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Abstract

We investigate evaluation metrics for dialogue

response generation systems where supervised

labels, such as task completion, are not avail-

able. Recent works in response generation

have adopted metrics from machine transla-

tion to compare a model’s generated response

to a single target response. We show that

these metrics correlate very weakly with hu-

man judgements in the non-technical Twitter

domain, and not at all in the technical Ubuntu

domain. We provide quantitative and quali-

tative results highlighting specific weaknesses

in existing metrics, and provide recommenda-

tions for future development of better auto-

matic evaluation metrics for dialogue systems.

1 Introduction

An important aspect of dialogue response generation

systems, which are trained to produce a reasonable

utterance given a conversational context, is how to

evaluate the quality of the generated response. Typi-

cally, evaluation is done using human-generated su-

pervised signals, such as a task completion test or a

user satisfaction score (Walker et al., 1997; Möller

et al., 2006; Kamm, 1995), which are relevant when

the dialogue is task-focused. We call models opti-

mized for such supervised objectives supervised di-

alogue models, while those that do not are unsuper-

vised dialogue models.

This paper focuses on unsupervised dialogue re-

sponse generation models, such as chatbots. These

∗Denotes equal contribution.

models are receiving increased attention, partic-

ularly using end-to-end training with neural net-

works (Serban et al., 2016; Sordoni et al., 2015;

Vinyals and Le, 2015). This avoids the need to col-

lect supervised labels on a large scale, which can

be prohibitively expensive. However, automatically

evaluating the quality of these models remains an

open question. Automatic evaluation metrics would

help accelerate the deployment of unsupervised re-

sponse generation systems.

Faced with similar challenges, other natural lan-

guage tasks have successfully developed automatic

evaluation metrics. For example, BLEU (Papineni

et al., 2002a) and METEOR (Banerjee and Lavie,

2005) are now standard for evaluating machine

translation models, and ROUGE (Lin, 2004) is often

used for automatic summarization. These metrics

have recently been adopted by dialogue researchers

(Ritter et al., 2011; Sordoni et al., 2015; Li et al.,

2015; Galley et al., 2015b; Wen et al., 2015; Li

et al., 2016). However these metrics assume that

valid responses have significant word overlap with

the ground truth responses. This is a strong assump-

tion for dialogue systems, where there is significant

diversity in the space of valid responses to a given

context. This is illustrated in Table 1, where two rea-

sonable responses are proposed to the context, but

these responses do not share any words in common

and do not have the same semantic meaning.

In this paper, we investigate the correlation be-

tween the scores from several automatic evaluation

metrics and human judgements of dialogue response

quality, for a variety of response generation models.

We consider both statistical word-overlap similar-
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Context of Conversation

Speaker A: Hey John, what do you want to do tonight?

Speaker B: Why don’t we go see a movie?

Ground-Truth Response

Nah, I hate that stuff, let’s do something active.

Model Response

Oh sure! Heard the film about Turing is out!

Table 1: Example showing the intrinsic diversity

of valid responses in a dialogue. The (reasonable)

model response would receive a BLEU score of 0.

ity metrics such as BLEU, METEOR, and ROUGE,

and word embedding metrics derived from word

embedding models such as Word2Vec (Mikolov et

al., 2013). We find that all metrics show either

weak or no correlation with human judgements, de-

spite the fact that word overlap metrics have been

used extensively in the literature for evaluating dia-

logue response models (see above, and Lasguido et

al. (2014)). In particular, we show that these metrics

have only a small positive correlation on the chitchat

oriented Twitter dataset, and no correlation at all on

the technical Ubuntu Dialogue Corpus. For the word

embedding metrics, we show that this is true even

though all metrics are able to significantly distin-

guish between baseline and state-of-the-art models

across multiple datasets. We further highlight the

shortcomings of these metrics using: a) a statisti-

cal analysis of our survey’s results; b) a qualitative

analysis of examples from our data; and c) an explo-

ration of the sensitivity of the metrics.

Our results indicate that a shift must be made in

the research community away from these metrics,

and highlight the need for a new metric that corre-

lates more strongly with human judgement.

2 Related Work

We focus on metrics that are model-independent,

i.e. where the model generating the response does

not also evaluate its quality; thus, we do not con-

sider word perplexity, although it has been used to

evaluate unsupervised dialogue models (Serban et

al., 2015). This is because it is not computed on

a per-response basis, and cannot be computed for

retrieval models. Further, we only consider met-

rics that can be used to evaluate proposed responses

against ground-truth responses, so we do not con-

sider retrieval-based metrics such as recall, which

has been used to evaluate dialogue models (Schatz-

mann et al., 2005; Lowe et al., 2015). We also do not

consider evaluation methods for supervised evalua-

tion methods.1

Several recent works on unsupervised dialogue

systems adopt the BLEU score for evaluation. Rit-

ter et al. (2011) formulate the unsupervised learning

problem as one of translating a context into a candi-

date response. They use a statistical machine trans-

lation (SMT) model to generate responses to various

contexts using Twitter data, and show that it outper-

forms information retrieval baselines according to

both BLEU and human evaluations. Sordoni et al.

