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How Physical Proximity Shapes 
Complex Social Networks
Arkadiusz Stopczynski1,2, Alex ‘Sandy’ Pentland2 & Sune Lehmann  1,3

Social interactions among humans create complex networks and – despite a recent increase of online 

communication – the interactions mediated through physical proximity remain a fundamental way for 

people to connect. A common way to quantify the nature of the links between individuals is to consider 

repeated interactions: frequently occurring interactions indicate strong ties, such as friendships, while 
ties with low weights can indicate random encounters. Here we focus on a different dimension: rather 
than the strength of links, we study physical distance between individuals when a link is activated. The 
findings presented here are based on a dataset of proximity events in a population of approximately 500 
individuals. To quantify the impact of the physical proximity on the dynamic network, we use a 
simulated epidemic spreading processes in two distinct networks of physical proximity. We consider the 

network of short-range interactions defined as d  1 meter, and the long-range which includes all 

interactions d  10 meters. Since these two networks arise from the same set of underlying behavioral 
data, we are able to quantitatively measure how the specific definition of the proximity network – short-
range versus long-range – impacts the resulting network structure as well as spreading dynamics in 

epidemic simulations. We find that the short-range network – consistent with the literature – is 
characterized by densely-connected neighborhoods bridged by weak ties. More surprisingly, however, 
we show that spreading in the long-range network is quite different, mainly shaped by spurious 
interactions.

Social interactions among humans form complex networks. While these interactions have recently begun to 
occur via many di�erent channels – email, social networks, texts, and calls1 – the interactions mediated through 
physical proximity remain a fundamental way for people to connect2. A common way to quantify the nature of 
a link is to consider repeated interactions: frequently occurring interactions indicate strong ties, such as friend-
ships, while ties with small weights can indicate random encounters. Here we focus on a di�erent dimension: 
rather than the strength of links, we study physical distance between individuals when a link is activated. Using 
epidemics as an example application, we show that changing of our de�nition of what constitutes a social tie based 
on the distance of pairs of individuals leads to strong structural di�erences in the resulting networks and quantify 
those di�erences.

�e �ndings presented here are based on a dataset of proximity events in a population of approximately 500 
students at the Technical University of Denmark3. �ese students are densely interconnected via networks of 
interactions, both virtual (Facebook, calls, texts) and based on physical proximity (both within university campus 
and outside). �e full dataset – known as the Copenhagen Networks Study – contains two years of high-resolution 
records of students’ activity (the aforementioned networks along with GPS location and questionnaires), col-
lected primarily through smartphones distributed to students at the beginning of their university education. 
Here, we explore the dynamic network where every person is represented by a node, and two nodes are connected 
if they are within certain physical distance d of each other. While this network is small from the perspective of 
population-level epidemiological studies, the access to physical proximity sampled at the 5-minute level, provides 
very a detailed view of possible empirical spreading paths (see Table 1 for details).

To quantify the impact of the physical proximity on the dynamic network, we use a simulated epidemic 
spreading processes in two distinct networks of physical proximity. We consider the network of short-range inter-
actions de�ned as d 1 meter, and the long-range network which includes all interactions d 10 meters4. Below 
we show that the short-range and long-range networks are fundamentally di�erent in terms of structure and 
dynamics.
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�e key novelty of this work arises from the fact that we are able to explore dynamics of two distinct types of 
spreading mechanisms (in many ways similar to e.g. droplet vs. airborne spreading mechanisms) based on the 
same underlying empirical behavioral data. Because we are able to consider two fundamentally distinct networks 
arising from a single underlying dataset, we can be certain that the di�erences in infection patterns are related 
solely to di�erences in how the disease is able to spread on each of the networks. �is implies that di�erences in 
spreading patterns are not due to other di�erences in behavior that one might encounter when comparing two 
disparate datasets of actual human behavior, such as mobility, culture, population density, demographics, etc. 
Similarly, having both short- and long-range networks directly observable allows us to sidestep creation of syn-
thetic networks via randomization schemes.

