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ABSTRACT

The 2017 Event Horizon Telescope (EHT) observations of M87* detected a ring-shaped feature ~ 40uas in diameter, consistent
with the event horizon scale of a black hole of the expected mass. The thickness of this ring, however, proved difficult to measure,
despite being an important parameter for constraining the observational appearance. In the first paper of this series we asked
whether the width of the ring was sensitive to the choice of likelihood function used to compare observed closure phases and
closure amplitudes to model predictions. In this paper we investigate whether the ring width is robust to changes in the model
itself. We construct a more realistic geometric model with two new features: an adjustable radial falloff in brightness, and a
secondary “photon ring” component in addition to the primary annulus. This thin, secondary ring is predicted by gravitational
lensing for any black hole with an optically thin accretion flow. Analyzing the data using the new model, we find that the primary
annulus remains narrow (fractional width < 0.25) even with the added model freedom. This provides further evidence in favor of
a narrow ring for the true sky appearance of M87%*, a surprising feature that, if confirmed, would demand theoretical explanation.
Comparing the Bayesian evidence for models with and without a secondary ring, we find no evidence for the presence of a lensed
photon ring in the 2017 observations. However, the techniques we introduce may prove useful for future observations with a
larger and more sensitive array.

Key words: galaxies: nuclei — (galaxies:) quasars: supermassive black holes — submillimetre: galaxies — black hole physics —

techniques: interferometric

1 INTRODUCTION

The initial analysis of the 2017 Event Horizon Telescope (EHT) data
demonstrated that the observational appearance of M87* is predom-
inantly ring-shaped (Event Horizon Telescope Collaboration et al.
2019a,b,c,d,e,f, henceforth EHT I-VI). The gross features of the im-
age — the presence of a central brightness depression, the diameter of
the surrounding annulus (approximately 40 micro-arcseconds (uas)
across), as well as the direction of a brightness asymmetry — were
all found to be robust across different analysis methods and observa-
tion days. These features agree with models of synchrotron emission
from matter accreting onto a black hole, and provide the most direct
evidence to date that M87* is indeed a supermassive black hole.

In contrast, the analysis was unable to constrain the thickness of the
annulus to the same degree. This parameter is important because the
radial profile of the image is directly related to the emission profile
of the accretion disk. Although light emitted near the horizon is bent
significantly by the gravitational field on its way to the observer,
rays from the from the foreground / mid-plane region remain mostly
parallel, so that the actual distortion of the image is small (see Paper I,
Sec 2.2). Since the radial brightness pattern arrives relatively intact,
constraining it could ultimately help to discriminate between different
models of the accretion flow around M87*.

In Paper I of this series we pointed out that the fractional width of
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fw ~ 0.25 inferred from geometric modeling is on the lower end of
expectation and differs significantly from the widths inferred from
the EHT imaging pipeline, while at least some modeling results were
so thin that they are inconsistent with predictions. In that paper we
re-examined the data using a slightly different likelihood function
in the analysis and found that, while the diameter and brightness
gradient were unaffected, the width of the ring was sensitive to this
change, underscoring the difficulty of pinning down this parameter.

Past modeling efforts by the authors (Paper I) and by the EHT
collaboration (EHT VI) used a geometric model called “xs-ring”.1
In our view, while xs-ring is well-suited for determining whether
the image must be ring-like (i.e., must have a central brightness
depression), it is not necessarily adequate for constraining the radial
profile. We will highlight two drawbacks of this model: a necessarily
fast brightness falloff, and the lack of a thin, ‘photon ring’ component.
Does the strictly prescribed brightness falloff bias the results? Might
it be that the xsring model produces thin rings because it is trying
to simultaneously fit a wider annulus and a much narrower photon
ring? To address these questions, here we design a new geometric
model in an effort to better understand the constraints on the width
of the M87* annulus.

The xs-ring model has two major limitations. The first is that the
radial falloff in brightness on the outer edge of the ring is always ex-
tremely fast. The shape of the outer edge is the result of blurring a step

1 A nearly identical model xs-ringauss was also explored in EHT VI.
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function with a Gaussian kernel, so the decay is necessarily Gaus-
sian. The emissivity of the accretion disk, however, may decrease
with distance much more slowly than that. A recent study concluded
that the decay is likely to be exponential under the conditions ex-
pected near M87* (Vincent et al. 2022), and power-law decay is also
a reasonable possibility. It is therefore quite natural to ask whether
allowing for slower radial falloff in the model is necessary to properly
constrain the width of the ring.

