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Abstract This work aims to elucidate how molecular1

parameters dictate the occurrence of inhomogeneous2

cohesive failure during step strain and large ampli-3

tude oscillatory shear (LAOS) respectively in entan-4

gled polymer mixtures. Based on three well-entangled5

polybutadiene (PB) mixtures, we perform simulta-6

neous rheometric and particle-tracking velocimetric7

(PTV) measurements to illustrate how the slip length8

controls the degree of shear banding. Specifically, the9

PB mixtures were prepared using the same parent10

polymer (Mw ∼ 106 g/mol) at 10 wt.% concentration11

in respective polybutadiene solvents (PBS) of three12

different molecular weights 1.5, 10, and 46 K. After13

step strain, the entangled PB mixture with PBS-1.5 K14

displayed interfacial failure whereas the PB mixture15

with PBS-10 K showed bulk failure, demonstrating the16

effectiveness of our strategy to suppress wall slip by17

controlling PBS’ molecular weight. Remarkably, the18

PBS-46K actually allows the elastic yielding to occur19

homogeneously so that no appreciable macroscopic20

motions were observed upon shear cessation. PBS is21

found to play a similar role in LAOS of these three PB22

mixtures. Finally, we demonstrate that in case of the23

slip-prone mixture based on PBS-1.5 K the interfacial24

failure could be drastically reduced by use of shearing25

plates with considerable surface roughness.26

S. Ravindranath · S.-Q. Wang (B) · M. Olechnowicz ·
V. S. Chavan · R. P. Quirk
Department of Polymer Science, University of Akron,
Akron, OH 44325-3909, USA
e-mail: swang@uakron.edu

Keywords Nonlinear rheology · Entangled polymer 27

solutions · Shear inhomogeneity · Elastic yielding · 28

Wall slip 29

Introduction 30

Response of entangled polymer mixtures to nonlinear 31

deformations has been extensively studied in conventio- 32

nal rheometric setups such as cone-plate fixture, planar 33

and circular Couette cells (Macosko 1994; Graessley 34

2008). These fixtures are capable of generating uniform 35

shear rate across the gap and thereby can provide in- 36

formation about the constitutive behavior of entangled 37

polymer mixtures. Until recently, shear deformation 38

and flow of such materials had been assumed to occur 39

homogeneously across the sample thickness in these 40

apparatuses. Emerging particle-tracking velocimetric 41

(PTV) observations in these fixtures recently indicated 42

that this assumption is often violated: Upon a rapid 43

startup shear, an entangled polymeric liquid first un- 44

dergo elastic deformation before such a transient solid 45

yields to allow permanent (irrecoverable) deformation, 46

i.e., flow. Apparently, after the shear stress overshoot 47

(i.e., the yield point), the quasi-elastic “solid”, unable 48

to sustain indefinite amount of deformation, can col- 49

lapse in an inhomogeneous manner (Tapadia and Wang 50

2006; Boukany and Wang 2007; Hu et al. 2007; 51

Ravindranath and Wang 2008a, b; Ravindranath and 52

Wang 2007a). Sufficiently entangled polymers also 53

show shear banding in large amplitude oscillatory shear 54

(LAOS; Tapadia et al. 2006; Ravindranath and Wang 55

2008a, b). Finally and most strikingly, inhomogeneous 56

breakup was discovered for both entangled mixtures 57

(Wang et al. 2006; Ravindranath and Wang 2007b) and 58
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melts (Boukany et al. 2009b) after large step strain in59