In the literature on physical proximity, the tacit rules of human interactions in physical space have been an 
object of interest since the 1950’s5–7. Yet little is known about how the structure of person-to-person proximity 
networks change as we vary the de�nition of which distance between two individuals corresponds to a connec-
tion between the two. Previous research into proximity networks has been based on self-reported data6,8,9 or 
tightly-controlled laboratory observation5.

We expect the social network of individuals to be closely related to the structure of the short-range network, 
but with some di�erences. �is similarity arises because, in social networks, the di�erence between friend and 
stranger is typically expressed via di�erent personal spaces for each social category6. Interactions with individuals 
with whom we are not familiar tend to occur at larger distances (we use term ‘interaction’ for all proximity events, 
including the long-range network). Since people function in bounded spaces, however, we do not have complete 
freedom to only allow friends to be physically close to us. Rides on buses, random meetings in elevators, or busy 
dining halls force us to be in close proximity to strangers. �us, while the majority of our proximity interactions 
are with friends and families, our interactions network is not fully explained by the underlying social network, 
as expressed by, for example, link strengths. �e long-range networks contains all of the links in the short-range 
network, but in addition also spurious connections to people passing by and the ‘familiar strangers’10,11, those 
individuals we encounter repeatedly but have never gotten to know. �us, considering the proximity of pairs 
engaging in interactions and moving beyond simply considering the weight of the links in the network, provides 
a new source of information regarding potential spreading paths.

From the network science literature we know that social networks exhibit non-trivial structure on every level 
from degree distribution12,13, over motifs14,15, to communities16–18, and at time even an overall hierarchical organ-
ization19. In the light on the research on physical proximity discussed above it is interesting to keep these key 
�ndings from the social networks literature in mind as we explore the di�erences between the short-range and 
long-range networks.

Results
�e proximity networks are based on Bluetooth scans providing a measure of pairwise proximity between N = 464 
highly-connected participants – freshmen students at a large university3. We de�ne an interaction between users i, 
j in a 5-minute timebin t (the smartphone were con�gured to scan for nearby devices every 5 minutes) as γijt = s, 
where the signal strength s is reported by the handsets as received signal strength indicator (RSSI). Two users 
are considered to be interacting within a given timebin if their phones registered each other at least once in that 
timebin, regardless of the reported signal strength. �is densely-connected dynamic network of all Bluetooth 
interactions is based on a total of 1472 094 interactions, taking place over 28 days. RSSI, measured in dBm, is 
de�ned as the observed signal power relative to 1 mW.

The long-range, sampled long-range, and short-range network. �e long-range network is created 
by interactions occurring at any distance covered by Bluetooth range, between 0 and 10–15 meters. In order to 
capture only close range interactions, we establish the short-range network by selecting the subset of interactions 
with γijt ≥ −75 dBm corresponding to distances of approximately 1 meter or less4 (see Supplementary Information 
for additional details on the choice of threshod). �e short-range network consists of f = 18.3% of all interactions.

Since the short-range network contains only a fraction of all interactions, the simulated spreading processes 
taking place on this network are trivially slower and smaller than processes occuring on the long-range network. 
�e intuitive reason for this is that with an average of one ��h of the interactions, a node in the short-range net-
work has correspondingly fewer opportunities of spreading a disease than in the long-range network. �e di�er-
ence in number of interactions therefore prevents us from directly comparing the interplay between structure and 

Long-range
Sampled
Long-range

Short-
range

Number of interactions 1 472 094 269 094 269 094

Number of links 42 838 26 511 ± 68 13 474

Avg. link weight 34.36 10.15 19.97

Number of nodes 464 464 464

Table 1. Overview of networks statistics. �e number of interactions is, by de�nition, the same in the short-
range and sampled long-range networks. �ose interactions, however, end up distributed on di�erent number 
of links, resulting in a slight variation in the average link weight. Similarly, the number of links di�ers slightly 
across di�erent realizations of the sampled long-range network, here shown as ±standard deviation. �e 
number of nodes (students) is the same in all three networks.
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dynamics of spreading processes for the short-range and long-range networks using simulated disease models 
with the same parameters.

