
How OpenMP Applications Get More Benefit from
Many-Core Era

Jianian Yan, Jiangzhou He, Wentao Han, Wenguang Chen, and Weimin Zheng

Department of Computer Science and Technology,
Tsinghua University, China

{yanjn03,hejz07,hwt04}@mails.tsinghua.edu.cn,
{cwg,zwm-dcs}@tsinghua.edu.cn

Abstract. With the approaching of the many-core era, it becomes more and more
difficult for a single OpenMP application to efficiently utilize all the available
processor cores. On the other hand, the available cores become more than neces-
sary for some applications. We believe executing multiple OpenMP applications
concurrently will be a common usage model in the future. In this model, how
threads are scheduled on the cores are important as cores are asymmetric. We
have designed and implemented a prototype scheduler, SWOMPS, to help sched-
ule the threads of all the concurrent applications system-widely. The scheduler
makes its decision based on underlying hardware configuration as well as the
hints of scheduling preference of each application provided by users. Experiment
evaluation shows SWOMPS is quite efficient in improving the performance.

With the help of SWOMPS, we compared exclusive running one application
and concurrent running multiple applications in term of system throughput and
individual application performance. In various experimental comparisons, con-
current execution outperforms in throughput, meanwhile the performance slow-
down of individual applications in concurrent execution is reasonable.

1 Introduction

Restricted by heating and power consumption, hardware vendors stopped increasing
processor’s performance by introducing complex circuit and increasing frequency. In-
stead, multiple cores are put into one chip. The effect of Moore’s law has converted
from increasing the performance of a single-core processor to the number of cores in
a processor. Six-core general-purpose processor has been available in the market. Pro-
cessors with more and more cores are coming soon. In the near future, one can easily
have a computer with hundreds of cores by configuring multi-core processors in NUMA
architecture.

In the multi-core era, OpenMP applications face the challenge of how to efficiently
utilize the increasing computing power. Keeping the performance of OpenMP appli-
cations scaling with the number of processor cores is not trivial. Simply increasing the
number of threads in an OpenMP applications does not guarantee the performance scal-
ing. Figure 1 shows the result of scalability experiment with benchmarks in SpecOMP
2001. The experiment platform has 24 cores which detail configuration can be found
in Sect. 4. In the test, the performance speedup per thread continues decreasing as the

M. Sato et al. (Eds.): IWOMP 2010, LNCS 6132, pp. 83–95, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

84 J. Yan et al.

number of threads grows, as showed in Fig. 1b. And for some benchmarks, for ex-
ample 314.mgrid, 318.galgel and 320.equake showed in Fig. 1a, performance with 24
threads is even worse than performance with 16 threads. Writing well scaling appli-
cations requires sophisticated techniques and wide range of knowledge from hardware
architecture to application domain. And theoretically, according to Amdahl’s law, even
for perfectly written applications, the existence of serialized portion in the application
limits the benefit that can be obtained by parallel execution, no matter how many cores
are available.

1 Thread
2 Threads
4 Threads
8 Threads
16 Threads
24 Threads

 0

 2

 4

 6

 8

 10

 12

 14

 16

310.wupwise

312.swim

314.mgrid

316.applu

318.galgel

320.equake

324.apsi

326.gafort

328.fma3d

330.art

332.ammp

Pe
rf

or
m

an
ce

 S
pe

ed
 U

p

(a) Performance Speed Up

1 Thread
2 Threads
4 Threads
8 Threads
16 Threads
24 Threads

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

310.wupwise

312.swim

314.mgrid

316.applu

318.galgel

320.equake

324.apsi

326.gafort

328.fma3d

330.art

332.ammp

Pe
rf

or
m

an
ce

 S
pe

ed
 U

p
pe

r
T

hr
ea

d

(b) Performance Speed Up per Thread

Fig. 1. Performance Scaling with Various OMP Threads

Single OpenMP application has difficulty to efficiently utilize the increasing proces-
sor cores. On the other side, for some applications, it is unnecessary to utilize as many as
the available cores. We believe multiple OpenMP applications executing concurrently
will be a common usage model in the future. In this model, which cores the threads
of an application are executing on will be an important factor to the performance. In a
computer with multi-core processors configured in NUMA architecture, the cores are
asymmetric. Cores in the same processor share the last level cache and have the same
local memory while cores in different processors do not. An improper scheduling of
threads on the cores will harm the performance of not only the application itself, but
also other applications concurrently running on the computer.