(2015) extend this idea using a recurrent language

model to generate responses in a context-sensitive

manner. They also evaluate using BLEU, however

they produce multiple ground truth responses by re-

trieving 15 responses from elsewhere in the corpus,

using a simple bag-of-words model. Li et al. (2015)

evaluate their proposed diversity-promoting objec-

tive function for neural network models using BLEU

score with only a single ground truth response. A

modified version of BLEU, deltaBLEU (Galley et

al., 2015b), which takes into account several human-

evaluated ground truth responses, is shown to have a

weak to moderate correlation to human judgements

using Twitter dialogues. However, such human an-

notation is often infeasible to obtain in practice. Gal-

ley et al. (2015b) also show that, even with sev-

eral ground truth responses available, the standard

BLEU metric does not correlate strongly with hu-

man judgements.

There has been significant previous work that

evaluates how well automatic metrics correlate with

human judgements in in both machine translation

(Callison-Burch et al., 2010; Callison-Burch et al.,

2011; Bojar et al., 2014; Graham et al., 2015)

and natural language generation (NLG) (Stent et

al., 2005; Cahill, 2009; Reiter and Belz, 2009; Es-

pinosa et al., 2010). There has also been work

criticizing the usefulness of BLEU in particular for

machine translation (Callison-Burch et al., 2006).

While many of the criticisms in these works apply

to dialogue generation, we note that generating di-

alogue responses conditioned on the conversational

1Evaluation methods in the supervised setting have been

well studied, see (Walker et al., 1997; Möller et al., 2006; Joki-

nen and McTear, 2009).
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context is in fact a more difficult problem. This is

because most of the difficulty in automatically eval-

uating language generation models lies in the large

set of correct answers. Dialogue response genera-

tion given solely the context intuitively has a higher

diversity (or entropy) than translation given text in

a source language, or surface realization given some

intermediate form (Artstein et al., 2009).

3 Evaluation Metrics

Given a dialogue context and a proposed response,

our goal is to automatically evaluate how appropri-

ate the proposed response is to the conversation. We

focus on metrics that compare it to the ground truth

response of the conversation. In particular, we inves-

tigate two approaches: word based similarity met-

rics and word-embedding based similarity metrics.

3.1 Word Overlap-based Metrics

We first consider metrics that evaluate the amount

of word-overlap between the proposed response and

the ground-truth response. We examine the BLEU

and METEOR scores that have been used for ma-

chine translation, and the ROUGE score that has

been used for automatic summarization. While these

metrics have been shown to correlate with human

judgements in their target domains (Papineni et al.,

2002a; Lin, 2004), they have not been thoroughly

investigated for dialogue systems.2

We denote the ground truth response as r (thus we

assume that there is a single candidate ground truth

response), and the proposed response as r̂. The j’th

token in the ground truth response r is denoted by

wj , with ŵj denoting the j’th token in the proposed

response r̂.

BLEU. BLEU (Papineni et al., 2002a) analyzes

the co-occurrences of n-grams in the ground truth

and the proposed responses. It first computes an

n-gram precision for the whole dataset (we assume

that there is a single candidate ground truth response

2To the best of our knowledge, only BLEU has been eval-

uated in the dialogue system setting quantitatively by Galley

et al. (2015a) on the Twitter domain. However, they carried

out their experiments in a very different setting with multiple

ground truth responses, which are rarely available in practice,

and without providing any qualitative analysis of their results.

per context):

Pn(r, r̂) =

∑

k min(h(k, r), h(k, r̂i))
∑

k h(k, ri)

where k indexes all possible n-grams of length n and

h(k, r) is the number of n-grams k in r.3 To avoid

the drawbacks of using a precision score, namely

that it favours shorter (candidate) sentences, the au-

thors introduce a brevity penalty. BLEU-N, where

N is the maximum length of n-grams considered, is

defined as:

BLEU-N := b(r, r̂) exp(
N
∑

n=1

βn logPn(r, r̂))

βn is a weighting that is usually uniform, and b(·) is

the brevity penalty. The most commonly used ver-

sion of BLEU uses N = 4. Modern versions of

BLEU also use sentence-level smoothing, as the ge-

ometric mean often results in scores of 0 if there is

no 4-gram overlap (Chen and Cherry, 2014). Note

that BLEU is usually calculated at the corpus-level,

and was originally designed for use with multiple

reference sentences.