In order be able to compare directly, we create a sampled long-range network, which contains the same frac-
tion of interactions as the short-range network, but chosen at random among all interactions (see Fig. 1a). As we 
argue below, the sampled long-range network thus contains both close and distant interactions and shares most 
topological properties with the full long-range network, while based on precisely the same number of interactions 
as the short-range network.

Link weights in the three networks. We start our analysis by studying similarities and di�erences in the 
the distribution of link weights between the three networks (long-range, sampled long-range, and short-range). 
For each of the networks, we calculate the weights as described below, using the long-range network as an exam-
ple. We �rst create an adjacency matrix Ai×j×t with timebins t containing interactions aggregated over 5 minute 
intervals corresponding to the Bluetooth scanning rate. �is matrix has entries aijt = 1 when an interaction is 
present and aijt = 0 otherwise. �e weight wij of a link connecting two individuals is de�ned as the total number of 
interactions occurring on that link = ∑w aij t ijt. Note that because the sampled long-range network is generated 
by sampling interactions at random from the full network, it is possible to calculate the weight distribution for 
this network analytically.

We use a number of closely related (but distinct) terms to describe connections between pairs of individuals. A 
quick overview of terms are: Interaction: A single measurement of proximity between a pair of individuals. Signal 
strength: �e RSSI measured by a smartphone for a single interaction. �e signal strength can be considered a 
measure of distance. Link: An abstract description of the connection between two individuals, and implies at least 
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Figure 1. �e network of close proximity interactions. (a) �e full network contains interactions with signal 
strength used as a proxy for a proximity. In this illustration the dynamic network is integrated over time; edges 
represent single interactions between participants, and line-width indicates physical proximity. From this full 
network, corresponding to all edges that support full-range transmission, we create the short-range network by 
only considering interactions with γijt ≥ −75 dBm. �e sampled long-range network contains the same number 
of interactions but chosen at random. (b) �e link weights (i, j) are broadly distributed. �e dashed line is a 
power-law p(x) ~ x−α with α = 1.19 inserted as a guide to the eye. �e sampled long-range network (orange) has 
the same number of interactions γijt as the short-range network (blue), but maintains 62% of links, compared to 
only 31% of links remaining in the short-range network (inset).
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one interaction. Links are sometimes denoted ties or connections in the literature. Weight: Number of interactions 
observed on a given link; sometimes called strength in the literature.

As shown in Fig. 1b, the distribution of link-weights in all three networks is broad with many weak links 
(containing few interactions) and a small number of links of very high weight. �e short-range network and the 
sampled long-range network contain the same number of interactions, but the number of resulting links in the 
two networks is strikingly di�erent. �e approximately 1.4 million interactions in the full long-range network 
are distributed across 42 838 links, resulting in an average link-weight of a little over 34 interactions per link. 
We create the short-range and sampled long-range networks by removing 81.7% of the interactions from the 
full long-range network, leaving 269 094 interactions in both of these networks. �e resulting number of links 
is much higher in the long-range network. Averaged over 100 realizations, this network has 26 511 ± 68 links, 
corresponding to around 61.9% of the links in the full long-range network. In contrast, the short-range network 
has only 13 474 links corresponding to only 31.5% of the links in the full long-range network. �ese di�erences 
are illustrated in the Fig. 1b inset.

Let us investigate these di�erence with respect to link weight in further detail. First, let us consider the weak-
est links. In terms of low weight links the sampled long-range network simply retains around f = 18.3% of the 
long-range network’s links, with small di�erences. �e reason for these di�erences can be understood by consid-
ering links with weight 1. Of course, (100–18.3)% of links with weight 1 are removed, but the sampling process 
also creates new links of weight 1 by down-sampling the weight of some number of links with weight 2, 3, etc. In 
the short-range network a much higher fraction of links with weight 1 are removed, this network has about half 
as many links with weight 1 as we �nd in the sampled short-range network.

Now, considering high-weight links we �nd that these links in the short-range network are relatively unaf-
fected by removing interactions according to physical distance: in the short-range network we �nd that the 
highest-weight links typically maintain ~80% of their interactions). �is is in stark contrast to the sampled 
long-range network, where link-weight is depleted in proportion to the sampling fraction, and high-weight links 
maintain only ~18% of the interactions from the full long-range network.