We have designed and implemented a prototype scheduler SWOMPS (System-Wide
OpenMP application Scheduler) to help schedule the threads of all concurrent applica-
tions system-widely. The scheduler makes its decision based on underlying hardware
configuration as well as the hints of scheduling preference of each application provided
by users. It will dynamically schedule the threads whenever an application comes to run
or exits.

With the help of SWOMPS, we compared exclusive running one application and
concurrent running multiple applications in term of system throughput and individual
application performance. We take two application concurrently running for example.
In various experimental comparisons, concurrent execution outperforms in throughput,
meanwhile the performance slowdown of individual application in concurrent execution
is reasonable.

The rest of the paper is organized as follows: Section 2 introduces two observa-
tions from the practical experience with OpenMP applications that guide the scheduler

How OpenMP Applications Get More Benefit from Many-Core Era 85

design. Section 3 introduces the design and implementation of SWOMPS scheduler.
Section 4 evaluates the scheduler and Sect. 5 compares the exclusive running model
and the concurrent running model. Related work is introduced in Sect. 6 and Sect. 7
concludes the paper.

2 Practical Observations

2.1 Binding a Thread to a Core Will Improve Application Performance

Modern operating systems provide system calls with which user can specify a core that
a thread is running on, which is also known as binding a thread to a core. OpenMP
programmer usually binds each thread to a distinct core which will results in a better
performance. Table 1 gives the execution time of the benchmarks with and without
thread binding. Each benchmark is compiled with Open64 at O3 optimizing level, and
running with 24 threads. The detail of the experiment environment can be found in
Sect. 4. The last column of Table 1 shows the performance improvement due to thread
binding. As we can see, the performance improvement ranging from 0.2% to 31.4%.
There are two major sources of the performance improvement. Binding a thread avoids
cache warming up when it is scheduled to a new core. And binding a thread keeps a
core close to the data that it operates in the NUMA architecture.

Table 1. Execution Time Comparison of
Thread Binding

Execution Time (s)
Benchmark No Binding Binding Perf. Impr.

310.wupwise 190.13 170.36 11.6%
312.swim 405.21 401.94 0.8%
314.mgrid 660.11 523.93 26.0%
316.applu 228.76 227.93 0.4%
318.galgel 1192.54 939.25 27.0%
320.equake 148.59 121.95 21.8%
324.apsi 118.91 112.86 5.4%
326.gafort 311.10 310.53 0.2%
328.fma3d 222.95 199.97 11.5%
330.art 179.70 136.79 31.4%
332.ammp 320.40 302.94 5.8%

Table 2. Scheduling Preference of Each
Benchmark

Execution Time (s)
Benchmark Scatter Gather Perf. Impr.

310.wupwise 259.15 324.8 25.33%
312.swim 363.75 780.18 114.48%
314.mgrid 482.39 908.16 88.26%
316.applu 254.71 395.16 55.14%
318.galgel 616.53 676.9 9.79%
320.equake 129.54 179.15 38.30%
324.apsi 194.48 179.64 8.26%
326.gafort 479.53 641.55 33.79%
328.fma3d 290.59 377.77 30.00%
330.art 206.66 244.03 18.08%
332.ammp 510.3 490.78 3.98%

2.2 Different Applications Have Different Scheduling Preferences

Nowadays, most shared memory computers are configured in NUMA architecture. A
processor can access its own local memory faster than non-local memory. A proces-
sor again contains several cores and cores in the same processor usually share the last
level cache. The processor cores are asymmetric. Different OpenMP applications may
have different thread scheduling preferences on the cores. Table 2 gives the results of a

86 J. Yan et al.

scheduling preference experiment. The experiment runs on a computer with four pro-
cessors, and each processor has six cores. A processor has 6M L3 cache that is shared
amoung the 6 cores. In the experiment, each benchmark runs with 12 threads. In the
Scatter scheduling, the 12 threads are scheduled onto 4 processors, each processor has
3 threads running on it. While in the Gather scheduling, the 12 threads are scheduled
onto 2 processors, each processor has 6 threads running on it. In the scatter scheduling,
the amount of shared cache per thread is larger and so are the memory bandwidth to lo-
cal memory. In the gather scheduling, communication has lower cost as more threads are
sharing the L3 cache, and more cores are sharing the same local memory that reduces
the chance to access remote memory. Data in the Perf. Impr. column in Tab. 2 gives the
performance improvements if an application is scheduled in favor of its preference ver-
sus against its preference. The observed performance improvements range from 3.98%
to 114.48%. The experiment results indicate that different applications have different
scheduling preferences. The performance improvement due to being properly scheduled
varies from application to application.