METEOR. The METEOR metric (Banerjee and

Lavie, 2005) was introduced to address several

weaknesses in BLEU. It creates an explicit align-

ment between the candidate and target responses.

The alignment is based on exact token matching,

followed by WordNet synonyms, stemmed tokens,

and then paraphrases. Given a set of alignments, the

METEOR score is the harmonic mean of precision

and recall between the proposed and ground truth

sentence.

ROUGE. ROUGE (Lin, 2004) is a set of evalua-

tion metrics used for automatic summarization. We

consider ROUGE-L, which is a F-measure based on

the Longest Common Subsequence (LCS) between

a candidate and target sentence. The LCS is a set of

words which occur in two sentences in the same or-

der; however, unlike n-grams the words do not have

to be contiguous, i.e. there can be other words in be-

tween the words of the LCS.

3Note that the min in this equation is calculating the num-

ber of co-occurrences of n-gram k between the ground truth re-

sponse r and the proposed response r̂, as it computes the fewest

appearances of k in either response.
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3.2 Embedding-based Metrics

An alternative to using word-overlap based metrics

is to consider the meaning of each word as defined

by a word embedding, which assigns a vector to

each word. Methods such as Word2Vec (Mikolov et

al., 2013) calculate these embeddings using distribu-

tional semantics; that is, they approximate the mean-

ing of a word by considering how often it co-occurs

with other words in the corpus.4 These embedding-

based metrics usually approximate sentence-level

embeddings using some heuristic to combine the

vectors of the individual words in the sentence. The

sentence-level embeddings between the candidate

and target response are compared using a measure

such as cosine distance.

Greedy Matching. Greedy matching is the one

embedding-based metric that does not compute

sentence-level embeddings. Instead, given two se-

quences r and r̂, each token w ∈ r is greedily

matched with a token ŵ ∈ r̂ based on the cosine

similarity of their word embeddings (ew), and the

total score is then averaged across all words:

G(r, r̂) =

∑

w∈r;maxŵ∈r̂ cos sim(ew, eŵ)

|r|

GM(r, r̂) =
G(r, r̂) +G(r̂, r)

2

This formula is asymmetric, thus we must average

the greedy matching scores G in each direction.

This was originally introduced for intelligent tutor-

ing systems (Rus and Lintean, 2012). The greedy

approach favours responses with key words that are

semantically similar to those in the ground truth re-

sponse.

Embedding Average. The embedding average

metric calculates sentence-level embeddings using

additive composition, a method for computing the

meanings of phrases by averaging the vector repre-

sentations of their constituent words (Foltz et al.,

1998; Landauer and Dumais, 1997; Mitchell and

Lapata, 2008). This method has been widely used

in other domains, for example in textual similarity

4To maintain statistical independence between the task and

each performance metric, it is important that the word embed-

dings used are trained on corpora which do not overlap with the

task corpus.

tasks (Wieting et al., 2015). The embedding aver-

age, ē, is defined as the mean of the word embed-

dings of each token in a sentence r:

ēr =

∑

w∈r ew

|
∑

w′∈r ew′ |
.

To compare a ground truth response r and retrieved

response r̂, we compute the cosine similarity be-

tween their respective sentence level embeddings:

EA := cos(ēr, ēr̂).

Vector Extrema. Another way to calculate

sentence-level embeddings is using vector ex-

trema (Forgues et al., 2014). For each dimension

of the word vectors, take the most extreme value

amongst all word vectors in the sentence, and use

that value in the sentence-level embedding:

erd =

{

maxw∈r ewd if ewd > |minw′∈r ew′d|
minw∈r ewd otherwise

where d indexes the dimensions of a vector; ewd is

the d’th dimensions of ew (w’s embedding). The

min in this equation refers to the selection of the

largest negative value, if it has a greater magnitude

than the largest positive value.

Similarity between response vectors is again com-

puted using cosine distance. Intuitively, this ap-

proach prioritizes informative words over common

ones; words that appear in similar contexts will be

close together in the vector space. Thus, common

words are pulled towards the origin because they

occur in various contexts, while words carrying im-

portant semantic information will lie further away.

By taking the extrema along each dimension, we are

thus more likely to ignore common words.

4 Dialogue Response Generation Models

In order to determine the correlation between au-

tomatic metrics and human judgements of response

quality, we obtain response from a diverse range of

response generation models in the recent literature,

including both retrieval and generative models.

