and does not have

any explicit mechanism to encourage translation-

equivalent pairs to have similar representations.

For NER and POS, we use the same sequence

tagging architecture as Devlin et al. (2019). We to-

kenize the input sentence, feed it to BERT, get the

last layer’s activations, and pass them through a fi-

nal layer to make the tag predictions. The whole

model is then fine-tuned to minimize the cross en-

tropy loss for the task. When tokenization splits

words into multiple pieces, we take the prediction

for the first piece as the prediction for the word.

2.1 Named entity recognition experiments

We perform NER experiments on two datasets:

the publicly available CoNLL-2002 and -2003

sets, containing Dutch, Spanish, English, and Ger-

man (Tjong Kim Sang, 2002; Sang and Meulder,

2003); and an in-house dataset with 16 languages,2

using the same CoNLL categories. Table 1 shows

M-BERT zero-shot performance on all language

pairs in the CoNLL data.

2.2 Part of speech tagging experiments

We perform POS experiments using Universal De-

pendencies (UD) (Nivre et al., 2016) data for 41

languages.3 We use the evaluation sets from Ze-

man et al. (2017). Table 2 shows M-BERT zero-

shot results for four European languages. We see

that M-BERT generalizes well across languages,

achieving over 80% accuracy for all pairs.

2Arabic, Bengali, Czech, German, English, Spanish,
French, Hindi, Indonesian, Italian, Japanese, Korean, Por-
tuguese, Russian, Turkish, and Chinese.

3Arabic, Bulgarian, Catalan, Czech, Danish, German,
Greek, English, Spanish, Estonian, Basque, Persian, Finnish,
French, Galician, Hebrew, Hindi, Croatian, Hungarian, In-
donesian, Italian, Japanese, Korean, Latvian, Marathi, Dutch,
Norwegian (Bokmaal and Nynorsk), Polish, Portuguese (Eu-
ropean and Brazilian), Romanian, Russian, Slovak, Slove-
nian, Swedish, Tamil, Telugu, Turkish, Urdu, and Chinese.

Fine-tuning \ Eval EN DE ES IT

EN 96.82 89.40 85.91 91.60
DE 83.99 93.99 86.32 88.39
ES 81.64 88.87 96.71 93.71
IT 86.79 87.82 91.28 98.11

Table 2: POS accuracy on a subset of UD languages.

Figure 1: Zero-shot NER F1 score versus entity word

piece overlap among 16 languages. While performance

using EN-BERT depends directly on word piece over-

lap, M-BERT’s performance is largely independent of

overlap, indicating that it learns multilingual represen-

tations deeper than simple vocabulary memorization.

3 Vocabulary Memorization

Because M-BERT uses a single, multilingual vo-

cabulary, one form of cross-lingual transfer occurs

when word pieces present during fine-tuning also

appear in the evaluation languages. In this sec-

tion, we present experiments probing M-BERT’s

dependence on this superficial form of generaliza-

tion: How much does transferability depend on

lexical overlap? And is transfer possible to lan-

guages written in different scripts (no overlap)?

3.1 Effect of vocabulary overlap

If M-BERT’s ability to generalize were mostly

due to vocabulary memorization, we would expect

zero-shot performance on NER to be highly depen-

dent on word piece overlap, since entities are of-

ten similar across languages. To measure this ef-

fect, we compute Etrain and Eeval, the sets of word

pieces used in entities in the training and evalu-

ation datasets, respectively, and define overlap as

the fraction of common word pieces used in the

entities: overlap = |Etrain∩Eeval| / |Etrain∪Eeval|.

Figure 1 plots NER F1 score versus entity over-

lap for zero-shot transfer between every language

pair in an in-house dataset of 16 languages, for

both M-BERT and EN-BERT.4 We can see that

4Results on CoNLL data follow the same trends, but those
trends are more apparent with 16 languages than with 4.