The second limitation of xs-ring is that it does not include a photon
ring. If the accreting material around M87* is optically thin, as
is widely believed (EHT I), then the image must contain a lensed
component coming from photons that orbit the black hole (possibly
multiple times) before reaching the observer (Luminet 1979). These
trajectories all appear on the image plane near a critical curve, where
photons sent backwards from the image plane would asymptote to
a bound orbit (Bardeen 1973). For a disk-like source, this lensed
component takes the shape of a narrow ring known as the photon
ring.2 Because the critical curve is a property of the black hole
spacetime only, independent of the nature of the surrounding matter,
the diameter of the photon ring is a robust measure of the mass-over-
distance ratio of the black hole. Detecting the photon ring would
verify a basic prediction of general relativity, while measuring its
diameter would provide a black hole mass measurement independent
of astrophysical assumptions.

The width of the photon ring in most models is only ~ 2-3uas
[e.g., Johnson et al. (2020, Fig. 3), or Chael et al. (2021, Fig. 7)],
which is well below the nominal EHT imaging resolution of ~ 20uas.
However, it may still be possible to infer its presence from fitting mod-
els in the visibility domain. A useful case study is the lensed dusty
star-forming galaxy SPT0346-52, in which lens modeling correctly
predicted a distinct substructure well below the initial image resolu-
tion [see Hezaveh et al. (2016, Figs. 4 and 9) and Spilker et al. (2016,
Fig. 2)]. In this example, the prediction was reliable because the possi-
ble shapes of lensed sources are tightly constrained by the calculable
effects of weak field lensing and the known properties of galaxies. In
the case of M87%*, our knowledge of black hole lensing is compara-
bly advanced—the photon ring properties are tightly constrained by
established theory (Gralla et al. 2019)—but our knowledge of the ba-
sic source structure is not. Nevertheless, the demonstrated power of
visibility-domain fitting—together with the fundamental importance
of the photon ring—motivate a direct search in the M87* data.

We will refer to the main annular structure of the image as the
“annulus” or “primary ring”, and we refer to the thin ring component
as the “photon ring” or “secondary ring”. As we investigate the
effect (or lack thereof) of the two additional model freedoms that
have been introduced, we continue to focus on the fractional width
of the primary ring. In general, the parameters of the primary ring
are found to be independent of whether the photon ring is included.
The diameter and orientation of the primary ring are very similar
to what was found with the xs-ring model. The fractional width also
remains at fy, < 0.25, and if anything is found to be even narrower
than xs-ring, a surprising result given that the new model has more
freedom to fit broader disks. This result affirms the narrowness of
the image, favoring a more sharply peaked emitting region in the
accreting plasma. Finally, we perform a test of the Bayesian evidence
of models with and without a photon ring, and find that in some cases
the analysis favors the model with a photon ring, while in others it

2 In general there will be a sequence of increasingly narrow photon rings
converging to the critical curve. The higher order rings contain negligible
flux density (Gralla et al. 2019) and are ignored in this study.
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favors the opposite. Given these conflicting results, we conclude
there is no evidence for the presence of a photon ring in the 2017
observations.

In Sec. 2 we describe the construction of our new geometric model,
and in Sec. 3 we present results for its use on the 2017 data set. In
Sec. 4 we compare to other work. We conclude and discuss some
future directions in Sec. 5.

2 REFINING THE MODEL

The interferometric data collected by the EHT comes in the form of
visibilities: complex-valued components of the Fourier transform of
the underlying image brightness (Thompson et al. 2017). When con-
structing a model for the image, the simplest route is to build it directly
in the Fourier (aka visibility) domain, allowing for a computationally
fast comparison between model and data. This is an advantage of the
xs-ring model: its Fourier transform is analytic, so it can be expressed
in the visibility domain from the beginning. To describe a disk with
a slower radial falloff, we need to go beyond purely analytic models.
Some components of the model can still be computed analytically —
in particular, the photon ring and any nuisance parameters — but we
will have to compute the visibilities of the disk numerically. So our
strategy is semi-analytic: we start with a model of the primary ring
in the image space, take a numerical Fourier transform, and then add
the other components. We call this numerical disk model “ndisk”,
and when a photon ring is added on top, “ndisk+”. We consider two
choices for the radial brightness function: an exponential decay, and
a power-law decay. The steepness of the falloff in either case is con-
trolled by a single parameter, corresponding either to the exponential
decay rate or the power law index.