4.1 Retrieval Models

Ranking or retrieval models for dialogue systems

are typically evaluated based on whether they can

retrieve the correct response from a corpus of pre-

defined responses, which includes the ground truth
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Ubuntu Dialogue Corpus Twitter Corpus

Embedding Greedy Vector Embedding Greedy Vector

Averaging Matching Extrema Averaging Matching Extrema

R-TFIDF 0.536 ± 0.003 0.370 ± 0.002 0.342 ± 0.002 0.483 ± 0.002 0.356 ± 0.001 0.340 ± 0.001

C-TFIDF 0.571 ± 0.003 0.373 ± 0.002 0.353 ± 0.002 0.531 ± 0.002 0.362 ± 0.001 0.353 ± 0.001

DE 0.650 ± 0.003 0.413 ± 0.002 0.376 ± 0.001 0.597 ± 0.002 0.384 ± 0.001 0.365 ± 0.001

LSTM 0.130 ± 0.003 0.097 ± 0.003 0.089 ± 0.002 0.593 ± 0.002 0.439 ± 0.002 0.420 ± 0.002

HRED 0.580 ± 0.003 0.418 ± 0.003 0.384 ± 0.002 0.599 ± 0.002 0.439 ± 0.002 0.422 ± 0.002

Table 2: Models evaluated using the vector-based evaluation metrics, with 95% confidence intervals.

response to the conversation (Schatzmann et al.,

2005). Such systems can be evaluated using recall or

precision metrics. However, when deployed in a real

setting these models will not have access to the cor-

rect response given an unseen conversation. Thus,

in the results presented below we remove one occur-

rence of the ground-truth response from the corpus

and ask the model to retrieve the most appropriate

response from the remaining utterances. Note that

this does not mean the correct response will not ap-

pear in the corpus at all; in particular, if there ex-

ists another context in the dataset with an identical

ground-truth response, this will be available for se-

lection by the model.

We then evaluate each model by comparing the

retrieved response to the ground truth response of

the conversation. This closely imitates real-life de-

ployment of these models, as it tests the ability of

the model to generalize to unseen contexts.

TF-IDF. We consider a simple Term Frequency

- Inverse Document Frequency (TF-IDF) retrieval

model (Lowe et al., 2015). TF-IDF is a statis-

tic that intends to capture how important a given

word is to some document, which is calculated as:

tfidf(w, c, C) = f(w, c)× log N
|{c∈C:w∈c}| , where C

is the set of all contexts in the corpus, f(w, c) indi-

cates the number of times word w appeared in con-

text c, N is the total number of dialogues, and the

denominator represents the number of dialogues in

which the word w appears.

In order to apply TF-IDF as a retrieval model for

dialogue, we first compute the TF-IDF vectors for

each context and response in the corpus. We then

return the response with the largest cosine similar-

ity in the corpus, either between the input context

and corpus contexts (C-TFIDF), or between the in-

put context and corpus responses (R-TFIDF).

Dual Encoder. Next we consider the recurrent

neural network (RNN) based architecture called the

Dual Encoder (DE) model (Lowe et al., 2015). The

DE model consists of two RNNs which respectively

compute the vector representation of an input con-

text and response, c, r ∈ R
n. The model then cal-

culates the probability that the given response is the

ground truth response given the context, by taking

a weighted dot product: p(r is correct|c, r,M) =
σ(cTMr + b) where M is a matrix of learned pa-

rameters and b is a bias. The model is trained using

negative sampling to minimize the cross-entropy er-

ror of all (context, response) pairs. To our knowl-

edge, our application of neural network models to

large-scale retrieval in dialogue systems is novel.

4.2 Generative Models

In addition to retrieval models, we also consider gen-

erative models. In this context, we refer to a model

as generative if it is able to generate entirely new

sentences that are unseen in the training set.

LSTM language model. The baseline model is an

LSTM language model (Hochreiter and Schmidhu-

ber, 1997) trained to predict the next word in the

(context, response) pair. During test time, the model

is given a context, encodes it with the LSTM and

generates a response using a greedy beam search

procedure (Graves, 2013).

HRED. Finally we consider the Hierarchical Re-

current Encoder-Decoder (HRED) (Serban et al.,

2015). In the traditional Encoder-Decoder frame-

work, all utterances in the context are concatenated

together before encoding. Thus, information from

previous utterances is far outweighed by the most

recent utterance. The HRED model uses a hier-

archy of encoders; each utterance in the context

passes through an ‘utterance-level’ encoder, and the
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Twitter Ubuntu

Metric Spearman p-value Pearson p-value Spearman p-value Pearson p-value

Greedy 0.2119 0.034 0.1994 0.047 0.05276 0.6 0.02049 0.84

Average 0.2259 0.024 0.1971 0.049 -0.1387 0.17 -0.1631 0.10

Extrema 0.2103 0.036 0.1842 0.067 0.09243 0.36 -0.002903 0.98

METEOR 0.1887 0.06 0.1927 0.055 0.06314 0.53 0.1419 0.16

BLEU-1 0.1665 0.098 0.1288 0.2 -0.02552 0.8 0.01929 0.85

BLEU-2 0.3576 < 0.01 0.3874 < 0.01 0.03819 0.71 0.0586 0.56

BLEU-3 0.3423 < 0.01 0.1443 0.15 0.0878 0.38 0.1116 0.27

BLEU-4 0.3417 < 0.01 0.1392 0.17 0.1218 0.23 0.1132 0.26

ROUGE 0.1235 0.22 0.09714 0.34 0.05405 0.5933 0.06401 0.53

Human 0.9476 < 0.01 1.0 0.0 0.9550 < 0.01 1.0 0.0

Table 3: Correlation between each metric and human judgements for each response. Correlations shown in

the human row result from randomly dividing human judges into two groups.