In summary, the weight distribution in the short-range network suggests that friends (with high-weight 
links) tend to be physically close and that most low-weight links correspond to random encounters (encounters 
between strangers), consistent with results on interaction distance from both quantitative measurements4 as well 
as sociology6.

Differences in local structure. �e key comparison is between the short-range network and the two 
long-range networks. Since our sampling is uniform over interactions, we expect the sampled long-range 
to be structurally very similar to the full long-range network, with weights decreased proportional to the 
down-sampling fraction. As we discuss above, however, many low-weight links disappear as part of the sampling 
process, and the overall network structure is complex, re�ecting non-trivial and highly correlated underlying 
social behaviors. �erefore, it is useful to quantitatively con�rm that the structure of the long-range and sampled 
long-range remain remarkably similar – and distinct from the short-range network.

Starting from the single node perspective, we �nd important di�erences between the short-range and the 
long-range networks. We can quantify this di�erence using the Shannon entropy. For a node i, we start from a link 
with neighbor j with weight wij and de�ne π = ∑w w w( ) /ij ij k ik to mean the fraction of the node’s total interactions 
taking place on that link. Now, we de�ne the node entropy as π π= −∑S i w w( ) ( ) log ( )j ij ij2

. Since infection proba-
bility is approximately proportional to link weight (see SI), this quantity can be interpreted as the expected num-
ber of yes/no questions needed to establish which of i’s links caused an infection. �e distribution of entropy for 
all three networks is plotted in Fig. 2a. For the short-range network (blue), the distribution peaks at 4 bits, corre-
sponding to an e�ective group of 24 = 16 potential sources of infection. Comparing the long-range (green) and 
sampled long-range (orange) networks, we �nd as expected that the distribution of node entropies are very simi-
lar, emphasizing the structural similarity between these two networks. The distribution for the sampled 
long-range network is created by averaging per-user entropy values over 100 random realizations of the sampled 
long-range network. Both peak at around 6 bits, corresponding to a larger e�ective group of 26 = 64 potential 
sources of infection in this network.

�ese results provide a striking illustration of how the close proximity zone is preferentially reserved for 
strong ties (e.g. friends or acquaintances) while the distant zone is a more public space where many more random 
interactions happen, resulting in a correlation between physical proximity and tie strength as reported in ref. 9.

Meso-level structural differences. In the previous section we showed that in the short-range network a 
large fraction of interactions takes place on high-weight links. We now study the interplay between meso-level 
network structure and link-weight in the short-range and long-range networks. Speci�cally we are interested in 
the structures formed by the highest weight links. To explore these, we start building the networks from empty, 
adding their respective strongest links one-by-one. As links are added, we keep track of the number of connected 
components in the network as well as total weight of interactions added through the links, revealing the di�er-
ences in the networks with respect to the structures created by the heaviest links.