2.1 Construction of the NDISK+ Model

To construct our model we begin with an exponentially decaying
radial function, with the interior cut off by a step function at some
radius Rg. We add a dipolar brightness modulation to simulate the
effects of Doppler beaming from an inclined disk of orbiting matter.
The result is

0, r <Ry

, 1
Voe ™ /Ro(1+Bx’[r) /Iy, r > Ry M

Dexp(X, y) = {
where x” = xcos¢ + ysing, ¢ is the direction of the gradient, 3
controls the strength of the gradient, V) is the total flux density, and
Iy is a normalization constant given by

1+
Ip = 27R} ( 2’") e,
m

We compute the Fourier transform of the disk, D (u, v), numerically
(see App. A for details), and then blur it with a Gaussian kernel
of width o. This blurring mainly serves to soften the inner edge
(previously a step function). Since the falloff far from the center
is slower than Gaussian, the rest of the disk is not affected by this
blurring very much as long as o is not too large.

Next we add a second component to the model: an infinitesimally
thin ring of radius R whose total flux density VA is a fraction A of
that of the main ring. The Doppler boost from the source’s orbital
motion brightens the photon ring on the same side as the main ring
(even though the rays are initially emitted backward), as seen in both
analytic (Gralla et al. 2020; Chael et al. 2021) and general-relativistic
magnetohydrodynamic (GRMHD) models (Johnson et al. 2020). We
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Figure 1. An example image generated from the ndisk+ model with expo-
nential decay. Parameters are: {Ry = 15,m =2,8 =04, ¢ =3n/2,0 =
4,A = 0.1, R = 25}. Cross-sections through y = 0 and x = 0 are shown
above and to the right of the image respectively. The brightness gradient is
clearly visible in the vertical cross-section. The photon ring — while truly
infinitesimal in the model — has been blurred in this image with a Gaussian
kernel of width o~ = 0.5uas for illustration, making its width and brightness
consistent with expectations.

therefore consider a photon ring component with the same dipolar
modulation,

A ’
Z(x.y) = 5 Vo3(r = R) (1+/3x7). )

The Fourier transform can be done analytically:
’
Z(u,v) =AVy (Jo(Zan) -Bi (u_) J1 (27er)) . 3)
P
Here p = Vu? +v?2 is the radial distance in Fourier space, u’ =
ucos ¢ + vsing is a rotated coordinate, and Jy and J; are Bessel
functions. The final expression for the ndisk+ model is therefore

ndisk+(u, v) = 6_2”2‘72‘025(14, V) + Z(u,v). 4)

Fig. 1 shows one realization of the ndisk+ model. Taking a cross-
section through the origin, the radial brightness profile has a sharp
bump due to the photon ring, which lies just outside the peak bright-
ness of the primary ring. This example looks similar to the profiles
of GRMHD simulations in the MAD (magnetically arrested disk)
configuration (EHT V, Johnson et al. (2020), Chael et al. (2021)).
However, the model can also accommodate appearances similar to
SANE (standard and normal evolution) disks, where the emission
profile can be broader and the photon ring can be inside the central
dark area (EHT V). The ndisk model space also includes extreme
cases such as filled disks, meaning it is broad enough to accom-
modate the expected observational appearance, while not ruling out
surprises.

The power-law version of the model is exactly the same, except for
the original disk function D (x,y). For a power-law falloff, we have
instead
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Technically, the flux of this power-law disk does not converge for
m < 2, so we cut off the disk at some very large radius Rmax =
1000pas (this somewhat arbitrary value was chosen to lie well outside
the sampling window used to compute the Fourier transform — see
App. A). The normalization constant is now

(Rmax)>™™ = (Rp)>™
2-m '

]0=27T

Because we are fitting closure phases and closure amplitudes
(Thompson et al. 2017; Blackburn et al. 2020) (see Sec. 3 below),
the analysis is insensitive to the total flux in the image. Thus we can
hold the flux of the disk fixed—we choose Vjj = 1Jy—and elimi-
nate this degree of freedom from the model. (Closure quantities are
also insensitive to translations of the image, so no model degree of
freedom is needed for the location of the image center.) In total the
model has 7 parameters: 5 for the primary ring (Rg, m, 8, ¢, o) and
2 for the photon ring (A, R). All model parameters are given uniform
priors, which are listed in the following table:

