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Abstract 

A c.:omputational model of song learning in the song sparrow 
(M elospiza melodia) learns to categorize the different syllables of 
a song sparrow song and uses this categorization to train itself to 
reproduce song. The model fills a crucial gap in the computational 
explanation of birdsong learning by exploring the organization of 
perception in songbirds. It shows how competitive learning may 
lead to the organization of a specific nucleus in the bird brain, 
replicates the song production results of a previous model (Doya 
and Sejnowski, 1995), and demonstrates how perceptual learning 
can guide production through reinforcement learning. 

1 INTRODUCTION 

• 
In 

The passeriformes or songbirds make up more than half of all bird species and 
are divided into two groups: the os cines which learn their songs and sub-oscines 
which do not. Oscines raised in isolation sing degraded species typical songs similar 
to wild song. Deafened oscines sing completely degraded songs (Konishi, 1965) , 
while deafened sub-oscines develop normal songs (Kroodsma and Konishi, 1991) 
indicating that auditory feedback is crucial in oscine song learning. 

Innate structures in the bird brain regulate song learning. For example, song spar­
rows show innate preferences for their own species' songs and song structure (Mar­
ler, 1991). Innate preferences are thought to be encoded in an auditory template 
which limits the sounds young birds may copy. According to the auditory tem­
plate hypothesis birds go through two phases during song learning, a memo­
rization phase and a motor phase. In the memorization phase, which lasts 
from approximately 20 to 50 days after birth in the song sparrow, the bird selects 
which sounds to copy based on an innate template and refines the template based 
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Figure 1: A simplified sketch of a saggital section of the songbird brain . Field L (Field 
L) receives auditory input and projects to the production pathway: HVc (formerly the 
caudal nucleus of the hyperstriatum), RA (robust nucleus of archistriatum), nXIIts (hy­
poglossal nerve), the syrinx (vocal organ) and the learning pathway: X (area X), DLM 
(medial nucleus of the dorsolateral thalamus), LMAN (lateral magnocellular nucleus of 
the anterior neostriatum), RA (Konishi, 1989; Vicario, 1994). V is the lateral ventricle. 

on the sounds it hears . In the motor phase (from approximately 272 to 334 days 

after birth) the template provides feedback during singing. Learning to sing the 

memorized, template song is a gradual process of refining the produced song to 

match memory (Marler, 1991). 

A song is made up of phrases, phrases of syllables and syllables of notes. Syllables, 

usually separated by periods of silence, are the main units of analysis. Notes typ­

ically last from 10-100 msecs and are used to construct syllables (100-200 msecs) 

which are reused to produce trills and other phrases. 

2 NEUROBIOLOGY OF SONG 

The two main neural pathways that govern song are the motor and learning path­

ways seen in figure 1 (Konishi , 1989). Lesions to the motor pathway interrupt 

singing throughout life while lesions to the learning pathway disrupt early song 

learning. Although these pathways seem to have segregated functions , recordings 

of neurons during song playback have shown that cells throughout the song system 

respond to song (Konishi, 1989). 

Studies of song perception have shown the best auditory stimulus that will evoke a 

response in the song system is the bird's own song (Margoliash , 1986) . The song 

specific neurons in HV c of the white-crowned sparrow often require a sequence of 

two syllables to respond (Margoliash , 1986; Margoliash and Fortune , 1992) and are 

made up of two main types in HV c . One type is sensitive to temporal combinations 
of stimuli while the other is sensitive to harmonic characteristics (Margoliash and 

Fortune, 1992) . 

3 COMPUTATION 

Previous computational work on birdsong learning predicted individual neural re­

sponses using back-propagation (Margoliash and Bankes , 1993) and modelled motor 

mappings for song production (Doya and Sejnowski, 1995). The current work de-
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Figure 2: Perceptual network input encoding. The song is converted into frequency bins 
which are presented to the Kohonen layer over four time steps. 

velops a model of birdsong syllable perception which extends Doya and Sejnowski's 

(1995) model of birdsong learning. Birdsong syllable segmentation is accomplished 
using an unsupervised system and this system is used to train the network to re­
produce its input using reinforcement learning. 