Figure 2b illustrates how the process of adding links gradually grows the long-range and short-range net-
works, respectively. In the lower panel of Fig. 2b we show the number of the connected components and total 
number of interactions in the networks as the links are added. First, notice that the full and sampled long-range 
networks display identical behavior, with number of neighborhoods peaking with approximately 120 strongest 
links added. �is behavior is consistent across 100 random realization of the sampled network. �is is in contrast 
to the short-range network, where the number of components continues to grow up to 240 heaviest links in the 
network.
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Figure 2. Di�erence in network structure. (a) Entropy of interactions. For every node i in the network we calculate 
node entropy S(i), see main text for the de�nition. Entropy values in the sampled long-range network are averaged 
per user over 100 random realizations of the sampled long-range network. Insets illustrate the link weights for a 
representative single node (entropy 3.6) in the short-range network (blue) and in the sampled long-range network 
(orange, entropy 5.1), values indicated by markers on the distributions. Note the similarity between distribution of 
entropies for the long-range and sampled long-range networks. (b) (upper panels) Network snapshots, showing the 
network structure for the sampled long-range (orange) and short-range (blue) networks at points indicated on the 
plot below. Note how the short-range network remains separated in small disconnected component longer than 
the long-range network. (lower panel) �e horizontal axis shows changes to network properties as we add links 
one by one, starting with the strongest link. �e green, orange, and blue line-plots show the number of connected 
components in the network. At around 120 links added, the long-range (green) as well as the sampled long-range 
network (orange) takes signi�cantly longer to begin to become connected and show a decreasing number of 
components. Speci�cally, the short-range network (blue) remains separated into small neighborhoods until we have 
added approximately 250 of the strongest links. �us the percolation process starts signi�cantly later in this network. 
�e orange line is an average over 100 random realizations of the sampled long-range network. Each realization is 
shown as a transparent gray line, illustrating that the network structure is consistent across samples. Also importantly, 
the fraction of interactions (shaded plots in blue/orange) within each network as we add the strong links also di�er 
strongly between the networks. In the short-range network 250 links correspond to almost 50% of all interactions, 
whereas the same number of links in the sampled long-range networks contain only around 20% of all interactions.
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In both types of networks, the strongest links in the network �rst create small isolated neighborhoods of 
highly interacting nodes. Figure 2b (upper panel) shows snapshots of the sampled long-range (orange) and 
short-range (blue) networks at points (120, 250, 300 links) indicated on the plot below, illustrating this point. 
We see that at 250 strongest links the long-range network, a large connected component is beginning to form, 
making the network signi�cantly more connected. At this point, the short-range network, however, is still divided 
into many small neighborhoods. We also note that while the x-axis indicates the absolute number of the heaviest 
links added to the networks, the total number of interactions included in the networks at any number of links is 
strikingly di�erent. In fact, it is important to underscore just how large a fraction of interaction are concentrated 
on the high-weight links. �e short-range network has a total of 13 474 links and the sampled long-range network 
has ~26 500 links. Figure 2b (bottom panel), however, shows that in the short-range network the 250 strongest 
links in the network account for approximately 50% of the interactions. In the long-range network the picture is 
less skewed. Here, the top 250 links account for approximately 25% of the interactions. �us, while the percola-
tion transition occurs for a very small number of high-weight links in both networks, these links include a large 
fraction of the total number of interactions.

Our analysis shows, therefore, that the short-range network not only contains fewer links than the sampled 
long-range network, but that the con�guration of the heaviest links is more fragmented than in the long-range 
case. �is structural property of the short-range network, the highly-connected neighborhoods bridged by weak 
ties, is consistent with well known structures found in other social networks, such as mobile phone networks and 
online social networks17,20–22. In the long-range network, however, this structure is less pronounced, obscured by 
the presence of spurious links, distinct communities bridged by a small number of strong links not present in the 
short-range network.

Spreading process is captured in neighborhoods. Having investigated di�erences between short- and 
long-range networks with respect to structure, we now explore how the di�erences based on how diseases spread 
on the networks. Using a simple Susceptible-Infected-Recovered (SIR) model, we run simulations of a disease 
spreading across the networks. Our model is intentionally simplistic, intended to illustrate the structural dif-
ferences between short- and full-range transmission, rather than emulate a speci�c disease. We use the actual 
temporal sequence of proximity interactions observed in the data, choosing parameter values to create a situation 
where large outbreaks are likely, but not guaranteed (see Methods for details of the epidemic modeling). While 
we report results for a speci�c choice of parameters and a single realization of the sampled long-range network, 
these results are robust across a wide range values of the transmission parameters and realizations of the sampled 
network.

Based on the structural analysis, our hypothesis is that, in the short-range network, the simulated pathogen 
tends to be more contained within small sets of highly interacting individuals. We quantify the 
contained-in-communities behavior as follows. For each infection event, occurring on link wij, where node i 
infects node j, we measure which fraction Ij of the node’s direct (1-hop) neighborhood has already been infected. 
Since this is a weighted network, we de�ne = ∑−

−
∈ ≠I W wj i k j k i jk{ }

1
( ), , where j( )  is the set of j’s infected neighbors 

and = ∑− ≠W wi k i jk{ }  is the sum of all weights excluding the infecting link. A value of Ij = 0 indicates that no-one 
in the direct neighborhood besides the infecting node has been yet infected; a value of Ij = 0.5 indicates that 
neighbors accounting for 50% of link weights connecting to j have already been infected. Figure 3a shows a kernel 
density estimation of I as a function of the fraction of infected nodes, based on 500 runs of the spreading process 
in the short-range (le�), sampled long-range (middle), and long-range (right) networks.