Parameter  Prior Range
Ro 1 -50 pas
m 0-8
B 0-1
10) 0-2m
o 1 -20 pas
A 0-0.25
R 1 -50 pas

We cap the ratio of the photon ring to primary ring fluxat A < 25%.
In models of geometrically thin disks in the Kerr spacetime, the de-
magnification of the image that forms the photon ring is a factor of
10-20 (Gralla et al. 2019; Johnson et al. 2020; Gralla & Lupsasca
2020a), corresponding to a ring with ~ 5-10% as much flux as
the rest of the disk. With a thicker disk or more exotic emission
mechanisms it may be possible for the flux ratio to be higher, but we
are aware of no models in the literature where the ring flux exceeds
20% (Gralla 2021). We enforce this upper limit for practical reasons,
because if the photon ring is allowed to take on too much flux we
find there arises a swapping degeneracy between the photon ring and
the primary ring. To avoid this complication we restrict the photon
ring flux to physically realistic values.

2.2 Nuisance Parameters

As the authors and the EHTC did before, we add nuisance parameters
to the model in the form of elliptical Gaussians. For the time being,
this is an unavoidable compromise in order to fit this dataset with
such a simple model. Comparing results with different numbers of
nuisance parameters tests the robustness of the claims, ensuring they
are not simply an artifact of using an overly-simple model. Nuisance
parameters are given the same priors as in the xsring model (see
Paper I, Table Al).

Lastly, we follow EHTC and add a very large-scale circular Gaus-
sian, several orders of magnitude larger than the typical scale of the
image (EHT VI). This is intended to absorb unmodeled flux picked
up by intra-site baselines, which enters into our analysis indirectly

MNRAS 000, 1-9 (0000)
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through closure amplitudes. The large-scale Gaussian is modeled
with two free parameters as

G(p) = Vg e 27 oGP’ (6)

This is the same as equation 45 of EHT VI. The flux Vg is restricted
between 0 and 10, while the width of the Gaussian o is allowed
to vary from 102 to 10! arc-seconds (not micro-arcseconds). We
note that, while the large-scale Gaussian was omitted from xs-ring in
Paper I after it was found to be irrelevant to the final results, here we
have chosen to include it for completeness.

2.3 Derived Parameters

In our analysis we focus on five quantities {d, dying, 8, fw,m} that
are most relevant to the questions posed in this paper. They are:

d: diameter of the annulus
dring :  diameter of the photon ring
6 : position angle of brightest part of the annulus
fw : annulus fractional width
m : falloff parameter

Posterior distributions for these derived quantities are computed
directly from the sampled model parameters. Three of them are trivial
to calculate: the photon ring diameter is just twice its radius, dyjng =
2R; the position angle is the direction of the gradient measured East of
North, whichis just & = 90°—¢; and the falloff parameter m is a model
parameter already (it represents the falloff scale in the exponential
model (1), and the power-law index in the power-law model (5)). The
other two, annulus diameter and fractional width, must be measured
numerically in the image domain. To do this we rotate the image
so that the gradient is in the horizontal direction, and then take a
1-dimensional slice in the vertical direction, perpendicular to the
gradient. The diameter of the annulus d is defined as the distance
between the two peaks (note that this is nor simply 2R, because
the blurring of the inner edge of the annulus shifts the radius of
peak brightness in a non-trivial way). The width of the annulus w
is defined as the full width at half maximum (FWHM) of each peak
(the two peaks are identical because we sliced perpendicular to the
gradient). The fractional width is then given by f,, = w/d.

3 RESULTS

In this section we present the results of analyzing the ndisk and ndisk+
models, with both exponential and power-law brightness falloff. The
2017 data includes four observation days in two frequency bands, for
atotal of 8 datasets. To compute model posteriors we use the dynamic
nested sampling package DYNESTY (Speagle 2020), which is well-
suited for large parameter spaces and multi-modal distributions. Our
approach to model fitting is described in detail in Paper I, Secs. 3
and 4. The closure phase and closure amplitude are used as the
preferred data products to mitigate uncertainties coming from station
calibration. The new models are fit using what is called in that paper
the ‘fixed likelihood’ function, the same as what was used in the
EHTC analysis.