4998

Model EN DE NL ES

Lample et al. (2016) 90.94 78.76 81.74 85.75
EN-BERT 91.07 73.32 84.23 81.84

Table 3: NER F1 results fine-tuning and evaluating on

the same language (not zero-shot transfer).

performance using EN-BERT depends directly on

word piece overlap: the ability to transfer dete-

riorates as word piece overlap diminishes, and F1

scores are near zero for languages written in differ-

ent scripts. M-BERT’s performance, on the other

hand, is flat for a wide range of overlaps, and even

for language pairs with almost no lexical overlap,

scores vary between 40% and 70%, showing that

M-BERT’s pretraining on multiple languages has

enabled a representational capacity deeper than

simple vocabulary memorization.5

To further verify that EN-BERT’s inability to

generalize is due to its lack of a multilingual rep-

resentation and not an inability of its English-

specific word piece vocabulary to represent data in

other languages, we evaluate on non-cross-lingual

NER and see that it performs comparably to a pre-

vious state of the art model (see Table 3).

3.2 Generalization across scripts

M-BERT’s ability to transfer between languages

that are written in different scripts, and thus have

effectively zero lexical overlap, is surprising given

that it was trained on separate monolingual cor-

pora and not with a multilingual objective. To

probe deeper into how the model is able to per-

form this generalization, Table 4 shows a sample

of POS results for transfer across scripts.

Among the most surprising results, an M-BERT

model that has been fine-tuned using only POS-

labeled Urdu (written in Arabic script), achieves

91% accuracy on Hindi (written in Devanagari

script), even though it has never seen a single POS-

tagged Devanagari word. This provides clear ev-

idence of M-BERT’s multilingual representation

ability, mapping structures onto new vocabularies

based on a shared representation induced solely

from monolingual language model training data.

However, cross-script transfer is less accurate

for other pairs, such as English and Japanese, indi-

cating that M-BERT’s multilingual representation

is not able to generalize equally well in all cases.

A possible explanation for this, as we will see in

section 4.2, is typological similarity. English and

Japanese have a different order of subject, verb

5Individual language trends are similar to aggregate plots.

HI UR

HI 97.1 85.9
UR 91.1 93.8

EN BG JA

EN 96.8 87.1 49.4
BG 82.2 98.9 51.6
JA 57.4 67.2 96.5

Table 4: POS accuracy on the UD test set for languages

with different scripts. Row=fine-tuning, column=eval.

and object, while English and Bulgarian have the

same, and M-BERT may be having trouble gener-

alizing across different orderings.

4 Encoding Linguistic Structure

In the previous section, we showed that M-BERT’s

ability to generalize cannot be attributed solely

to vocabulary memorization, and that it must be

learning a deeper multilingual representation. In

this section, we present probing experiments that

investigate the nature of that representation: How

does typological similarity affect M-BERT’s abil-

ity to generalize? Can M-BERT generalize from

monolingual inputs to code-switching text? Can

the model generalize to transliterated text without

transliterated language model pretraining?

4.1 Effect of language similarity

Following Naseem et al. (2012), we compare lan-

guages on a subset of the WALS features (Dryer

and Haspelmath, 2013) relevant to grammatical

ordering.6 Figure 2 plots POS zero-shot accuracy

against the number of common WALS features.

As expected, performance improves with similar-

ity, showing that it is easier for M-BERT to map

linguistic structures when they are more similar,

although it still does a decent job for low similar-

ity languages when compared to EN-BERT.

4.2 Generalizing across typological features

Table 5 shows macro-averaged POS accuracies for

transfer between languages grouped according to

two typological features: subject/object/verb or-

der, and adjective/noun order7 (Dryer and Haspel-

math, 2013). The results reported include only

zero-shot transfer, i.e. they do not include cases

681A (Order of Subject, Object and Verb), 85A (Order of
Adposition and Noun), 86A (Order of Genitive and Noun),
87A (Order of Adjective and Noun), 88A (Order of Demon-
strative and Noun), and 89A (Order of Numeral and Noun).