3 SWOMPS: Design and Implementation

3.1 Scheduling Requirements

Learning from the experience introduced in Sect. 2, we believe a scheduler is needed to
help improve application performance and the whole system’s efficiency. The scheduler
should fulfill the following requirements:

– The scheduler should be system-wide that it could schedule multiple applica-
tions running currently
General OpenMP applications could not perfectly scale with the increasing of pro-
cessor cores. When the number of available cores exceeds the requirements of a
single OpenMP application, it is necessary to share the computer among multiple
applications. A scheduler supporting multiple concurrently running applications is
needed.

– The scheduler should have respect for applications’ scheduling preferences
and resolve possible preference conflicts
Each OpenMP application has its specific scheduling preference. The scheduler
should be aware of it and perform scheduling accordingly. When the scheduling pref-
erences of concurrently running applications conflict, the scheduler should resolve
the conflicts in favor of specific optimizing goal. For example, one way to optimize
the system throughput is to weight each applications by the performance impact of
its preferred scheduling, and satisfy the applications in the descending order.

– Each thread should be bound to a core and this binding should be kept as long
as possible
Scheduler should bind each thread to a specific core to favor its memory access.
However, scheduler might need to reschedule the bindings when a new application
comes to run or an application terminates. Rebinding a thread to a new core will
need to warm up the cache again and may increase memory accesses to non-local
memory. When the scheduler needs to adjust its previous scheduling, it should find
a scheduling plan that rebinds previous threads as few as possible.

How OpenMP Applications Get More Benefit from Many-Core Era 87

Hardware Configuration SWOMPS

OpenMP Runtime Library

Operating System

Sched. Pref.OpenMP App. Sched. Pref.OpenMP App.

Fig. 2. SWOMPS Architecture

3.2 SWOMPS Work Flow

We have designed a prototype scheduler, SWOMPS (System-Wide OpenMP applica-
tion Scheduler) according to the observations introduced previously. Figure 2 shows
how SWOMPS cooperates with other parts in the system. And its work flow is as
following:

1. SWOMPS starts as a daemon. It inquiries the hardware configuration and initializes
internal system model.

2. An application reports its scheduling preference to a database when it starts exe-
cution. The scheduling preference is described as an integer. The negative value
indicates the application prefers scatter-scheduling, and the positive value indicates
the application prefers gather-scheduling. The absolute value of the integer indi-
cates the potential performance impact if the application is properly scheduled. The
preference may vary with underlying system, it should not be hard coded. In our
prototype implementation, the scheduling preference is stored in an environment
variable. Moreover, for many real world applications, the preference may vary due
to the alternation of different computational kernels. We use an overall preference
for each application for simplicity.

3. OpenMP runtime library inquiries the scheduling preference after creating threads
pool. It sends the preference as well as application process ID and thread IDs to
SWOMPS.

4. When the application terminates, OpenMP runtime library sends the process ID to
SWOMPS.

5. SWOMPS generates a scheduling plan whenever it receives a message. The schedul-
ing plan for each process is calculated according to the current states of the system
and the changes of the work load, either a group of threads start execution or they
terminate. And the plan is carried out with the help of operating system.

3.3 Scheduling Algorithm

There are two phases in the scheduling algorithm of SWOMPS. The first phase assigns
the core quota in each processor to the applications that they can bind their threads

88 J. Yan et al.

onto, which is described in Algo. 1. The second phase decides the actual thread-core
bindings, and it is described in Algo. 2.