First we present posteriors for a single, representative dataset to
show the effect of adding the photon ring component. Then we ana-
lyze the model across all datasets. We compare the Bayesian evidence
for models with and without a photon ring, and discuss the fractional
width and brightness falloff rate of the primary ring.

MNRAS 000, 1-9 (0000)

3.1 A Representative Dataset

We begin by examining in detail the April 06 hi-band dataset, which
has the most data points and the highest overall signal-to-noise ratio.
We compare the ndisk and ndisk+ models with exponential falloff,
and four choices for the number of nuisance Gaussians included
in the model (0 — 3). Posteriors for the key parameters of interest
are represented in Figure 2; images corresponding to the best-fit
parameters from a few of these runs are shown in Figure 3. Visual
agreement with the data is shown for one example in Figure 4.3

The primary ring parameters are similar whether the secondary
ring is included or not, indicating that the secondary ring does not
play a major role in determining the posteriors (Figure 2). We note
that the fractional width is especially robust, more so than the decay
constant, whose variation is counteracted by other parameters of the
model (the smoothing constant o, for instance) to maintain a tight
constraint on the fractional width. Posteriors tend to stabilize after 2
nuisance Gaussians are included.

On the other hand, the photon ring diameter and flux fraction
vary greatly between runs, even after posteriors for the other main
parameters have stabilized. This behavior is similar to that of the
unphysical nuisance Gaussians, suggesting that, for the 2017 EHT
observations, the photon ring parameters are simply providing extra
model freedom, and do not represent any real feature of the sky
brightness. But to properly assess whether the photon can be detected,
we turn next to a different kind of test to specifically interrogate
whether there is evidence for its presence in the data.

3.2 Bayesian Evidence for a Photon Ring

To really test for the presence of a photon ring, we need to compare
the efficacy of a model that includes it with one that does not. To
do this we compute the marginal likelihood of each model, often
called the ‘Bayesian evidence’. We now briefly review this approach,
referring the reader to (e.g) Trotta (2008) for further details.

Let p(A|B) denote the probability (density) of A given B. Consider
a model M with parameters 6 assigned prior probabilities p (6| M).
For a set of data d, the model assigns a likelihood function p(d| M, 6)
to each set of parameters 6. The model evidence Z is defined to be
the likelihood of the model itself, p(d|M). The evidence can be
computed as an integral over the entire model space Q y4,
Z=p@m= [ plae Mp(oim . ™

Qum

While the evidence does not provide absolute information about the
quality of the model, relative information can be obtained if M exists
in a larger space of models. When only two models are considered,
the evidence ratio (sometimes called the “Bayes factor”) is the factor
by which the data changes the relative probability of the models. If
two models M and M, are considered equally likely before the data
are considered, the model M, is considered Z, /Z; times more likely
after the data are taken into account. For this reason, a “large” Bayes
factor [e.g., greater than 150, so log |Z,/Z1| > 5 (Jeffreys 1998)] is
considered evidence that M, is favored.

In the case where one model is a subset of the other, the Bayes fac-
tor is a way to quantify whether the additional parameters are pulling

3 Defining what constitutes a ‘good fit’ is subtle and somewhat fraught (see
Paper I, App. C), but one commonly used metric is the reduced chi-squared.
We find reduced chi-squared values near 1 when at least two Gaussians are
included in the model, and the fit shown in Fig. 4 has a chi-squared value that
is comparable to those found with xs-ring by EHTC (EHT VI).
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photon ring properties vary significantly.
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Figure 4. Best-fitting model and data points for an example run from Fig. 2.
This example has 2 nuisance Gaussians and no secondary ring. We plot the
absolute values of the closure phase and log closure amplitudes as a function
of the closure perimeter, defined as the sum of the lengths of the component
baselines. This fit has a reduced chi-squared value of /\/3 =1.17. (See Paper I
for definitions of closure quantities and reduced chi-squared.)

their weight. By integrating over the whole model space, a compari-
son of the evidence essentially reflects the average improvement, so
it is not overly influenced by the best fit. In a sense, the Bayesian
evidence is a means of quantifying the principle of Occam’s razor:
we want to balance the quality of the fit with the simplicity of the
model. Using DYNESTY we can compute the Bayesian evidence for
a model without a secondary ring, and a model with one.