both simple shear and uniaxial extension (Wang et al.60

2007a, b). On the other hand, the “solid” character61

diminishes when the level of chain entanglement is re-62

duced. Consequently, less-entangled liquids can avoid63

shear banding in steady state as previously demon-64

strated (Ravindranath and Wang 2008a, b; Boukany65

and Wang 2009a).66

The present work further explores the nature of67

inhomogeneous breakup in entangled polybutadiene68

(PB) mixtures and elucidates how uneven yielding can69

be prevented by increasing the polymeric solvent’s70

molecular weight. Specifically, we focus on two com-71

mon modes of deformation, step strain and LAOS.72

We show that failure at sample/wall interfaces can be73

minimized by reducing the intrinsic slip length b of74

the mixture. Even elastic breakdown and shear band-75

ing can be completely annihilated by using a PB sol-76

vent of sufficiently high molecular weight (i.e., Mw =77

46 kg/mol) to prepare a 10 wt.% PB mixture. In con-78

trast, 10 wt.% PB mixtures made with PBS of either79

Mw = 1.5 kg/mol or Mw = 10 kg/mol show considerable80

uneven structural breakdown.81

Experimental82

Sample preparation83

Our experiments are based on three entangled 1,4-84

polybutadiene (PB) mixtures made with the same parent85

polymer (Mw ∼ 106 g/mol) at 10 wt.% concentration86

in three different polybutadiene solvents. The molec-87

ular weights of the three PB solvents (PBS) were 1.5,88

10, and 46 K respectively. The mixtures are labeled89

as 1 M(10%)-1.5 K, 1 M(10%)-10 K and 1 M(10%)-90

46 K respectively. The number of entanglements per91

chain Z = Mw/Meφ
−1.2 in each of the three mixtures92

is around 40, where Mw is the molecular weight of93

the parent polymer, Me is the entanglement molecular94

weight of the pure PB equal to 1.6 kg/mol, and φ is the95

volume fraction of parent polymer. The molecular char-96

acteristics of the parent polymer and the PB solvents97

are listed in Table 1. The parent PB was first dissolved98

in excess of toluene to which PBS was added and99

intimately mixed. Silver-coated silica particles with an 100

average diameter of 10 μm (Dantec Dynamics S-HGS) 101

were first ultrasonicated in toluene and then added to 102

the mixture with the final loading of the particles being 103

500–600 ppm. Most of the toluene was evaporated at 104

room temperature under hood over a period of 2 weeks 105

and the remaining was removed in vacuum condition 106

until the residue is less than 0.5%. 107

Apparatus and particle-tracking velocimetry 108

All measurements were made at room temperature of 109

around 25◦C, using cone-plate geometry of θ = 5.4◦ 110

and diameter of 25 mm. The overall chain relaxation 111

time τ and mixture viscosity η0 reported in Table 2 112

were obtained from small amplitude oscillatory shear 113

frequency sweep measurements done at room temper- 114

ature on an Advanced Rheometrics Expansion Sys- 115

tem (ARES). Step strain and LAOS experiments on 116

1 M(10%)-46 K mixture were done on ARES. All 117

other measurements were made on a Bohlin-CVOR 118

rheometer. Both smooth and rough surfaces were used 119

to determine how surface condition may alter the shear 120

responses. Rough surfaces are made by gluing sand- 121

paper onto the cone and plate, where a small hole is 122

left on the sandpaper surface of the stationary bottom 123

plate for a laser sheet (cross-section of 0.2 mm × 2 mm) 124

to pass vertically across the gap. The gap distance is 125

determined by zeroing the gap with the sandpaper cov- 126

ered plates. The sandpaper is from Virginia abrasives, 127

USA with catalog number 4687A13 and roughness of 128

240 grit. 129

The PTV consists of a CCD camera (with a maxi- 130

mum speed of 30 fps) placed horizontally to observe 131

particle movements from the meniscus that is wrapped 132

around with a transparent film. The location of the PTV 133

measurements is at a distance of 3 to 4 mm from the 134

meniscus of the cone-plate with 25 mm diameter. This 135

scheme A of placing the CCD horizontally is more con- 136

venient than the scheme B involving placing the CCD 137

at an angle and peeking through a transparent window 138

on the stationary plate (Tapadia et al. 2006). We have 139

shown previously that the film around the meniscus 140

does not affect the PTV observations as long as it is 141

made sufficiently away from the film (Tapadia et al. 142

Table 1 Molecular
characteristics of parent PB
and various PB solvents at
room temperature

t1.1Sample Mn (g/mol) Mw (g/mol) Mw/Mn Source ηs (Pa s)

t1.21 M 1.014 × 106 1.052 × 106 1.03 University of Akron –
t1.3PBS-1.5 K 1500 – – Sigma-Aldrich Cat. No. 20,0484 0.7
t1.4PBS-10 K 8900 10500 1.18 Bridgestone 14
t1.5PBS-46 K 45000 46000 1.02 Goodyear 2600
t1.6
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Table 2 Properties of PB
mixtures at room
temperature

t2.1Mixture φ1.2 Mw/Me τ (s) η0 (Pa.s) η0/ηs lent (nm) b (mm)

t2.21 M(10%)-1.5 K 40 17 50,000 71,428 17 1.2
t2.31 M(10%)-10 K 40 50 1.7 × 105 12,142 17 0.2
t2.41 M(10%)-46 K 40 75 3.9 × 105 150 17 0.002
t2.5