Algorithm 1. Assign Core-Quota of Each Processor to Applications
Input: Pref (app) : scheduling preference of application app
Input: PrevCoreQuota(app, p) : In the previous scheduling, how many threads of application app had been

bound to cores in processor p
Result: CoreQuota(app, p) : In the new scheduling, how many threads of application app could be bound to

cores in processor p

m←number of total processor cores;1
foreach application, app, in descending order of |Pref (app)| do2

CandidateCnt(app)← min{m, number of threads in app};3
m← m− CandidateCnt(app);4

foreach processor, p, do AvailCoreCnt(p)← number of cores in p ;5
foreach application, app, in descending order of |Pref (app)| do6

foreach processor, p, do CoreQuota(app, p)← 0 ;7
n← CandidateCnt(app);8
while n > 0 do9

p0 ← arg max
p

〈AvailCoreCnt(p), PrevCoreQuota(app, p)〉;
10

if Pref (app) > 0 then11
t← 1;12

else13
t← min{n, AvailCoreCnt(p0)};14

AvailCoreCnt(p0)← AvailCoreCnt(p0)− t;15
CoreQuota(app, p0)← CoreQuota(app, p0) + t;16
n← n− t;17

If the number of currently running threads in all applications is larger than the num-
ber of processor cores, SWOMPS will firstly satisfy applications with larger |Pref (app)|.
The rest threads are not bound to any processor core and left to OS for scheduling. This
is carried out by assigning CandidateCnt (app) in the first loop (line 2 to 4) in Algo. 1.
The loop iterates the applications from larger |Pref (app)| to smaller ones and assigns
core quota to each application. Next SWOMPS further assigns the core quota in each
processor to the applications to determine how threads of an application spread among
the processors. Again this assignment is carried out from larger |Pref (app)| to smaller
ones. For a specific application, as is described from line 9 to 17, SWOMPS will first
find a processor that has the most cores unassigned. If there are multiple candidates,
SWOMPS will choose one that the application has most thread bound to in the previous
scheduling. When SWOMPS recalculats the scheduling plan of a process due to starting
or terminating of other processes, it uses PrevCoreQuota(app, p) to avoid unnecessary
thread migration. Pseudo code in line 10 accomplishes this goal by finding the maximal
tuple 〈AvailCoreCnt(p),PrevCoreQuota(app, p)〉 and return the relative processor
p0. SWOMPS will assign either one core or as many as possible to the application app
according to the scheduling preference of the application and repeat until running out
the application’s core quota.

There are two steps in deciding the thread-core bindings. In the first step, as described
from line 3 to 13 in Algo. 2, if an application has its threads bound to some core in the
previous scheduling, these threads are bound to the same core as long as the application
has core quota in the processor. In the second step, the rest of the threads are bound to
cores where the application has core quota.

How OpenMP Applications Get More Benefit from Many-Core Era 89

Algorithm 2. Generate Thread-Core Bindings
Input: PrevThreadBind(t) : the core that thread t bound to in the previous scheduling
Input: CoreQuota(app, p) : In the new scheduling, how many threads of application app could be bound to

cores in processor p
Result: ThreadBind(t) : the core that thread t is bound to in the new scheduling

RestCoreQuota(., .)← CoreQuota(., .);1
UnboundCores(.)← Cores(.);2
foreach application, app, do3

UnboundThreads(app)← {threads of app} ;4
foreach thread t of app do5

if PrevThreadBind(t) �= ∅ then6
c← PrevThreadBind(t);7
p← processor that core c belongs to;8
if RestCoreQuota(app, p) > 0 then9

RestCoreQuota(app, p)← RestCoreQuota(app, p)− 1;10
UnboundThreads(app)← UnboundThreads(app)− {t};11
UnboundCores(p)← UnboundCores(p)− {c};12
ThreadBind(t)← c;13

foreach application, app, do14
foreach processor, p, do15

for i← 1 to RestCoreQuota(app, p) do16
t← any element in UnboundThreads(app);17
c← any element in UnboundCores(p);18
UnboundThreads(app)← UnboundThreads(app)− {t};19
UnboundCores(p)← UnboundCores(p)− {c};20
ThreadBind(t)← c;21

4 SWOMPS Evaluation

We have implemented our prototype scheduler, SWOMPS, with Open64 compiler and
evaluated it on a SunFire X4440 server. The configuration of the server can be found
in Table 3. The server is equipped with four processors. Each processor has six cores.
Each core has separated L1 and L2 caches, and the 6 cores share the L3 cache. The
four processors are configured in NUMA architecture. Each processor has 12G local
memory. The operating system is Red Hat Enterprise Linux Server 5.4. The version of
the Linux kernel is 2.6.18. The operating system allocates new page on the node where
the task is running. The OpenMP runtime library is the default library used in Open64
of revision 2722.