Spearman p-value Pearson p-value

BLEU-1 0.1580 0.12 0.2074 0.038

BLEU-2 0.2030 0.043 0.1300 0.20

Table 4: Correlation between BLEU metric and

human judgements after removing stopwords and

punctuation for the Twitter dataset.

Mean score

∆w <= 6 ∆w >= 6 p-value

(n=47) (n=53)

BLEU-1 0.1724 0.1009 < 0.01

BLEU-2 0.0744 0.04176 < 0.01

Average 0.6587 0.6246 0.25

METEOR 0.2386 0.2073 < 0.01

Human 2.66 2.57 0.73

Table 5: Effect of differences in response length

for the Twitter dataset, ∆w = absolute difference in

#words between a ground truth response and pro-

posed response

output of these encoders is passed through another

‘context-level’ encoder, which enables the handling

of longer-term dependencies.

4.3 Conclusions from an Incomplete Analysis

When evaluation metrics are not explicitly corre-

lated to human judgement, it is possible to draw

misleading conclusions by examining how the met-

rics rate different models. To illustrate this point,

we compare the performance of selected models ac-

cording to the embedding metrics on two different

domains: the Ubuntu Dialogue Corpus (Lowe et

al., 2015), which contains technical vocabulary and

where conversations are often oriented towards solv-

ing a particular problem, and a non-technical Twitter

corpus collected following the procedure of Ritter

et al. (2010). We consider these two datasets since

they cover contrasting dialogue domains, i.e. tech-

nical help vs casual chit-chat, and because they are

amongst the largest publicly available corpora, mak-

ing them good candidates for building data-driven

dialogue systems.

Results on the proposed embedding metrics are

shown in Table 2. For the retrieval models, we ob-

serve that the DE model significantly outperforms

both TFIDF baselines on all metrics across both

datasets. Further, the HRED model significantly

outperforms the basic LSTM generative model in

both domains, and appears to be of similar strength

as the DE model. Based on these results, one might

be tempted to conclude that there is some infor-

mation being captured by these metrics, that sig-

nificantly differentiates models of different qual-

ity. However, as we show in the next section,

the embedding-based metrics correlate only weakly

with human judgements on the Twitter corpus, and

not at all on the Ubuntu Dialogue Corpus. This

demonstrates that metrics that have not been specif-

ically correlated with human judgements on a new

task should not be used to evaluate that task.

5 Human Correlation Analysis

Data Collection. We conducted a human survey

to determine the correlation between human judge-

ments on the quality of responses, and the score as-

signed by each metric. We aimed to follow the pro-

cedure for the evaluation of BLEU (Papineni et al.,
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(a) Twitter

(b) Ubuntu

Figure 1: Scatter plots showing the correlation between metrics and human judgements on the Twitter

corpus (a) and Ubuntu Dialogue Corpus (b). The plots represent BLEU-2 (left), embedding average (center),

and correlation between two randomly selected halves of human respondents (right).

2002a). 25 volunteers from the Computer Science

department at the author’s institution were given a

context and one proposed response, and were asked

to judge the response quality on a scale of 1 to 5.5;

a 1 indicates that the response is not appropriate or

sensible given the context, and a 5 indicates that the

response is very reasonable. Out of the 25 respon-

dents, 23 had Cohen’s kappa scores κ > 0.2 w.r.t.

the other respondents, which is a standard measure

for inter-rater agreement (Cohen, 1968). The 2 re-

spondents with κ < 0.2, indicating slight agree-

ment, were excluded from the analysis below. The

median κ score was approximately 0.55, roughly in-

dicating moderate to strong annotator agreement.

Each volunteer was given 100 questions per

dataset. These questions correspond to 20 unique

contexts, with 5 different responses: one utterance

5Studies asking humans to evaluate text often rate different

aspects separately, such as ‘adequacy’, ‘fluency’ and ‘informa-

tiveness’ of the text (Hovy, 1999; Papineni et al., 2002b) Our

evaluation focuses on adequacy. We did not consider fluency

because 4 out of the 5 proposed responses to each context were

generated by a human. We did not consider informativeness be-

cause in the domains considered, it is not necessarily important

(in Twitter), or else it seems to correlate highly with adequacy

(in Ubuntu).

randomly drawn from elsewhere in the test set, the

response selected from each of the TF-IDF, DE, and

HRED models, and a response written by a human

annotator. These were chosen as they cover the

range of qualities almost uniformly (see Figure 1).