2006). For the present step strain and LAOS, it is actu-143

ally feasible to adopt the scheme B: Given the limited144

strain in such tests, the meniscus would remain stable.145

For smooth surfaces, a laser sheet was passed at an an-146

gle of ca. 45◦ through a glass window of 5 mm radius on147

the stationary plate, as depicted previously by Ravin-148

dranath and Wang (2007a, b). Movements of the illumi-149

nated particles across the entire sample thickness were150

captured with a black–white CCD camera placed at ca.151

45◦, but perpendicular to the direction of the laser. To152

eliminate optical reflection from the rotating steel cone,153

its surface was blackened using tool black mixture from154

Precision Brand (www.precisionbrand.com, UPC No.155

45125). The CCD camera is mounted with a DIN ob-156

jective lens (3.2×) through an adaptive tube (Edmund157

Optics: U54-868). During image analysis, the distance158

traveled by a particle is determined by playing 1 to 3159

frames using MGI Videowave 4 software.160

Interfacial failure in polymer mixtures161

Table 2 reports the crucial characterization of the sam-162

ple’s intrinsic ability to undergo interfacial slip in terms163

of the slip length b . The magnitude of b is controlled164

by the ratio of the bulk viscosity η and viscosity ηi165

at the failure plane where chain entanglement is lost:166

b = (η/ηi)lent, where lent is the entanglement spacing167

comparable to the thickness of a disentanglement layer.168

Thus, the value of b can be reduced by increasing ηi169

whose lower bound is the solvent viscosity for entan-170

gled mixtures. Consequently, we have prepared three171

mixtures of equal level of chain entanglement with172

vastly different ability to undergo slip as shown in terms173

of b in Table 2. Further detailed discussion about slip174

extrapolation length for polymer mixtures can be found175

in Ravindranath and Wang (2007b).176

Results and discussion177

Step strain experiments178

Rheological and PTV observations of step strain de-179

formation of the three mixtures have been reported in180

this section. Figure 1a shows the shear stress vs. time 181

data of five repeats on the 1 M(10%)-1.5 K mixture. 182

The applied shear strain is γ = 450%, produced at a 183

Weissenberg number of Wi = 400. For comparison with 184

linear response behavior, step strain data at γ = 35% 185

have also been plotted in Fig. 1a. The filled symbols 186

represent the shear stress build up during the step 187

strain, and the open symbols are the shear stress relax- 188

ation data after shear cessation. The five repeats come 189

from 4 different loadings, labeled as L1, L2, L3, and 190

L4, respectively. For the fourth loading, the same step 191

strain was repeated and labeled as L4-rep. In case of 192

L1, L3, and L4-rep, the mixture was allowed to relax 193

for nearly 12 h before the step strain experiments were 194

performed and in case of L2 and L4, the mixture was 195

relaxed for 3 h after loading. 196

The stress relaxation characteristics show excellent 197

overlapping among the five data sets. Such phenom- 198

enology made sure that no discrepancy can be rheo- 199

logically apparent. In situ PTV observations show in 200

Fig. 1b that the step-strained samples did not relax 201

quiescently. In the case of L1, L2, L4, and L4-rep, the 202

samples appear to suffer interfacial failure that allowed 203

the residual stress to decline faster than quiescent chain 204

relaxation would cause. In other words, the traced 205

particles near the two interfaces made maximum move- 206

ments, as much as 600 to 800 μm, after shear cessation. 207

It is statistically significant with enough repeats that 208

the sample disintegration may be different in each 209

sample loading. For example, a detailed PTV analysis 210