We use benchmarks in SpecOMP 2001 test suite in our evaluation. Scheduling pref-
erence of each benchmark is set to the performance improvement when the applica-
tion is properly scheduled. For example, as showed in Tab. 2, 324.apsi prefers gather-
scheduling, the performance improvement is 8.26%, so its scheduling preference is
set to 8. While 312.swim prefers scatter-scheduling, the performance improvement is
114.48%, so its scheduling preference is set to −114. Here we assume that users know
application’s running characteristic well when it is run exclusively and the scheduler
can be guided by users.

4.1 Pairwise Execution

We firstly evaluate the scheduler by concurrently running two applications, each ap-
plication with 12 threads. We sum up the execution time of the two benchmarks and
compare it with the same test without SWOMPS’ scheduling. We tested every pair of

90 J. Yan et al.

Table 3. Experimenting Platform Configuration

Number of Sockets 4
Processor AMD Opteron 8431
Number of Cores 6-core×4
L1 Cache Configuration 64K×6
L2 Cache Configuration 512K×6
L3 Cache Configuration 6M, Shared
Memory Configuration 12G×4

the 11 benchmarks in SpecOMP 2001. Table 4 lists the performance comparison of
tests with and without SWOMPS’ scheduling. For each cell in the table, the benchmark
listed in the head of its row and its column are the benchmarks that are concurrently
executed.

Table 4. Performance Comparison of Tests with and without SWOMPS in Pairwise Execution

Benchmark 310.wupwise 312.swim 314.mgrid 316.applu 318.galgel 320.equake 324.apsi 326.gafort 328.fma3d 330.art
312.swim 1.24
314.mgrid 1.27 1.24
316.applu 1.11 1.15 1.23
318.galgel 1.15 1.08 1.24 1.04
320.equake 1.17 1.31 1.36 1.32 1.11
324.apsi 1.05 1.28 1.46 1.04 1.00 1.13
326.gafort 1.17 1.11 1.05 1.08 1.07 1.02 1.12
328.fma3d 1.15 1.11 1.31 1.13 1.09 1.26 1.06 1.19
330.art 1.28 1.29 1.41 1.03 1.01 1.22 1.13 1.23 1.15
332.ammp 1.12 1.40 1.13 1.16 1.11 1.13 1.07 1.11 1.04 1.17

Performance improvement can be observed in 54 out of the 55 testings, except the
testing of <324.apsi, 318.galgel>. The maximum performance improvement is 46.3%
(<324.apsi, 314.mgrid>). And the average improvement is 16.5%. SWOMPS showed
its efficiency for two concurrently running applications.

4.2 Task Queue Simulation

To further evaluate SWOMPS, we test it in a more complicated running circumstance.
We simulates a task queue. Benchmarks enter the queue in a random order, and the
time interval between two successively entered benchmarks yields to exponential dis-
tribution. The expected value of the distribution is set to 360 with the intent of the queue
being empty occasionally. There are at most three applications running currently. Each
application has a random number of threads, either 6, 8 or 10. The benchmarks are also
from SpecOMP 2001.

In addition to compare testing with and without SWOMPS’ scheduling we also
compare SWOMPS with a non system-wide scheduler implementation. We evaluate
whether the lightweight, non system-wide implementation could be an alternative of
SWOMPS. In the non system-wide implementation, the scheduler is linked to the ap-
plication and becomes a part of it. There is no coordination between different applica-
tions. The scheduler can only schedule the application it belongs to. It schedules the

How OpenMP Applications Get More Benefit from Many-Core Era 91

application according to the system state when the application starts execution. And
that scheduling will not change till the application terminates.

We run each task queue test three times under different scheduling schemas: no
scheduling, non system-wide scheduling and SWOMPS scheduling. We totally gen-
erated 10 task queue tests. Figure 3 shows the sum of execution time of the 11 bench-
marks in each task queue test. Bars labeled with No Scheduling are the results of tests
without any scheduling. Bars labeled with Non SysWide are the results of tests with non
system-wide scheduling. And bars labeled with SWOMPS are the results of tests with
SWOMPS scheduling.