The model implements the two phases of the auditory template hypothesis, mem­

orization and motor. In the first phase the template song is segmented into 

syllables by an unsupervised Kohonen network (Kohonen, 1984). In the second 

phase the syllables are reproduced using a reinforcement learning paradigm based 
on Doya and Sejnowski (1995). 

The model extends previous work in three ways: 1) a self-organizing network picks 
out syllables in the song; 2) the self-organizing network provides feedback during 

song production; and 3) a more biologically plausible model of the syrinx is used to 
generate song. 

3.1 Perception 

Recognizing a syllable involves identifying a short sequence of notes. Kohonen 

networks use an unsupervised learning method to categorize an input space based 

on similar neural responses. Thus a Kohonen network is a natural candidate for 
identifying the syllables in a song. 

One song from the repertoire of a song sparrow was chosen as the training song 
for the network . The song was encoded by passing a sliding window across the 
training waveform (sampled at 22 .255 kHz) of the selected song. At each time step, 
a non-overlapping 256 point (~ .011 sec) fast fourier transform (FFT) was used to 

generate a power spectrum (figure 2). The power spectrum was divided into 8 bins. 
Each bin was mapped to a real number using a gaussian summation procedure with 

the peak of the gaussian at the center of each frequency bin. Four time-steps were 

passed to each Kohonen neuron. 

The network's task was to identify similar syllables in the input song. The input 

song was broken down into syllables by looking for points where the power at all 
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Figure 3: Categorization of song syllables by a Kohonen network. The power-spectrum of 
the training song is at the top. The responses of the Kohonen neurons are at the bottom. 
For each time-step the winning neuron is shown with a vertical bar. The shaded areas 
indicate the neuron that fired the most during the presentation of the syllable. 

frequencies dropped below a threshold . A syllable was defined as sound of duration 

greater than .011 seconds bounded by two low-power points . The network was not 
trained on the noise between syllables. The song was played for the network ten 
times (1050 training vectors), long enough for a stable response pattern to emerge. 

The activation of a neuron was: N etj = 'ExiWij' Where: N etj = output of neuron 
j , Wij = the weight connecting inputi to neuronj , Xi = inputi. The Kohonen net­

work was trained by initializing the connection weights to 1/Jnumber of neurons 

+ small random component (r S; .01) , normalizing the inputs , and updating the 
weights to the winning neuron by the following rule : W n ew = W old + a(x - W old) 

where : a = training rate = .20 . If the same neuron won twice in a row the train­
ing rate was decreased by 1/2. Only the winning neuron was reinforced resulting 

in a non-localized feature map . 

3.1.1 Perceptual Results 

The Kohonen network was able to assign a unique neuron to each type of syllable 
(figure 3) . Of the eight neurons in the network. the one that fired the most frequently 
during the presentation of a syllable uniquely identified the type of syllable. The 

first four syllables of the input song sound alike, contain similar frequencies , and 
are coded by the first neuron (N1). The last three syllables sound alike, contain 

similar frequencies , and are coded by the fourth neuron (N4). Syllable five was 
coded by neuron six (N6) , syllable six by neuron two (N2) and syllable seven by 

neuron eight (N8). 

Figure 4 shows the frequency sensitivity of each neuron (1-8, figure 3) plotted against 
each time step (1-4). This plot shows the harmonic and temporally sensitive neu­
rons that developed during the learning phase of the Kohonen network. Neuron 2 

is sensitive to only one frequency at approximately 6-7 kHz , indicated by the solid 
white band across the 6-7 kHz frequency range in figure 4. Neuron 4 is sensitive 

to mid-range frequencies of short duration . Note that in figure 4 N4 responds 
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Figure 4: The values of the weights mapping frequency bins and time steps to Kohonen 
neurons. White is maximum, Black is minimum. 

maximally to mid-range frequencies only in the first two time steps. It uses this 
temporal sensitivity to distinguish between the last three syllables and the fifth syl­

lable (figure 3) by keying off the length of time mid-range frequencies are present. 