Gaussians ~ Secondary Ring LogZ
1 no -18.0+ 04
1 yes -17.6 £ 0.4
2 no 81.6 £0.5
2 yes 85.7+0.5
3 no 763 +£0.5
3 yes 80.7 £ 0.5

The table above shows the logarithm of the Bayesian evidence
for different realizations of the model using the April 06-hi dataset.
First we can see from these numbers that, whether a photon ring is
included in the model or not, the evidence increases dramatically
when a second nuisance Gaussian is added, while the difference is
marginal upon adding a third. This pattern is repeated in the other
datasets as well. This tracks with the observation that the posteriors
converge after two Gaussians (Fig. 2), and suggests that 2-3 is the
most appropriate number to include to improve the flexibility of
the model without over-fitting. Some indication of this was given in
Paper I (Fig. C1) comparing the likelihoods of the best-fit models in
each case, but this is a more convincing result.

To examine the evidence for the photon ring, we restrict to just
the 2- and 3-Gaussian cases, and compute the Bayes factor between
the models with and without the photon ring for exponential and
power-law falloff models across all datasets. The results are shown
in Fig. 5. Overall, evidence for a photon ring is unconvincing; there
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Figure 5. No evidence for a photon ring. We show Bayes factors comparing
models with and without a secondary ring. Two colors differentiate whether
the falloff is exponential or power-law, and circles/squares indicate the number
of nuisance Gaussians, either 2 or 3. Alog Z, the difference in the logarithm
of the evidence between two models, is the log of their Bayes factor. Positive
values of AlogZ indicate evidence in favor of the secondary ring, while
negative values mean the ring is disfavored. The results are split roughly
evenly across the line Alog Z = 0, meaning there are as many cases for the
photon ring as against.

are as many instances where the photon ring is favored as where it is
disfavored. Ultimately this is an inconclusive result: we can neither
confirm nor rule out the presence of a photon ring around M87*.
Prospects for a future detection are discussed in Sec. 4.

3.3 Full Results for the Primary Ring

We will now examine what the full set of data can tell us about the
primary ring. Figure 6 summarizes the results of our analysis across
all 8 datasets. We find that the diameter and brightness orientation
angle of the disk are very similar to the results for the xs-ring model
reported in Paper I, as long as at least one nuisance Gaussian is
included in the latter. This supports the previously reported value of
d ~ 40puas, with a brighter side towards the Southern part of the sky.
Once again, the photon ring degree of freedom is largely irrelevant
to constraining the properties of the main ring.

Most interesting, and most relevant to the topic of this series,
is that the fractional width remains low—mean value less than or
equal to 0.2—even for this model. This is important because it need
not have been this way; this model has the freedom to choose a
much broader disk decaying at a leisurely rate, a regime that was
inaccessible to xs-ring. Yet despite the added freedom in the falloff
rate (and a secondary ring component), the fractional widths are even
a bit smaller than before.

The decay constant for both the exponential and power-law mod-
els shows significant variation across observation days, with mean
values ranging from 4 to 9. However, this entire range represents
significantly faster falloff than seen in models of M87%*. For example,
Fig. 7 of Chael et al. (2021) shows a roughly exponential falloff in
brightness for a radiative GRMHD model. Measuring the slope by
eye and picking Ry = 15uas to compare with our model (1), we see
that the effective falloff parameter m is no larger than 2. As a second
example, consider the semi-analytical models presented recently in
Vincent et al. (2022), which have a roughly exponential emission
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Figure 6. Posterior ranges for the numerical disk model across all datasets,
with either exponential or power-law falloff. Each point represents an average
of 4 individual runs: including either 2 or 3 nuisance Gaussians, with or
without a secondary ring. Points represent the average of the means of each
run, and error bars represent the average of the standard deviations. The
diameter and orientation angle are consistent with previous modeling efforts,
while the fractional width remains as low or lower than past results. In the
bottom plot, the decay constant for the exponential disk model (black) is
plotted alongside the power law index for the power law disk model (white).
The April 06-hi dataset featured in Figures 2, 3, and 4 is highlighted in green.