No Scheduling
Non SysWide
SWOMPS

 0

 1e+03

 2e+03

 3e+03

 4e+03

 5e+03

 6e+03

 7e+03

 8e+03

1 2 3 4 5 6 7 8 9 10

Su
m

 o
f

ex
ec

ut
io

n
tim

e

Fig. 3. Sum of Benchmark Execution Time in 10 Random Tests

Both the Non SysWide and SWOMPS scheduling outperform No Scheduling in all the
10 tests. The maximum time reduction is 24%, observed in test 3, for both Non SysWide
and SWOMPS. The minimum time reduction is observed in test 10, 3% for Non SysWide
and 8% for SWOMPS. The average time reduction are 12% for Non SysWide and 16%
for SWOMPS. SWOMPS showed its efficiency in complicated circumstance too.

SWOMPS outperforms Non SysWide scheduling. Coordinating concurrently running
application system-widely can make better use of hardware resources. Deeper compar-
isons indicate that system-wide scheduling is necessary in two circumstances, 1) when
scheduling preferences of different application conflicts and 2) when an application
terminates and more cores are available.

5 Comparison of Exclusive and Concurrent Running Model

In this section, we study the impact of concurrently running multiple applications. There
are two concerns in our study, 1) throughput, measured by the reciprocal of the time
needed to finish a group of task, and 2) performance of individual application in the
concurrent execution.

We firstly enumerate every pair of the 11 benchmarks in SpecOMP 2001 as a task
group. The two benchmarks first run exclusively, one after the other. Benchmarks
312.swim, 314.mgrid, 318.galgel and 320.equake are executed with 12 threads as their
performances are better with 12 threads than with 24 threads. Then the two bench-
marks are executed concurrently under SWOMPS’ scheduling, each benchmark with

92 J. Yan et al.

Table 5. Throughput and Performance Study of Pairwise Execution

(a) Throughput comparison between exclusively execution and pairwise execution with 12 threads
for each application

Benchmark 310.wupwise 312.swim 314.mgrid 316.applu 318.galgel 320.equake 324.apsi 326.gafort 328.fma3d 330.art
312.swim 1.08
314.mgrid 1.18 1.07
316.applu 1.01 1.06 1.07
318.galgel 1.09 1.00 1.18 0.97
320.equake 1.02 1.13 1.13 1.07 0.91
324.apsi 1.07 1.25 1.20 1.14 0.92 1.07
326.gafort 0.99 1.01 1.04 0.96 1.11 0.81 0.94
328.fma3d 1.22 1.20 1.22 1.15 1.07 1.08 1.11 0.95
330.art 1.26 1.20 1.24 1.22 1.06 1.17 1.27 0.97 1.31
332.ammp 1.05 1.06 1.25 0.93 1.27 0.89 0.90 1.14 1.12 1.03

(b) Performance reduction of individual benchmark due to concurrent execution

Benchmark 310.wupwise 312.swim 314.mgrid 316.applu 318.galgel 320.equake 324.apsi 326.gafort 328.fma3d 330.art
312.swim 17, 65
314.mgrid 14, 58 40, 35
316.applu 30, 54 58, 33 49, 26
318.galgel 22, 42 45, 14 43, 16 35, 32
320.equake 28, 36 68, 12 53, 7 52, 28 38, 27
324.apsi 47, 34 61, 4 52, 3 55, 25 38, 27 45, 22
326.gafort 39, 54 56, 31 56, 35 45, 41 43, 33 41, 50 32, 50
328.fma3d 30, 44 57, 21 43, 15 43, 34 32, 27 28, 33 28, 44 44, 44
330.art 33, 35 63, 8 54, 8 46, 25 35, 23 28, 26 23, 38 35, 39 36, 27
332.ammp 34, 42 53, 1 52, 6 46, 21 34, 24 34, 36 34, 37 34, 44 34, 41 34, 30

12 threads. We normalize the throughput of the concurrent run with respect to the ex-
clusive run and the results are listed in Table 5a. In 43 of the 55 tests, concurrent run
achieves better throughput. The best throughput improvement is 31% and the average
throughput improvement is 9%.

We also tested concurrent run without SWOMPS’ scheduling. Due to space limit,
the detail of the result is not presented. In those tests, none of the concurrent run has
better throughput. The average throuughput decreases by 32%. Simply running multiple
applications concurrently does not guarantee throughput improvement.