reveals in Fig. 1c that internal failure occurs for L3. 211

Maximum relative movements of the traced particles 212

are observed to take place at two locations as indicated. 213

In some of the repeats, Y-motion of a few particles 214

was also observed on the order of 20–30 μm. More 215

importantly, the PTV observations in Fig. 1c show that 216

most of the movements occur within the first 10 s 217

after shear cessation, which is consistent with the initial 218

faster stress decline shown in Fig. 1a. On the other 219

hand, no discernible motions can be seen for the small 220

step strain of γ = 35%. 221

The 1 M(10%)-1.5 K mixture tends to undergo inter- 222

facial failure because it has a sizable slip length b . With 223

b comparable to the sample thickness, interfacial slip 224

can cause quick macroscopic recoil, resulting in acceler- 225

ated stress relaxation (Ravindranath and Wang 2007a, 226

http://www.precisionbrand.com
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Fig. 1 a Shear stress vs. time plot of 5 step strain experimen-
tal repeats of 1 M(10%)-1.5 K mixture. L1, L2, L3, and L4
correspond to four different loadings and L4-rep corresponds
to the repeat experiment of the fourth loading. Closed symbols
indicate build up of shear stress during deformation, while open
symbols are stress relaxation data. The step strain is produced at
a Weissenberg number Wi = 400. Both the surfaces were smooth
unlike in Fig. 1e and Fig. 4d, where the surfaces were rough.
b Total displacement of tracer particles across the gap after
cessation of step deformation for 5 repeats as observed through

PTV. c Displacement of tracer particles across the gap at different
times after cessation of step deformation for loading-3 (L3) as
observed through PTV. The two surfaces are smooth. d Total
displacement of tracer particles across the gap after cessation of
step deformation for five repeats of four different loadings. Both
the surfaces were roughened by gluing sandpaper. PTV was done
by placing the camera horizontally and viewing through the edge.
Inset shows the rheological response of the mixture with smooth
and rough surfaces

b). Majority of the previous cases in the literature,227

employed either small molecular organic liquids or low228

molecular weight oligomers to make well-entangled PS229

or PB mixtures (Einaga et al. 1971; Fukuda et al. 1975;230

Osaki and Kurata 1980; Vrentas and Graessley 1982;231

Larson et al. 1988; Archer et al. 1995, 2002; Sanchez-232

Reyes and Archer 2002; Islam et al. 2001, 2003; Venerus233

and Nair 2006; Wen and Hua 2009). In all of these234

cases, owing to large values of interfacial slip length b ,235

significant interfacial failure may take place after shear236

cessation similar to the one shown in Fig. 1b.237

Sanchez-Reyes and Archer (2003) have shown that238

surface roughness could minimize wall slip. Thus, it239

seems a reasonable idea to examine the effect of surface240

roughness on the phenomenon of non-quiescent relax- 241

ation after step strain for the present sample. 242

Figure 1d shows the PTV measurements of the same 243

step strain as depicted in Fig. 1a–c except that the 244

surfaces of the cone and plate are made of sandpapers. 245

It can be clearly seen from Fig. 1d that for the five 246

repeats from four separate loadings, largest displace- 247

ment and maximum relative movements both occur in 248

the sample interior. Thus, the sandpaper has largely 249

removed the chance for the step-strained sample to 250

undergo (entanglement) network disintegration at the 251

interface between the sample and the shear surface, 252

leaving the sample no choice but to suffer structural 253

breakdown in the sample interior. It is important to 254
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observe that despite the apparent difference in the255