profile ~ e=3" /™1 where r is the Boyer-Lindquist coordinate and r g
is the horizon radius. This translates to a similar decay rate m =~ 3
in the image domain (see App. D of Paper I for some heuristics).
In other words, the observed brightness falloff is consistently more
rapid than seen in models of the source.
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4 OTHER METHODS FOR PHOTON RING DETECTION

We now compare our work with other proposed methods for detect-
ing the photon ring. The most closely related proposal is the geomet-
ric/pixel hybrid model of Broderick et al. (2020), which was very
recently applied to the 2017 observations (Broderick et al. 2022).4
We will refer to this as the Broderick method. While the authors
of Broderick et al. (2022) regard their analysis as a detection of the
photon ring, we instead view their results as further confirmation that
there is no evidence for the photon ring in the 2017 observations. We
now compare the methods in detail and explain our point of view.

The Broderick method is similar in spirit to ours, in that one
considers an image model with and without an additional photon
ring component and seeks evidence that inclusion of the photon ring
improves the fit quality. However, there are a number of technical dif-
ferences between the methods, with varying degrees of importance.

First, the data products and samplers differ between the ap-
proaches. While no detailed comparison has been attempted, we
do not expect either approach to be significantly better than the other.
Second, the model for the main image component differs: the Brod-
erick method considers a sparse grid of pixels using interpolation
to make a smooth image, while we consider an annulus with ad-
ditional Gaussian components. Both models offer some flexibility
with respect to the main emission using a similar total number of
parameters, and it is difficult to say whether one is superior to the
other.

A more important difference is the criteria used to assess whether
the inclusion of a photon ring improves the fit. Whereas we use the
Bayes factor, the Broderick method instead relies on the Bayesian in-
formation criterion (BIC). Although the BIC approximates the Bayes
factor under some assumptions (Raftery 1995), itis not clear whether
these assumptions are satisfied for the model under consideration.
The Broderick method also considers the Akaike information crite-
rion, which does not have a Bayesian interpretation. We would also
note that, even admitting the validity of these information criteria, the
evidence in favor of the ring component is rather marginal, occurring
in only three out of the four observation days (Broderick et al. 2022).

The most important difference between the methods is the choice
of priors for the photon ring component parameters. Our method
restricts the photon ring flux density to be less than 25% of the main
ring flux density. This removes degeneracy with the main emission
and ensures that the photon ring is subdominant, as it must be on gen-
eral grounds (Gralla et al. 2019). By contrast, the Broderick method
allows unphysically large values of the photon ring flux, and in fact
finds unphysical values of ~54—64% for the 2017 observations (Brod-
erick et al. 2022). This suggests that the “photon ring” component is
simply helping to model the main ring-like emission by providing a
significant pure-ring contribution.’

The Broderick approach was able to roughly reproduce photon ring
diameters from mock data generated from a handful of GRMHD sim-
ulations (Broderick et al. 2020). However, in all of these simulations
the photon ring is directly on top of the main emission, so there is
no way to check whether the “photon ring” model component is in
fact sensitive to the photon ring, as opposed to simply representing
a portion of the main ring-like emission. In fact, the method finds
the same unphysically large flux fractions discussed in the previous

4 The manuscript appeared while this paper was under review, with the
review process nearing completion.

5 The prescribed narrowness of the photon ring component is not an obstacle
to this interpretation, since the baselines involved are too short to resolve such
narrow structures.
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paragraph (i.e., it does not recover the correct photon ring flux den-
sity of the underlying model), supporting the interpretation that the
supposed photon ring component simply reflects a portion of the
main emission.

Based on the above reasoning, we interpret the analysis of Brod-
erick et al. (2022) as showing that a grid+ring model is marginally
preferred to a pure grid model for the 2017 observations. This is not
surprising since the M87* appearance is known to feature a ring.
This analysis says nothing about the presence of a photon ring.

We are thus in the unfortunate situation that two independent
methods have failed to uncover evidence of a photon ring in the
2017 observations. These methods use rather different models for
representing the main emission, and yet support the same conclusion.
While we leave open the possibility that a vastly improved model
for the main emission might help reveal a photon ring in the 2017
observations, it seems likely that detection of the photon ring will
instead have to await significant improvements in data quality.