We compare the performance of individual benchmark between exclusive run and
concurrent run. The results are listed in Table 5b. For example, “17, 65” in the second
row and second column indicates that, compared with exclusive run, when 312.swim

Benchmark sequence in the task queue N T
332, 316, 326, 314, 328, 320, 330, 324, 310, 318, 312 1.56
328, 330, 326, 312, 320, 316, 332, 324, 318, 310, 314 1.50
312, 314, 328, 318, 310, 330, 320, 316, 326, 332, 324 1.54
326, 332, 330, 320, 314, 312, 310, 318, 324, 316, 328 1.49
330, 332, 318, 324, 310, 312, 320, 316, 314, 326, 328 1.49
330, 310, 324, 332, 328, 312, 314, 326, 316, 320, 318 1.35
312, 314, 330, 310, 324, 328, 316, 332, 320, 326, 318 1.39
332, 316, 314, 324, 328, 326, 312, 318, 310, 320, 330 1.54
316, 312, 320, 332, 326, 324, 310, 318, 330, 328, 314 1.50
326, 316, 320, 310, 314, 332, 318, 324, 328, 330, 312 1.56

(a) Throughput comparison

Max
Min
Avg

 −40

 −20

 0

 20

 40

 60

310.wupwise

312.swim

314.mgrid

316.applu

318.galgel

320.equake

324.apsi

326.gafort

328.fma3d

330.art

332.ammp

Pe
rf

or
m

an
ce

 v
ar

ia
tio

n

(b) Performance variation

Fig. 4. Throughput and Performance Study of Task Group with 11 Benchmarks

How OpenMP Applications Get More Benefit from Many-Core Era 93

and 310.wupwise run concurrently, performance of 312.swim decreases 15%, and per-
formance of 310.wupwise decreases 65%. In the 110 comparisons, 90 of them are less
than 50%, and the average performance decrease is 35.6%. This result is better than
expected considering only half of the threads running and the L3 cache and memory
bandwidth are shared among two benchmarks.

We next use all the 11 benchmarks as a task group. The 11 benchmarks enter a
task queue in a random order. In the exclusive run, benchmarks 312.swim, 314.mgrid,
318.galgel and 320.equake are executed with 12 threads, others are executed with 24
threads. At the same time, only one benchmark is running. In the concurrently run, each
benchmark runs with 12 threads. At the same time, there are two benchmarks running.
When a benchmark terminates, the next benchmark in the task queue starts execution
immediately. We tested 10 randomly generated testings and normalize the throughput
of the concurrent run with respect to the exclusive run. Figure 4a lists the order of the
11 benchmarks in the queue in the first column. The second column lists the normalized
throughput. On average, concurrently run has 49% improvement in throughput.

Figure 4b shows the performance variations of concurrent run compared with exclu-
sive run. Bars labeled with Max give the maximum performance decrease of concurrent
run in the 10 tests. Bars labeled with Min are the minimum performance decrease. Bars
labeled with Avg are the average performance decrease. A negative value means bench-
mark runs faster in the concurrent run. Significant performance improvements have
been observed in the concurrent run of benchmark 312.swim and 314.mgrid. A further
study shows the major source of the improvement is thread binding. As we can see
form the figure, the average performance decrease of the 11 benchmark are all less than
50%.

These experiments show that concurrent running model outperforms exclusive run-
ning model in throughput, especially if there are many tasks. Meanwhile, concurrent
running will slow down the applications but they are reasonable.

6 Related Work

Many researches [1,2,3,4,5,6] have been carried out to improve the performance of
OpenMP applications on multi-core system. Truong et al. [1] seek to improve scalability
from implementation aspect. Their work introduces thread subteams to overcome the
thread mapping problem and enhance modularity. Noronha et al. [2] study the benefits
from using large page support for OpenMP applications. Terboven et al. [4] improve
data and thread affinity of OpenMP programs on multi-core system by binding thread
to thread cores and allocate memory with next touch strategy. A series of papers [3,5,6]
from Broquedis et al. introduce a runtime system that transpose affinities of thread
teams into scheduling hints. With the help of the introduced BubbleSched platform,
they propose scheduling strategy suited to irregular and massive nested parallelism over
hierarchical architectures. They also propose a NUMA-aware memory management
subsystem to facilitate data affinity exploitation.

To the authors’ knowledge, there was no study about improving concurrently running
multiple OpenMP applications.

94 J. Yan et al.

7 Conclusion

Restrictions of heating and power consumption has converted the effect of Moore’s law
from increasing the performance of a single-core processor to the number of cores in a
processor. More and more cores will be available in one processor. However, a prelimi-
nary experimental study of the scalability of OpenMP applications shows that OpenMP
applications cannot efficiently utilize the increasing processor cores in general. Concur-
rently running multiple OpenMP applications will become a common usage model.