Survey Results. We present correlation results be-

tween the human judgements and each metric in Ta-

ble 3. We compute the Pearson correlation, which

estimates linear correlation, and Spearman correla-

tion, which estimates any monotonic correlation.

The first observation is that in both domains the

BLEU-4 score, which has previously been used to

evaluate unsupervised dialogue systems, shows very

weak if any correlation with human judgement. In

fact we found that the BLEU-3 and BLEU-4 scores

were near-zero for a majority of response pairs; for

BLEU-4, only four examples had a score > 10−9.

Despite this, they still correlate with human judge-

ments on the Twitter Corpus at a rate similar to

BLEU-2. This is because of the smoothing con-

stant, which gives a tiny weight to unigrams and bi-

grams despite the absence of higher-order n-grams.

BLEU-3 and BLEU-4 behave as a scaled, noisy ver-

sion of BLEU-2; thus, if one is to evaluate dialogue
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Context of Conversation

A: dearest! question. how many thousands of people

can panaad occupy?

B: @user panaad has <number> k seat capacity while rizal

has <number> k thats why they choose rizal i think .

Ground Truth Response

A: now i know about the siting capacity . thanks for the

info @user great evening.

Proposed Response

A: @user makes sense. thanks!

Context of Conversation

A: never felt more sad than i am now

B: @user aww why ?

A: @user @user its a long story ! sure you wanna know

it ? bahaha and thanks for caring btw <heart>

Ground Truth Response

A: @user i don ’t mind to hear it i ’ve got all day and

youre welcome <number>

Proposed Response

A: @user i know , i ’m just so happy for you ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Figure 2: Examples where the metrics rated the response poorly and humans rated it highly (left), and the

converse (right). Both responses are given near-zero score by BLEU-N for N> 1. While no metric will

perform perfectly on all examples, we present these examples to provide intuition on how example-level

errors become aggregated into poor correlation to human judgements at the corpus-level.

responses with BLEU, we recommend the choice of

N = 2 over N = 3 or 4. Note that using a test cor-

pus larger than the size reported in this paper may

lead to stronger correlations for BLEU-3 and BLEU-

4, due to a higher number of non-zero scores.

It is interesting to note that, while some of the em-

bedding metrics and BLEU show small positive cor-

relation in the non-technical Twitter domain, there

is no metric that significantly correlates with hu-

mans on the Ubuntu Dialogue Corpus. This is likely

because the correct Ubuntu responses contain spe-

cific technical words that are less likely to be pro-

duced by our models. Further, it is possible that re-

sponses in the Ubuntu Dialogue Corpus have intrin-

sically higher variability (or entropy) than Twitter

when conditioned on the context, making the eval-

uation problem significantly more difficult.

Figure 1 illustrates the relationship between met-

rics and human judgements. We include only the

best performing metric using word-overlaps, i.e. the

BLEU-2 score (left), and the best performing met-

ric using word embeddings, i.e. the vector average

(center). These plots show how weak the correlation

is: in both cases, they appear to be random noise.

It seems as though the BLEU score obtains a pos-

itive correlation because of the large number of re-

sponses that are given a score of 0 (bottom left cor-

ner of the first plot). This is in stark contrast to the

inter-rater agreement, which is plotted between two

randomly sampled halves of the raters (right-most

plots). We also calculated the BLEU scores after

removing stopwords and punctuation from the re-

sponses. As shown in Table 4, this weakens the cor-

relation with human judgements for BLEU-2 com-

pared to the values in Table 3, and suggests that

BLEU is sensitive to factors that do not change the

semantics of the response.

Finally, we examined the effect of response length

on the metrics, by considering changes in scores

when the ground truth and proposed response had

a large difference in word counts. Table 4 shows

that BLEU and METEOR are particularly sensitive

to this aspect, compared to the Embedding Average

metric and human judgement.

Qualitative Analysis. In order to determine

specifically why the metrics fail, we examine qual-

itative samples where there is a disagreement be-

tween the metrics and human rating. Although these

only show inconsistencies at the example-level, they

provide some intuition as to why the metrics don’t

correlate with human judgements at the corpus-

level. We present in Figure 2 two examples where all

of the embedding-based metrics and BLEU-1 score

the proposed response significantly differently than

the humans.

The left of Figure 2 shows an example where

the embedding-based metrics score the proposed re-

sponse lowly, while humans rate it highly. It is

clear from the context that the proposed response

is reasonable – indeed both responses intend to ex-

press gratitude. However, the proposed response

has a different wording than the ground truth re-

sponse, and therefore the metrics are unable to sep-

arate the salient words from the rest. This sug-

gests that the embedding-based metrics would ben-
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efit from a weighting of word saliency.