An alternative approach to measuring the photon ring was pro-
posed by Johnson et al. (2020). The idea is to directly measure the
visibility-domain signature of the ring on (sufficiently long) baselines
where it dominates the signal. This method is remarkably insensitive
to astronomical uncertainties and can even provide the precise shape
of the photon ring (Gralla 2020; Gralla & Lupsasca 2020b), allow-
ing precision tests of general relativity (Gralla et al. 2020; Paugnat
et al. 2022). However, reaching the required baselines would almost
certainly require a space mission.

5 CONCLUSION

We have constructed a new geometric model for the M87* near-
horizon image, which improves over previous models by incorpo-
rating a parameterized radial brightness profile and a component
describing the photon ring predicted by general relativity. We find
that this model agrees with previous studies on the diameter and
position angle of the main annular structure, and still corroborates
the relatively narrow fractional width of f,,, < 0.25 found with the
xs-ring model. Evidence for the presence of a photon ring coming
from the Bayes factor of our models is inconclusive, and the photon
ring degrees of freedom have no effect on the main conclusions.
Let us therefore return to the title of this series of papers: How
narrow is the M87* ring? The EHTC analysis bounded the fractional
width to be less than one-half, with the geometric models favoring
narrow rings, and the imaging models favoring thicker rings. One
possible explanation for the narrow rings in the geometric models
is that these models lack the freedom to accommodate a gradual
falloff rate, and compromise by presenting a narrow ring at the peak
brightness of the true ring. Similarly, one could imagine that the
presence of a photon ring on top of the main emission confuses the
model into thinking the main ring is narrower than it is. The analysis
of this paper rules out these explanations: the ring remains narrow
when the models are given the relevant additional freedom.
Adopting the viewpoint that modeling is more reliable than imag-
ing for determining fine features in the sky appearance, the evidence
is accumulating in favor of a narrow ring in M87*. A thin ring is
rather dissimilar from theoretical expectations (Paper I), and could
point to the need for a revision in our understanding of the accretion
flow. However, it should be borne in mind that an alternative like-
lihood function does favor somewhat thicker rings (Paper I). In this
series of papers we have elected to change one component of model-
ing at a time (the likelihood function in the first paper; the geometric
model here), in order to keep the analysis manageable and test the

MNRAS 000, 1-9 (0000)

importance of the different modeling choices. Ultimately, it may be
necessary to wait for improved observations, for which differences in
modeling assumptions may have less impact on the final conclusions.

Another important limitation of the geometric models is their
use of unphysical nuisance parameters. The elliptical Gaussians are
motivated by convenience, rather than physical arguments, and it
is hard to say whether they are capturing unmodeled features of the
image, or simply represent systematic uncertainty. A more physically
motivated choice of additional model freedom would allow increased
confidence in the conclusions of the analysis. We plan to revisit this
question in future papers in the series.

In the coming years, more radio telescopes will be added to the
EHT array, higher-frequency observations will be conducted, and
sensitivity will be improved (Doeleman et al. 2019). We hope that
the techniques introduced in this paper will help pin down the width
of the M87* ring and perhaps even enable a detection of the photon
ring component.
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APPENDIX A: NUMERICAL RESOLUTION

To compute the Fourier transform of the model we take a Discrete
Fourier Transform (DFT) via the Fast Fourier Transform algorithm.
An important consideration is whether the DFT is computed at suf-
ficient resolution. In fact, there are two parameters that control the
fidelity of the transformation: the size of the pixels, and the size of
the sampling window. Since the flux in our models technically ex-
tends out to infinity, we need to check that both the pixel size and the
sampling window are sufficient to prevent any unwanted artefacts.
To do this we tested our DFT algorithm on functions with known
analytic Fourier transforms, and checked that with these settings the
parameters we infer from our model are converged.

Fig A1l shows posteriors for the ndisk model with exponential
falloff as a function of resolution for the Apr 06 hi-band dataset. Note
that this is only the numerical part of the model - the primary ring -
and does not include the photon ring or nuisance parameters, which
are both computed analytically (hence why some of the values differ
from those shown in the main results of the paper). The resolution
used in our analysis was a window size of 200uas and a pixel size of
~ 0.4pas (200uas / 512 pixels). From the figure above it can be seen
that neither increasing the pixel density (cutting the pixel size in half
from 0.4 to 0.2uas), nor enlarging the sampling window (doubling
from 200 to 400uas) has much effect on the posteriors. Therefore we
conclude that this resolution is sufficient.

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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