In the NUMA architecture with multi-core processors, the processor cores are asym-
metric. How the threads of the concurrently running OpenMP applications are
distributed on the processor cores is important to the performance of all the current
applications. In this paper, we proposed a system-wide scheduler, SWOMPS, to help
schedule the threads on the processor cores. The scheduler makes its decision based
on underlying hardware configuration as well as the hints of scheduling preference of
each application. Experiment results shows that SWOMPS is efficient in improving the
whole system performance. We also compared the exclusive running and concurrent
running with SWOMPS. In various experimental comparisons, concurrent execution
outperforms in throughput, meanwhile the performance slowdown of individual appli-
cation in concurrent execution is reasonable.

References

1. Chapman, B.M., Huang, L.: Enhancing OpenMP and its implementation for programming
multicore systems. In: Bischof, C.H., Bücker, H.M., Gibbon, P., Joubert, G.R., Lippert, T.,
Mohr, B., Peters, F.J. (eds.) PARCO. Advances in Parallel Computing, vol. 15, pp. 3–18.
IOS Press, Amsterdam (2007)

2. Noronha, R., Panda, D.K.: Improving scalability of OpenMP applications on multi-core sys-
tems using large page support. In: IPDPS, pp. 1–8. IEEE, Los Alamitos (2007)

3. Thibault, S., Broquedis, F., Goglin, B., Namyst, R., Wacrenier, P.A.: An efficient OpenMP
runtime system for hierarchical architectures. In: Chapman, B., Zheng, W., Gao, G.R.,
Sato, M., Ayguadé, E., Wang, D. (eds.) IWOMP 2007. LNCS, vol. 4935, pp. 161–172.
Springer, Heidelberg (2008)

4. Terboven, C., an Mey, D., Schmidl, D., Jin, H., Reichstein, T.: Data and thread affinity in
OpenMP programs. In: MAW ’08: Proceedings of the 2008 workshop on Memory access on
future processors, pp. 377–384. ACM, New York (2008)

5. Broquedis, F., Diakhaté, F., Thibault, S., Aumage, O., Namyst, R., Wacrenier, P.A.:
Scheduling dynamic OpenMP applications over multicore architectures. In: Eigenmann, R.,
de Supinski, B.R. (eds.) IWOMP 2008. LNCS, vol. 5004, pp. 170–180. Springer, Heidelberg
(2008)

6. Broquedis, F., Furmento, N., Goglin, B., Namyst, R., Wacrenier, P.A.: Dynamic task and
data placement over numa architectures: An OpenMP runtime perspective. In: Müller, M.S.,
de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS, vol. 5568, pp. 79–92.
Springer, Heidelberg (2009)

7. Hanawa, T., Sato, M., Lee, J., Imada, T., Kimura, H., Boku, T.: Evaluation of multi-
core processors for embedded systems by parallel benchmark program using OpenMP. In:
Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS, vol. 5568,
pp. 15–27. Springer, Heidelberg (2009)

How OpenMP Applications Get More Benefit from Many-Core Era 95

8. Terboven, C., an Mey, D., Sarholz, S.: OpenMP on multicore architectures. In: Chapman, B.,
Zheng, W., Gao, G.R., Sato, M., Ayguadé, E., Wang, D. (eds.) IWOMP 2007. LNCS,
vol. 4935, pp. 54–64. Springer, Heidelberg (2008)

9. Curtis-Maury, M., Ding, X., Antonopoulos, C.D., Nikolopoulos, D.S.: An evaluation of
OpenMP on current and emerging multithreaded/multicore processors. In: Mueller, M.S.,
Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005 and IWOMP
2006. LNCS, vol. 4315, pp. 133–144. Springer, Heidelberg (2008)

	How OpenMP Applications Get More Benefit from Many-Core Era
	Introduction
	Practical Observations
	Binding a Thread to a Core Will Improve Application Performance
	Different Applications Have Different Scheduling Preferences

	SWOMPS: Design and Implementation
	Scheduling Requirements
	SWOMPS Work Flow
	Scheduling Algorithm

	SWOMPS Evaluation
	Pairwise Execution
	Task Queue Simulation

	Comparison of Exclusive and Concurrent Running Model
	Related Work
	Conclusion