failure locations the stress relaxation signals are the256

same for both smooth and rough surfaces as shown in257

the inset.258

The elastic yielding behavior observed in Fig. 1a–259

d is expected to depend on the “slip characteristics”.260

Table 2 shows that 1 M(10%)-10 K has much reduced261

ability to undergo wall slip. So let us contrast its behav-262

ior under the same step strain with the previous sam-263

ple. Figure 2a and b show respectively the rheological264

behavior and corresponding in situ PTV observations265

in five repeats. Again, the rheological responses of all266

five repeats are identical, involving accelerated stress267

decline relative to that from a step strain of γ = 100%.268

Although the rheological character is indistinguishable269

from that of the 1 M(10%)-1.5 K, the PTV observations270

in Fig. 2b indicate that interfacial failure is largely271

removed by employing the PBS of higher molecular272

weight.273

Further increasing the molecular weight of the274

polybutadiene solvent (PBS) to 46 kg/mol, which is275

a well-entangled melt itself, we give the 1 M(10%)-276

46 K mixture with little ability to make any sizable277

interfacial or internal slip. Consider a large step strain278

(i.e., γ = 450%): Upon shear cessation, the residual279

elastic retraction force overcomes the entanglement280

(cohesion) force to cause disentanglement (Wang et al.281

2007a, b) over a length scale given by the entanglement282

spacing lent ∼ φ−1.2 Me. Let us estimate the amount of283

displacement due to this disentanglement and deter-284

mine whether it would result in significant macroscopic285

(elastic) recoil. Assume that the mutual chain sliding286

in the entanglement-free layer of thickness lent corre- 287

sponds to a “slip velocity” Vs at shear stress σ . This dis- 288

entanglement layer of viscosity ηi would be sheared at a 289

rate of Vs/lent so that ηi(Vs/lent) = σ . Let us assume that 290

this displacement would last for a period of �t, leading 291

to �x ∼ Vs�t = (lentσ /ηi)�t. Here, the level of shear 292

stress σ can be evaluated approximately according to 293

σ ∼ Gγ = (η/τ)γ for a sudden step strain of γ . Thus, 294

we have �x ∼ bγ (�t/τ), where b = (η/ηi)lent, and τ 295

is the terminal relaxation time. It is clear that �t can- 296

not exceed τ , beyond which the diffusion-dominated 297

relaxation would occur. Thus, the displacement would 298

only last for �t < τ . We consequently conclude for 299

b /H << 1 that the recoil measured in terms of a strain 300

�γs ∼ �x/H is negligibly small, relative to the imposed 301

strain because �γs/γ < (b/H) << 1. The third mixture 302

of 1 M(10%)-46 K is designed to have b ∼ 2 μm << 303

H ∼ 1 mm. Therefore, any disentanglement starting 304

on a length scale of lent would not produce significant 305

motions and would not appreciably accelerate stress 306

relaxation. As consequence, the rest of the sample 307

would retain the same amount of residue shear stress. 308

In other words, no part of the sample would be singled 309

out to undergo cohesive breakdown, and disentangle- 310

ment could only evolve democratically and uniformly 311

throughout the sample. 312

Because of the PBS’ high molecular weight of 313

46 kg/mol and corresponding solvent viscosity, Fig. 3a 314

shows an initial stress drop due to the viscous stress 315

associated with the PBS of, which is a smaller frac- 316

tion of the total residual stress for γ = 350% than for 317

γ = 35%. The stress relaxation following γ = 350% is 318
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Fig. 2 a Shear stress vs. time plot of five-step strain experimental
repeats of 1 M(10%)-10 K mixture. L1, L2, and L3 correspond
to three different loadings. L1-rep and L3-rep corresponds to the
repeat experiment of the first and third loading. Closed symbols
indicate build up of shear stress during deformation, while open

symbols are stress relaxation data. Both the surfaces are smooth.
b Total displacement of tracer particles across the gap after
cessation of step deformation for five repeats of three loadings
as observed through PTV
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Fig. 3 a Relaxing shear stress
vs. time for strains of 35%
and 350%. b Total
displacement of tracer
particles across the gap after
cessation of step deformation
as observed through PTV.
Both the surfaces are smooth
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compared with the linear relaxation behavior for γ =319