In the case of the short-range network, we observe behavior which suggest that the spreading agent is indeed 
slowed by neighborhoods, consistent with behavior of both simulated and real spreading processes found in the 
literature23–27. As is evident from Fig. 3a, early in the epidemic outbreak, when the fraction of infected nodes is 
low, the disease agent can saturate small neighborhoods and infect new nodes in neighborhoods, where a large 
fraction (I > 0.80) of neighbors are already infected. Conversely, it is still possible to �nd neighborhoods with a 
low fraction (I < 0.20) of infected nodes very late in the outbreak. �ese e�ects are possible because the spreading 
agent does not jump easily between neighborhoods of densely connected nodes.

The disease spreading is very different in the full and sampled long-range cases. In contrast to the 
contained-in-communities picture, the infection progresses smoothly through the network. In the long-range 
networks, the neighborhood infection is more closely proportional to the fraction F of the total network infected. 
Cuts at particular levels of overall network infection F in Fig. 3b show that the pattern of more spread-out I in the 
short-range network is consistent through the spreading progression and across random starting conditions (seed 
node and time) Visually, the distributions of I at given F are narrower for the long-range networks, with peak val-
ues of neighborhood infection I closer to values of overall network infection F. To quantify this e�ect, we consider 
the distribution of R2 of a linear model �tting infection of the neighborhoods I to the progress of the infection 
(fraction of network infected F), calculated for each of the aforementioned 500 realizations of an epidemic, the 
distribution of R2 peaks at around 0.4 in the short-range network vs 0.75 in the two long-range networks, as 
shown in Fig. 3c. �is indicates that direct proportionality between the global (F) and local (I) infection level is a 
signi�cantly better model for the long-range networks.

�us we �nd, that while – in the short-range network – the infection tends be captured inside closely con-
nected communities, the picture is quite di�erent in the long-range network. While both types of behavior has 
been described in the literature8,23–28, the important �nding in this context is that the two networks are representa-
tions of the same underlying behavioral data originating from a single population. �ese �ndings underscore how 
long-range spreading dramatically taps into spurious connections outside the social networks, resulting in fun-
damentally di�erent types of spreading – in some ways mimicking the di�erences between droplet and airborne 
spreading mechanisms29–32.
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Community structure increases infected-infected interactions. Our analysis of link weights showed 
that the short-range network tends to have fewer links with more interactions on each link. But why is the disease 
trapped within communities in the �rst place? One of the reasons that an infection remains ‘stuck’ in a neigh-
borhood is that a disease can only spread via interactions between infected and susceptible nodes. �us, if a local 
group is fully infected, we tend to see a large fraction of infected-infected interactions, which cannot help spread 
the disease. In Fig. 4a we quantify this tendency, by plotting how frequently infected-infected are active in the 
sampled long-range and short-range network, respectively.

We observe a clear di�erence between two networks. In the sampled long-range network, where the local con-
nection patterns have high entropy, there is only a low level of activity among infected or recovered individuals. 
�e spreading agent quickly reaches the entire network due to a large number of available susceptible-infected 
links. �is behavior is in contrast to the short-range network, where infected-infected interactions present a larger 
fraction of interaction events. �us, as above, given the same number of interactions and the same underlying 
behavioral data, outbreaks are signi�cantly slower and more contained in the short-range network relative to the 
sampled long-range case (Fig. 4b).