7SVO languages: Bulgarian, Catalan, Czech, Danish,
English, Spanish, Estonian, Finnish, French, Galician, He-
brew, Croatian, Indonesian, Italian, Latvian, Norwegian
(Bokmaal and Nynorsk), Polish, Portuguese (European and
Brazilian), Romanian, Russian, Slovak, Slovenian, Swedish,
and Chinese. SOV Languages: Basque, Farsi, Hindi,
Japanese, Korean, Marathi, Tamil, Telugu, Turkish, and
Urdu.
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Figure 2: Zero-shot POS accuracy versus number of

common WALS features. Due to their scarcity, we ex-

clude pairs with no common features.

SVO SOV

SVO 81.55 66.52
SOV 63.98 64.22

(a) Subj./verb/obj. order.

AN NA

AN 73.29 70.94
NA 75.10 79.64

(b) Adjective/noun order.

Table 5: Macro-average POS accuracies when trans-

ferring between SVO/SOV languages or AN/NA lan-

guages. Row = fine-tuning, column = evaluation.

training and testing on the same language. We

can see that performance is best when transferring

between languages that share word order features,

suggesting that while M-BERT’s multilingual rep-

resentation is able to map learned structures onto

new vocabularies, it does not seem to learn sys-

tematic transformations of those structures to ac-

commodate a target language with different word

order.

4.3 Code switching and transliteration

Code-switching (CS)—the mixing of multi-

ple languages within a single utterance—and

transliteration—writing that is not in the lan-

guage’s standard script—present unique test cases

for M-BERT, which is pre-trained on monolingual,

standard-script corpora. Generalizing to code-

switching is similar to other cross-lingual trans-

fer scenarios, but would benefit to an even larger

degree from a shared multilingual representation.

Likewise, generalizing to transliterated text is sim-

ilar to other cross-script transfer experiments, but

has the additional caveat that M-BERT was not

pre-trained on text that looks like the target.

We test M-BERT on the CS Hindi/English UD

corpus from Bhat et al. (2018), which provides

texts in two formats: transliterated, where Hindi

words are written in Latin script, and corrected,

where annotators have converted them back to De-

vanagari script. Table 6 shows the results for mod-

Corrected Transliterated

Train on monolingual HI+EN

M-BERT 86.59 50.41
Ball and Garrette (2018) — 77.40

Train on code-switched HI/EN

M-BERT 90.56 85.64
Bhat et al. (2018) — 90.53

Table 6: M-BERT’s POS accuracy on the code-switched

Hindi/English dataset from Bhat et al. (2018), on

script-corrected and original (transliterated) tokens,

and comparisons to existing work on code-switch POS.

els fine-tuned using a combination of monolingual

Hindi and English, and using the CS training set

(both fine-tuning on the script-corrected version of

the corpus as well as the transliterated version).

For script-corrected inputs, i.e., when Hindi

is written in Devanagari, M-BERT’s performance

when trained only on monolingual corpora is com-

parable to performance when training on code-

switched data, and it is likely that some of the

remaining difference is due to domain mismatch.

This provides further evidence that M-BERT uses

a representation that is able to incorporate infor-

mation from multiple languages.

However, M-BERT is not able to effectively

transfer to a transliterated target, suggesting that

it is the language model pre-training on a particu-

lar language that allows transfer to that language.

M-BERT is outperformed by previous work in

both the monolingual-only and code-switched su-

pervision scenarios. Neither Ball and Garrette

(2018) nor Bhat et al. (2018) use contextualized

word embeddings, but both incorporate explicit

transliteration signals into their approaches.

5 Multilingual characterization of the

feature space

In this section, we study the structure of

M-BERT’s feature space. If it is multilingual, then

the transformation mapping between the same

sentence in 2 languages should not depend on the

sentence itself, just on the language pair.