The right of the figure shows the reverse scenario:

the embedding-based metrics score the proposed re-

sponse highly, while humans do not. This is most

likely due to the frequently occurring ‘i’ token, and

the fact that ‘happy’ and ‘welcome’ may be close

together in the embedding space. However, from

a human perspective there is a significant semantic

difference between the responses as they pertain to

the context. Metrics that take into account the con-

text may be required in order to differentiate these

responses. Note that in both responses in Figure 2,

there are no overlapping n-grams greater than un-

igrams between the ground truth and proposed re-

sponses; thus, all of BLEU-2,3,4 would assign a

score near 0 to the response.

6 Discussion

We have shown that many metrics commonly used

in the literature for evaluating unsupervised dialogue

systems do not correlate strongly with human judge-

ment. Here we elaborate on important issues arising

from our analysis.

Constrained tasks. Our analysis focuses on rela-

tively unconstrained domains. Other work, which

separates the dialogue system into a dialogue plan-

ner and a natural language generation component

for applications in constrained domains, may find

stronger correlations with the BLEU metric. For ex-

ample, Wen et al. (2015) propose a model to map

from dialogue acts to natural language sentences and

use BLEU to evaluate the quality of the generated

sentences. Since the mapping from dialogue acts to

natural language sentences has lower diversity and

is more similar to the machine translation task, it

seems likely that BLEU will correlate better with

human judgements. However, an empirical inves-

tigation is still necessary to justify this.

Incorporating multiple responses. Our correla-

tion results assume that only one ground truth re-

sponse is available given each context. Indeed, this

is the common setting in most of the recent literature

on training end-to-end conversation models. There

has been some work on using a larger set of auto-

matically retrieved plausible responses when evalu-

ating with BLEU (Galley et al., 2015b). However,

there is no standard method for doing this in the lit-

erature. Future work should examine how retriev-

ing additional responses affects the correlation with

word-overlap metrics.

Searching for suitable metrics. While we pro-

vide evidence against existing metrics, we do not

yet provide good alternatives for unsupervised eval-

uation. Despite the poor performance of the word

embedding-based metrics in this survey, we believe

that metrics based on distributed sentence represen-

tations hold the most promise for the future. This

is because word-overlap metrics will simply require

too many ground-truth responses to find a significant

match for a reasonable response, due to the high di-

versity of dialogue responses. As a simple example,

the skip-thought vectors of Kiros et al. (2015) could

be considered. Since the embedding-based metrics

in this paper only consist of basic averages of vectors

obtained through distributional semantics, they are

insufficiently complex for modeling sentence-level

compositionality in dialogue. Instead, these metrics

can be interpreted as calculating the topicality of a

proposed response (i.e. how on-topic the proposed

response is, compared to the ground-truth).

All of the metrics considered in this paper directly

compare a proposed response to the ground-truth,

without considering the context of the conversation.

However, metrics that take into account the context

could also be considered. Such metrics could come

in the form of an evaluation model that is learned

from data. This model could be either a discrim-

inative model that attempts to distinguish between

model and human responses, or a model that uses

data collected from the human survey in order to

provide human-like scores to proposed responses.

Finally, we must consider the hypothesis that learn-

ing such models from data is no easier than solving

the problem of dialogue response generation. If this

hypothesis is true, we must concede and always use

human evaluations together with metrics that only

roughly approximate human judgements.

References

R. Artstein, S. Gandhe, J. Gerten, A. Leuski, and D.

Traum. 2009. Semi-formal evaluation of conversa-

tional characters. In Languages: From Formal to Nat-

ural, pages 22–35. Springer.

2130



S. Banerjee and A. Lavie. 2005. METEOR: An auto-

matic metric for mt evaluation with improved corre-

lation with human judgments. In Proceedings of the

ACL workshop on intrinsic and extrinsic evaluation

measures for machine translation and/or summariza-

tion.

O. Bojar, C. Buck, C. Federmann, B. Haddow, P. Koehn,

J. Leveling, C. Monz, P. Pecina, M. Post, H. Saint-

Amand, et al. 2014. Findings of the 2014 workshop

on statistical machine translation. In Proceedings of

the Ninth Workshop on Statistical Machine Transla-

tion, pages 12–58. Association for Computational Lin-

guistics Baltimore, MD, USA.

A. Cahill. 2009. Correlating human and automatic

evaluation of a german surface realiser. In Proceed-

ings of the ACL-IJCNLP 2009 Conference Short Pa-

pers, pages 97–100. Association for Computational

Linguistics.

C. Callison-Burch, M. Osborne, and P. Koehn. 2006.

Re-evaluation the role of bleu in machine translation

research. In EACL, volume 6, pages 249–256.