Contrast this early response sensitivity with neuron 6, which is sensitive to mid­
range frequencies of long duration , but responds only after one time step . It uses 
this temporal sensitivity to respond to the long sustained frequency of syllable four . 

Considered together, neurons 2,4,6 and 8 illustrate the two types of neurons (tem­
poral and harmonic) found in HVc by Margoliash and Fortune (1993). Competitive 
learning may underly the formation of these neurons in HV c. 

3.2 Production 

After competitive learning trains the perceptual part of the network to categorize 

the song into syllables , the perceptual network can be used to train the production 
side of the network to sing. 

The first step in modelling song production is to create a model of the avian vo­

cal apparatus , the syrinx. In the syrinx sounds arise when air flows through the 
syringeal passage and causes the tympanic membrane to vibrate. The frequency is 
controlled by the tension of the membrane controlled by the syringeal musculature. 
The amplitude is dependent on the area of the syringeal orifice which is dependent 
on the tension of the labium. The interactions of this system were modelled by 
modulated sine waves. Four parameters governed the fundamental frequency(p) , 

frequency modulation(tm) , amplitude (ex) and frequency of amplitude modula­

tion(I). The range of the parameters was set according to calculations in Greenwalt 
(1968). The parameters were combined in the following equation (based on Green­

walt, 1968), f(ex , l,p, tm , t) = excos(21l"t 1) cos(21l"t p + cos(21l"t tm)) . 

Using this equation song can be generated over time by making assumptions about 
the response properties of neurons in RA . Following Doya and Sejnowski (1995) it 
was assumed that pools of RA neurons have different temporal response profiles. 
Syllable like temporal responses can be generated by modifying the weights from 

the Kohonell layer (HV c) to the production layer (RA) . 
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Figure 5: Training song and two songs produced with different representations of the 
training song. 

The production side of the network was trained using the reinforcement learning 

paradigm described in Doya and Sejnowski (1995). Each syllable was presented in 
the order it occurred in the training song to the Kohonen layer, which turned on a 

single neuron. A random vector was added to the weights from the Kohonen layer to 

the output layer and a syllable was produced. The produced syllable was compared 
to the stored representation of the template song which was used to generate an 

error signal and an estimate of the gradient. If the evaluation of the produced 

syllable was better than a threshold the weights were kept, otherwise they were 
discarded . 

Two experiments were done using different representations of the template song. 

In the first experiment the template song was the stored power spectrum of each 
syllable and the error signal was the cosine of the angle between the power spectrum 

of the produced syllable and the template syllable. In the second experiment the 

template song was the stored neural responses to song (recorded during the mem­
orization phase) and the error signal was the Euclidean distance between neural 
responses to the produced syllable and the neural responses to the template song. 

3.2.1 Production Results 

Figure 5 shows the output of the production network after training with different 

representations of the training song. The network was able to replicate the major 
frequency components of the training song to a high degree of accuracy. The song 

trained with the spectrogram target was learned to a 90% average cosine between 
the spectrograms of the produced song and the training song on each syllable with 

the best syllable learned to 100% accuracy and the worst to 85% after 1000 trials. A 
crucial aspect to achieving performance was smoothing the template spectrogram. 

The third song shows that the network was able to learn the template song using the 
neural responses of the perceptual system to generate the reinforcement signal. The 

average distance between the initial randomly produced syllables and the training 
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song was reduced by 50%. 

4 DISCUSSION 

This work fills a crucial gap in the computational explanation of song learning left 
by prior work . Doya and Sejnowski (1995) showed how song could be produced 
but left unanswered the questions of how song is perceived and how the perceptual 
system provides feedback during song production. This study shows a time-delay 
Kohonen network can learn to categorize the syllables of a sample song and this 

network can train song production with no external teacher. The Kohonen network 

explains how neurons sensitive to temporal and harmonic structure could arise in 

the songbird brain through competitive learning. Taken as a whole , the model 

presents a concrete proposal of the computational principles governing the Audi­

tory Template Hypothesis and how a song is memorized and used to train song 
production. Future work will flesh out the effects of innate structure on learning by 

examining how the settings of the initial weights on the network affect song learning 

and predict experimental effects of deafening and isolation. 
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