Statistics of spreading outcomes. Finally, in Fig. 5 we summarize a number of statistics related to disease 
spreading in the three networks. �ese results con�rm that the structural di�erences between the short-range 
and long-range interaction networks discussed above lead to reliably di�erent outcomes in simulated epidemics. 

n
e
ig

h
b

o
rh

o
o

d
 in

fe
c
ti
o

n
 I

0 0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 1.0

0
0

.2
0

.4
0

.6
0

.8
1

.0

fraction of network infected F

F=0.2 F=0.6

a

b

0
0

.2
0

.4
0

.6
0

.8
1

.0
0 31 2 0 31 2 0 31 2

F=0.4

probability density

long-range

sampled long-range

short-range

0
.1

0
.2

0

0

fr
e
q

u
e
n
c
y

0.2 0.4 0.6 0.8 1.0

R2(F,I)

c

Figure 3. Dynamics of the spreading process. For each infection event, occurring on link wij, where node i 
infects node j, we measure which fraction Ij of the node’s direct (1-hop) neighborhood has already been 
infected. We de�ne = ∑−

−
∈ ≠I W wj i k j k i jk{ }

1
( ), , where j( )  is the set of j’s infected neighbors and = ∑− ≠W wi k i jk{ }  

is the sum of all weights excluding the infecting link. (a) Plot of spreading process over 500 simulations. And 
increasing fraction of nodes are infected (F), we observe that nodes with di�erent neighborhood infection levels 
(I) are infected. Kernel density outlines (using Gaussian kernel and silverman bandwidth) illustrating how a 
broader range of neighborhood infections can be observed in the short-range network (blue). (b) Cuts of 
distribution of I at three values of F (0.2, 0.4, 0.6, points indicated by vertical lines in the top plots), showing that 
distribution of neighborhood infections is broader in the short-range (blue) network. (c) Distribution of R2 of a 
linear model �tting infection of the neighborhoods I to the progress of infection (measured as fraction of 
network infected F), calculated for each of the aforementioned 500 realizations of an epidemic. �e distribution 
of R2 peaks at around 0.4 in the short-range network versus 0.75 in the two long-range networks.

a b long-range

sampled long-range

short-range

Figure 4. Dynamics of the spreading process. Results for 10 000 SIR simulations. (a) As the infection progresses 
through the network, we keep track of how o�en the a link between two infected nodes is activated. Shaded 
areas indicate one standard deviation. (b) �e overall result is signi�cantly slower outbreaks in the short-range 
network than in the long-range networks.
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Firstly, in Fig. 5a, we show that when the outbreaks do happen in the short-range network, they are smaller in 
terms of total number of nodes infected. Moreover, the probability that an outbreak is contained – reaching only 
a small fraction of the network (<20%) – is higher in the short-range network than in the long-range networks 
(Fig. 5a inset). Finally, the time an infection needs to reach 50% of the short-range network is signi�cantly longer, 
with the peak of the distribution for sampled long-range network occurring a�er 7 days, while the short-range 
network the peak is delayed to 10 days (Fig. 5).

�us, consistent with the literature short-range short-range interactions are organized in a way that slows 
down spreading relative to the long-range case. �e sampled long-range network features precisely the same 
number of interactions as the short-range network, but is structurally more similar to the full long-range network 
according to the measures considered here. Our results show that taking the physical distance of interactions 
into account results in networks that can signi�cantly alter the outcome of a simulated outbreak. �e qualitative 
behavior described above is reproduced across a wide range of parameter values.

Discussion
We have demonstrated a strong structural di�erence between the short-range networks that support short-range 
transmission processes and the long-range networks that support transmission across distances up to 10 meters. 
Summarizing our �ndings, we �nd that the proximity of interactions correlates with link-weight: on average we 
stay closer to our friends. In the short-range network, we �nd spreading patterns consistent with our knowledge 
of spreading on various online social networks and modeling studies23–27. In the long-range network we observe a 
large proportion of proximity interactions between individuals with weak or absent social ties, resulting in a com-
plex local network structure. �is non-social ‘noise’ in the network allows for faster and more powerful outbreaks 
to take place, even when considering the exactly same number of interactions, consistent with results of synthetic 
proximity-aware spreading simulations33.

It is, of course, well known that that the de�nition of ‘interaction’ impacts the network structure and spread-
ing dynamics. For example, networks of sexual contacts are analyzed separately from other types of pathogen 
spread34,35, even though both types of networks are physical interactions networks. A central work in understand-
ing role of physical proximity is by Read et al.8, where questionnaire data regarding ‘close’ and ‘distant’ interac-
tions were collected from 49 participants over 14 non-consecutive days. �is study, however, did not address how 
di�erences in mode of transmission can a�ect the network of infections. Recently, a multitude of new approaches 
have been developed for collecting data regarding close interactions with the purpose of modeling spreading 
using various methods, including Bluetooth, RFID, and questionnaires8,28,36–39.