35% by matching the stress level around the dominant320

relaxation dynamics at τ , using double Y axes. The321

mismatch on the time scales ranging from 0.1 to 10 s322

is real and arises from the fact that the small step strain323

of 35% allows less stress relaxation during shear and324

consequently contains a fuller spectrum of relaxation325

dynamics, particularly some faster relaxing components326

in the shear stress. Figure 3b indicates that macroscopic327

motion is greatly reduced after step strain at both γ =328

350% and 450%. In absence of significant macroscopic329

motions after shear cessation, the stress decrease with330

time is not much different from what is observed in the331

linear response regime. Actually, as noted above, the332

stress decline is less rapid over the period from 0.1 to333

10 s.334

Large amplitude oscillatory shear335

LAOS has been also been used as a tool to probe the336

nonlinear behavior of entangled polymer mixtures and337

melts (Adrian and Giacomin 1992; Reimers and Dealy338

1996; Wilhelm 2002; Debbaut and Burhin 2002; Clemeur339

et al. 2003; Schlatter et al. 2005). Various analyses have340

been applied to extract useful information from LAOS341

measurements, including Fourier analysis (Wilhelm342

et al. 1999, 2000; Dusschoten et al. 2001; Kallus et al.343

2001; Karis et al. 2002; Neidhofer et al. 2003, 2004;344

Sim et al. 2003) geometric aspect of viscoelasticity (Cho345

et al. 2005), network model (Giacomin and Oakley 1992;346

Yosick et al. 1997; Sim et al. 2003; Jeyaseelan and347

Giacomin 2008), Berstein, Kearsley, and Zapas (BKZ)348

model (Giacomin et al. 1993) and molecular stress349

function model (Wapperom et al. 2005). When analyz-350

ing the origin of the nonlinearities such as the stress351

wave distortions, many of such studies (e.g., Giacomin352

and Oakley 1992; Reimers and Dealy 1996; Jeyaseelan353

and Giacomin 2008; Yu et al. 2009) assume that homo-354

geneous deformation prevails during LAOS. To prop- 355

erly explain how the wave distortion occurs using any 356

model, we first need to know from experiment whether 357

LAOS involves homogeneous deformation or not (Li 358

et al. 2009), and secondly we have to use a model that 359

permits shear inhomogeneity. The analyses themselves, 360

such as the FT analysis by Wilhelm et al. (1999) and 361

analytical treatments by Cho et al. (2005), Ewoldt et al. 362

(2009) and Yu et al. (2009), cannot reveal whether 363

shear inhomogeneity occurred or not (Rouyer et al. 364

2008). To determine from the rheometric data whether 365

shear banding occurs in LAOS, one first would have 366

to have a constitutive model that can faithfully depict 367

shear inhomogeneity in LAOS. Even then, in our opin- 368

ion, there is no one-to-one correspondence to allow 369

one to characterize any strain localization based only 370

on the rheometric information although Klein et al. 371

(2007) tried to do so. For these reasons, we focus on 372

the experimental determination of whether the LAOS 373

is homogeneous or not. 374

In this section, we report rheological and PTV ob- 375

servations of the three entangled polymer mixtures 376

under LAOS. Velocity profiles at the instant of 5/8th 377

cycle of an oscillatory wave in steady state (when shear 378

stress response is steady) are presented in Fig. 4a for 379

the 1 M(10%)-1.5 K mixture in five repeats. The five 380

repeats come from four different loadings L9, L10, L11, 381

and L12. L9-rep refers to a repeated experiment of the 382

ninth loading-L9. Each of the experiments was done 3 h 383

after the sample loading. The applied strain γ0 is 175% 384

and frequency ω is 3 rad/s, corresponding to a Deborah 385

number of ωτ ∼ 51. At the instant of 5/8th cycle, the 386

average shear rate across the gap is 3.7 s−1. It can be 387

noted from Fig. 4a that interfacial failure is observed in 388

case of L9 and L11, while bulk banding can also be seen 389

along with the interfacial failure in case of L9-rep, L10 390

and L12. Similar to the preceding PTV observations of 391

step strain, the repeats present quite different velocity 392
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Fig. 4 a Velocity profiles at the instant of 5/8th cycle of 36th
wave (74.6 s) of five repeat experiments based on four different
loadings on smooth surfaces of cone and plate. The applied strain
γ is 175% and oscillation frequency ω is 3 rad/s. The crossed
square symbol indicates the velocity of the top moving plate. b
Lissajous plot of 36th wave of the five repeat experiments, where
the stress voltage signal is plotted against strain voltage signal.
The inset shows the maximum stress vs. time data of the five

repeat experiments as directly given by the rheometer. c Velocity
profiles at the instant of 5/8th cycle of 36th wave (74.6 s) of five
repeat experiments of four different loading L13, L14, L15, and
L16. By gluing sandpaper, both the surfaces were roughened.
PTV was done by placing the camera horizontally and viewing
through the edge. The inset shows the Lissajous plot of 36th wave
with the smooth and rough surfaces