5.1 Experimental Setup

We sample 5000 pairs of sentences from WMT16

(Bojar et al., 2016) and feed each sentence (sep-

arately) to M-BERT with no fine-tuning. We

then extract the hidden feature activations at each

layer for each of the sentences, and average the

representations for the input tokens except [CLS]

and [SEP], to get a vector for each sentence, at

each layer l, v
(l)
LANG. For each pair of sentences,
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Figure 3: Accuracy of nearest neighbor translation for

EN-DE, EN-RU, and HI-UR.

e.g. (v
(l)
ENi

, v
(l)
DEi

), we compute the vector point-

ing from one to the other and average it over all

pairs: v̄
(l)
EN→DE = 1

M

∑

i

(

v
(l)
DEi

− v
(l)
ENi

)

, where M

is the number of pairs. Finally, we translate each

sentence, v
(l)
ENi

, by v̄
(l)
EN→DE, find the closest Ger-

man sentence vector8, and measure the fraction

of times the nearest neighbour is the correct pair,

which we call the “nearest neighbor accuracy”.

5.2 Results

In Figure 3, we plot the nearest neighbor accu-

racy for EN-DE (solid line). It achieves over 50%
accuracy for all but the bottom layers,9 which

seems to imply that the hidden representations, al-

though separated in space, share a common sub-

space that represents useful linguistic information,

in a language-agnostic way. Similar curves are ob-

tained for EN-RU, and UR-HI (in-house dataset),

showing this works for multiple languages.

As to the reason why the accuracy goes down in

the last few layers, one possible explanation is that

since the model was pre-trained for language mod-

eling, it might need more language-specific infor-

mation to correctly predict the missing word.

6 Conclusion

In this work, we showed that M-BERT’s ro-

bust, often surprising, ability to generalize cross-

lingually is underpinned by a multilingual repre-

sentation, without being explicitly trained for it.

The model handles transfer across scripts and to

code-switching fairly well, but effective transfer to

typologically divergent and transliterated targets

8In terms of ℓ2 distance.
9Our intuition is that the lower layers have more “token

level” information, which is more language dependent, par-
ticularly for languages that share few word pieces.

will likely require the model to incorporate an ex-

plicit multilingual training objective, such as that

used by Lample and Conneau (2019) or Artetxe

and Schwenk (2018).

As to why M-BERT generalizes across lan-

guages, we hypothesize that having word pieces

used in all languages (numbers, URLs, etc) which

have to be mapped to a shared space forces the

co-occurring pieces to also be mapped to a shared

space, thus spreading the effect to other word

pieces, until different languages are close to a

shared space.

It is our hope that these kinds of probing exper-

iments will help steer researchers toward the most

promising lines of inquiry by encouraging them to

focus on the places where current contextualized

word representation approaches fall short.
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A Model Parameters

All models were fine-tuned with a batch size

of 32, and a maximum sequence length of

128 for 3 epochs. We used a learning rate

of 3e−5 with learning rate warmup during the

first 10% of steps, and linear decay after-

wards. We also applied 10% dropout on the

last layer. No parameter tuning was performed.

We used the BERT-Base, Multilingual

Cased checkpoint from https://github.

com/google-research/bert.

B CoNLL Results for EN-BERT

Fine-tuning \Eval EN DE NL ES

EN 91.07 24.38 40.62 49.99
DE 55.36 73.32 54.84 50.80
NL 59.36 27.57 84.23 53.15
ES 55.09 26.13 48.75 81.84

Table 7: NER results on the CoNLL test sets for

EN-BERT. The row is the fine-tuning language, the

column the evaluation language. There is a big

gap between this model’s zero-shot performance and

M-BERT’s, showing that the pre-training is helping in

cross-lingual transfer.

C Some POS Results for EN-BERT

Fine-tuning \Eval EN DE ES IT

EN 96.94 38.31 50.38 46.07
DE 28.62 92.63 30.23 25.59
ES 28.78 46.15 94.36 71.50
IT 52.48 48.08 76.51 96.41

Table 8: POS accuracy on the UD test sets for a subset

of European languages using EN-BERT. The row spec-

ifies a fine-tuning language, the column the evaluation

language. There is a big gap between this model’s zero-

shot performance and M-BERT’s, showing the pre-

training is helping learn a useful cross-lingual repre-

sentation for grammar.

https://github.com/google-research/bert
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