Here we argue that from the perspective of a spreading agent, the relatively subtle di�erence of what ‘interac-
tion’ is in the short-range and long-range networks makes an important di�erence, even given the same under-
lying social system. Our results suggest that long-range spreading is less related to the underlying social network 
and closer to a well-mixed system than simulations on purely social structures might lead one to suggest.

Methods
The dataset. �e dataset used in this paper comes from the Copenhagen Networks Study3. We use one 
month of data (February 2014). Out of 696 freshmen student participants active in that month we chose students 
with at least 60% of Bluetooth observations present (resulting median 80%) and who belong to a single connected 
component. Observations are de�ned as 5-minute bins in which the user has performed scans, whether the scans 
contained any devices or not. Since Bluetooth scans do not result in false positives, we symmetrized the observa-
tion matrix (resulting in an undirected network), assuming that γ γ⇔ijt jit. �is results in improved data coverage, 
with a median of 85% of 5-minute containing data. More information regarding the dataset is provided in the 
Supplementary Information.

RSSI and interaction distance. The received Signal Strength Indicator (RSSI) can be used to esti-
mate the distance between wireless devices40. Sekara & Lehmann4 showed the stability of RSSI in modern 
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Figure 5. Statistics of spreading. (a) In the short-range network the outbreaks are smaller than in the sampled 
long-range network, even though these two contain exactly the same number of interactions. �e probability 
of outbreak being contained – reaching only a small fraction of the network – is also higher in the short-range 
network (inset). (b) When outbreaks happen, the time to 50% of the network becoming infected is signi�cantly 
longer in the short-range network, because the spreading is captured within small neighborhoods.
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mobile phones; the same phones were used in the Copenhagen Networks Study. Based on these results, we use 
γijt = RSSI ≥ −75 dBm as an indicator that an interaction was closer than 1 meter. �is value can be considered 
a conservative estimation, as the measurements in ref.4 have been performed without obstacles. �us, we expect 
that γijt ≥ −75 dBm may not include all the close interactions, but it should not include distant interactions. When 
the interaction matrix is symmetrized, we take the smallest distance (largest RSSI) that happened between users 
in given timebin γijt = γjit = min(γijt,γjit).

We note that the approach presented here has some limitations. While all mobile phones used for data collec-
tion in the study were the same model and the obtained RSSI values are comparable in this sense, it is important 
to emphasize that our distance threshold is noisy; RSSI may di�er depending on where the phone is placed, envi-
ronmental conditions, etc. In that sense, our results can be considered a lower bound of the di�erence between the 
two types of networks, since a perfectly noisy threshold would produce two randomly sampled networks with no 
di�erence between them.

Epidemic simulations. To show the dynamics of the spreading process in the droplet and airborne net-
works we use a simple Susceptible-Infected-Recovered (SIR) simulation. We run a large number of simulations 
(N = 10 000) on the full temporal network, where every interaction between Infected and Susceptible participants 
can lead to infection with probability β = 0.02. Users stay in Infected state for µt = 7 days, a�er which they are 
moved to Recovered state and cannot be re-infected. �e starting time bin and seed node are chosen at ran-
dom in every simulation and used for simulation on all three networks (long-range, sampled long-range, and 
short-range). We use one month of data (28 days, 8 064 5-minute timebins) with periodic boundary conditions, 
having the 28 days repeating inde�nitely. �e parameter values are chosen so that outbreaks are likely, but not 
guaranteed and with sizes that do not trivially saturate the entire network. �e parameters themselves as well as 
resulting epidemic curves (with peaks between 7 and 14 days) are consistent with these reported in the literature 
regarding both simulated and observed �u outbreaks8,37,41. �is model is intentionally simplistic, intended to 
illustrate the structural di�erences between full- and short-range transmission, rather than emulate a speci�c 
disease. �e qualitative behavior of our analysis is unchanged across a wide range of parameter values.
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