C. Callison-Burch, P. Koehn, C. Monz, K. Peterson, M.

Przybocki, and O. F. Zaidan. 2010. Findings of the

2010 joint workshop on statistical machine translation

and metrics for machine translation. In Proceedings of

the Joint Fifth Workshop on Statistical Machine Trans-

lation and MetricsMATR, pages 17–53. Association

for Computational Linguistics.

C. Callison-Burch, P. Koehn, C. Monz, and O. F. Zaidan.

2011. Findings of the 2011 workshop on statistical

machine translation. In Proceedings of the Sixth Work-

shop on Statistical Machine Translation, pages 22–64.

Association for Computational Linguistics.

B. Chen and C. Cherry. 2014. A systematic comparison

of smoothing techniques for sentence-level bleu. ACL

2014, page 362.

J. Cohen. 1968. Weighted kappa: Nominal scale

agreement provision for scaled disagreement or partial

credit. Psychological bulletin, 70(4):213.

D. Espinosa, R. Rajkumar, M. White, and S. Berleant.

2010. Further meta-evaluation of broad-coverage sur-

face realization. In Proceedings of the 2010 Con-

ference on Empirical Methods in Natural Language

Processing, pages 564–574. Association for Compu-

tational Linguistics.

P. W. Foltz, W. Kintsch, and T. K. Landauer. 1998. The

measurement of textual coherence with latent semantic

analysis. Discourse processes, 25(2-3):285–307.

G. Forgues, J. Pineau, J.-M. Larcheveque, and R. Trem-

blay. 2014. Bootstrapping dialog systems with word

embeddings.

M. Galley, C. Brockett, A. Sordoni, Y. Ji, M. Auli, C.

Quirk, M. l, J. Gao, and B. Dolan. 2015a. deltaBLEU:

A discriminative metric for generation tasks with in-

trinsically diverse targets. In Proceedings of the An-

nual Meeting of the Association for Computational

Linguistics and the International Joint Conference on

Natural Language Processing (Short Papers).

M. Galley, C. Brockett, A. Sordoni, Y. Ji, M. Auli, C.

Quirk, M. Mitchell, J. Gao, and B. Dolan. 2015b.

deltableu: A discriminative metric for generation

tasks with intrinsically diverse targets. arXiv preprint

arXiv:1506.06863.

Y. Graham, N. Mathur, and T. Baldwin. 2015. Accurate

evaluation of segment-level machine translation met-

rics. In Proc. of NAACL-HLT, pages 1183–1191. Cite-

seer.

A. Graves. 2013. Generating sequences with recurrent

neural networks. arXiv preprint arXiv:1308.0850.

S. Hochreiter and J. Schmidhuber. 1997. Long short-

term memory. Neural Computation, 9(8):1735–1780.

E. Hovy. 1999. Toward finely differentiated evaluation

metrics for machine translation. In Proceedings of the

Eagles Workshop on Standards and Evaluation.

K. Jokinen and M. McTear. 2009. Spoken Dialogue Sys-

tems. Morgan Claypool.

C. Kamm. 1995. User interfaces for voice applica-

tions. Proceedings of the National Academy of Sci-

ences, 92(22):10031–10037.

R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Ur-

tasun, A. Torralba, and S. Fidler. 2015. Skip-thought

vectors. In Advances in Neural Information Process-

ing Systems, pages 3276–3284.

T. K. Landauer and S. T. Dumais. 1997. A solution to

plato’s problem: The latent semantic analysis theory

of acquisition, induction, and representation of knowl-

edge. Psychological review, 104(2):211.

N. Lasguido, S. Sakti, G. Neubig, T. Tomoki, and S.

Nakamura. 2014. Utilizing human-to-human conver-

sation examples for a multi domain chat-oriented di-

alog system. IEICE TRANSACTIONS on Information

and Systems, 97(6):1497–1505.

J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan.

2015. A diversity-promoting objective function

for neural conversation models. arXiv preprint

arXiv:1510.03055.

J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan. 2016.

A persona-based neural conversation model. arXiv

preprint arXiv:1603.06155.

C.-Y. Lin. 2004. Rouge: A package for automatic eval-

uation of summaries. In Text summarization branches

out: Proceedings of the ACL-04 workshop, volume 8.

R. Lowe, N. Pow, I. V. Serban, and J. Pineau. 2015. The

ubuntu dialogue corpus: A large dataset for research

in unstructured multi-turn dialogue systems. In SIG-

DIAL.

2131



T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and

J. Dean. 2013. Distributed representations of words

and phrases and their compositionality. In Advances

in neural information processing systems, pages 3111–

3119.

J. Mitchell and M. Lapata. 2008. Vector-based models

of semantic composition. In ACL, pages 236–244.
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