profiles. Yet, the rheological measurements essentially393

overlap as shown in Fig. 4b. In Fig. 4b, the Lissajous394

plot of 36th wave of the five repeats has been presented395

along with the inset showing peak shear stress vs. time396

data read from the rheometer. The strong distortion397

observed in the Lissajous plot indicates that the system398

is alternating between different states of viscoelasticity399

within each cycle. This alternation does not have to400

involve shear banding. But when it does, it explicitly401

reveals why the stress wave distorted. Moreover, in402

presence of shear inhomogeneity, we need to bear in403

mind the strain used in making the Lissajous plots is404

only the nominal or the apparent strain. This note is405

worthwhile whenever one starts to think about such406

plots in terms of any particular constitutive model.407

Figure 4c presents the PTV observations made with408

two rough (sandpaper covered) surfaces. Apparently,409

on rough surfaces, significant bulk shear banding can410

take place during LAOS even for this mixture that is411

inherently capable of significant wall slip. Since our412

PTV does not have sufficient resolution to distinguish413

shear banding of immeasurably small thickness at the414

interface from true wall slip, the appreciable shear band415

width produced with the rough surfaces is insightful and416

significant.417

The PTV observations of 1 M(10%)-10 K entangled418

mixture under LAOS is shown in Fig. 5. The applied419

strain γ0 is 175% and the oscillation frequency is 1 rad/s.420

For all five repeats based on three separate loadings,421

strong shear banding can be observed in the bulk. In422

the case of loading-6 (L6), some failure at the bottom 423

interface can be seen along with bulk banding. Use of 424

10 K PB as the solvent produces a marked difference in 425

the deformation field profiles during LAOS by compar- 426

ison between Figs. 4a and 5. The tendency to fail at the 427

interfaces as in the case of 1.5 K mixture is effectively 428

removed in 1 M(10%)-10 K. 429

Finally, it is instructive to examine the consequence 430

of further increasing the molecular weight of PBS. 431
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Fig. 5 Velocity profiles at the instant of 5/8th cycle of 25th wave
(154.6 s) of 5 repeat experiments of 4 different loading L4, L5, L6,
and L7. The applied strain γ is 175% and frequency ω is 1 rad/s.
The two surfaces are smooth
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Fig. 6 Velocity profiles at the instant of 5/8th cycle based on
smooth surfaces. The applied strain γ0 is 175% and 300% at
frequency ω of 1 rad/s. The velocity profile is basically linear at
all other moments of the cycle

In the preceding subsection we already demonstrated432

how PBS of Mw = 46 kg/mol suppressed large macro-433

scopic motions after step strain. Figure 6 reveals, at434

all time, homogeneous LAOS essentially prevails in435

the 1 M(10%)-46 K mixture for two values of the436

amplitude. This sample is able to evolve toward its437

steady state without developing any inhomogeneous438

structural change. The stress level hardly changed for439

γ0 = 175% over time, and dropped no more than 10%440

for γ = 300%.441

Summary442

The important role of the PBS in controlling the nonlin-443

ear rheological responses of PB mixtures to step strain444

and LAOS has been elucidated. Equally important is445

the demonstration of the effectiveness of rough sur-446

faces in altering the location of structural failure in the447

1 M(10%)-1.5 K mixture that has strong inclination448

to undergo wall slip (i.e., interfacial failure). At the449

same level of chain entanglement, the three mixtures450

made with PBS of different molecular weights show451

significant different responses to external deformation.452

Different repeats even produced different deformation453

profiles. Yet, the rheological characteristics, i.e., the454

stress responses, remain the same in both step strain455

and LAOS.456

In short, there are five important findings of the pre-457

sent work. (a) Different states of material deformation458

correspond to the same rheological characteristics. (b) 459

Large deformation produces structural inhomogeneity 460

whose spatial characteristics may not be predictable. 461

(c) Surface roughness can effectively eliminate slip-like 462

interfacial failure allowing bulk shear banding to pre- 463

vail. (d) The high molecular weight polymeric solvent 464

(PBS) saves the entangled PB solution from undergo- 465

ing severe interfacial failure. (e) The PBS of highest 466

molecular weight (46 kg/mol) actually can suppress 467

inhomogeneous yielding in both step strain and during 468

LAOS. These observations greatly improve our current 469

understanding of nonlinear rheological responses of 470

well-entangled polymeric liquids and are the first step 471

toward depicting how polydispersity in the molecular 472

weight distribution might influence the state of defor- 473

mation and flow. 474
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