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Abstract. Many palaeoclimate proxies share one challenging property: they are not only driven by the climatic variable of inter-

est, e.g., temperature, but they are also influenced by secondary effects which cause, among other things, increased variability,

frequently termed noise. Noise in individual proxy records can be reduced by averaging the records, but the effectiveness of this

approach depends on the correlation of the noise between the records and therefore on the spatial scales of the noise-generating

processes. Here, we review and apply this concept in the context of Antarctic ice-core isotope records to determine which core5

locations are best suited to reconstruct local-to-regional-scale temperatures. Using data from a past-millennium climate model

simulation equipped with stable isotope diagnostics we intriguingly find that even for a local temperature reconstruction the

optimal sampling strategy is to combine a local ice core with a more distant core ∼ 500–1000 km away. A similarly large dis-

tance between cores is also optimal for reconstructions that average more than two isotope records. We show that these findings

result from the interplay of the two spatial scales of the correlation structures associated with the temperature field and with the10

noise generated by precipitation intermittency. Our study helps to maximise the usability of existing Antarctic ice cores and to

optimally plan future drilling campaigns. It also broadens our knowledge on the processes that shape the isotopic record and

their typical correlation scales. Finally, the presented method can be directly extended to determine optimal sampling strategies

for other palaeoclimate reconstruction problems.

1 Introduction15

The oxygen and hydrogen isotopic composition of firn and ice recovered from polar ice cores is a key proxy for past near-

surface atmospheric temperature changes (Dansgaard, 1964; Lorius et al., 1969; Masson-Delmotte et al., 2008; Sjolte et al.,

2011). Although the physical mechanisms that link local changes in temperature to the isotopic composition of precipitated

snow are generally well understood (Dansgaard, 1964; Craig and Gordon, 1965; Jouzel and Merlivat, 1984) and can be mod-

elled with general circulation models (Joussaume et al., 1984; Werner et al., 2011, 2016; Sjolte et al., 2011; Goursaud et al.,20
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2018), the quantitative interpretation of ice-core isotope variability, in terms of temperature variability, is complicated by

second-order processes that influence the isotopic record, adding noise (Münch and Laepple, 2018).

Specifically, the isotopic record that is derived from an ice core is the result of a chain of processes: (1) atmospheric tem-

perature changes along with (2) isotopic fractionation during the pathway from atmospheric moisture to precipitation, (3) the

effect of variable and intermittent precipitation and finally (4) local depositional and post-depositional effects. As we outline25

in the following, each element of this chain can be associated with a typical spatial length scale over which it is correlated.

Atmospheric temperature variations drive the isotopic composition fractionation of the atmospheric moisture along its path-

way to the final stage of precipitation (Dansgaard, 1964; Jouzel and Merlivat, 1984). The spatial coherence of the temperature-

related isotopic signal in precipitation is hence determined by the spatial coherence of the variations of the atmospheric tem-

perature field itself. Typical spatial decorrelation scales for temperature anomalies are on the order of & 1000 km (Jones et al.,30

1997), which implies that ice cores distributed on spatial scales below ∼ 1000 km should typically record a similar, i.e., cor-

related, temperature signal. However, the temporal variability of the isotopic composition in the local atmospheric moisture

also depends on the variability of the atmospheric circulation, since different air masses may exhibit different source regions

and distillation pathways (Schlosser et al., 2004; Sodemann et al., 2008; Birks and Edwards, 2009; Küttel et al., 2012). In

addition, the isotopic composition profile across a deposited layer of snow will not directly reflect the temporal variability of35

the atmospheric isotopic signal due to the intermittent nature of precipitation (Schleiss and Smith, 2015). By this, the initial

isotope signal is weighted with the amount of precipitation, which introduces bias (Steig et al., 1994; Laepple et al., 2011) and

adds additional variability to the isotopic record (Persson et al., 2011; Casado et al., 2020). The latter two processes are linked

to atmospheric dynamics and their typical spatial scales range from the mesoscale (i.e., tens of kilometres), driven by topogra-

phy and orographic effects, to synoptic scales of hundreds of kilometres, associated with cyclonic activity and the movement40

of high and low pressure systems. Finally, in polar conditions, the precipitated snow does not directly settle but is constantly

eroded, blown away, and redeposited. These depositional processes have been shown to give rise to stratigraphic noise in the

isotopic record (Fisher et al., 1985; Münch et al., 2016; Laepple et al., 2016), which exhibits a small-scale decorrelation scale

of a few metres (Münch et al., 2016). We note that the final isotopic record is also influenced by potential exchange processes at

the surface and by densification and diffusion within the snow and ice, which are, however, not within the scope of this article.45

The hierarchy of the different spatial scales of the processes influencing an isotope record determines the effectiveness of

reducing the overall noise, since a reduction in the noise level by averaging records will depend on the spatial correlation scale

of the different noise sources. For example, if an isotope record were only shaped by temperature variations and stratigraphic

noise, it would be sufficient to average records spaced only tens of metres apart, as this would ensure highly correlated temper-

ature signals but uncorrelated stratigraphic noise between the records. However, comparing correlation-based signal-to-noise50

ratios derived from nearby isotope records (Münch et al., 2016, 2017) with the signal-to-noise ratios estimated from analysing

the records’ temporal variability (Laepple et al., 2018) shows that reproducibility on a local scale does not necessarily im-

ply a climatic, i.e., temperature-driven, origin. Instead, circulation variability and precipitation intermittency act as additional

noise sources which are likely to exhibit larger decorrelation lengths than the stratigraphic noise (Laepple et al., 2018; Münch

and Laepple, 2018). Taking this into account, we expect there to be an optimal length scale, which lies in between the local55
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and the temperature decorrelation scales and which results in a trade-off between averaging out atmospheric circulation and

precipitation intermittency effects, while also ensuring a sufficient coherence in the recorded temperature signal.

The aim of the present study is to use data from a climate model equipped with stable isotope diagnostics to systematically

study the different typical process scales – including those from atmospheric temperature variations, circulation variability,

precipitation intermittency and the isotope–temperature relationship –, to determine the optimal spatial arrangement of ice-60

core locations, which maximises the correlation with temperature at a specific target site. To address this problem we focus on

target sites on the East Antarctic Plateau. Our results show that the average of multiple ice-core isotope records yields a higher

degree of correlation with temperature when the sampled locations are spread across distances of 1000 km or more from the

target site, than when they are all located close (< 250 km) to the target site. While these results may seem counterintuitive

at first, we qualitatively explain their general features with a simple analytical model that uses the typical spatial correlation65

structures associated with the temperature and isotope fields, and with the noise generated by precipitation intermittency.

2 Data and methods

2.1 Climate model data

We use data from the past-millennium simulation (800–1999 CE; Sjolte et al., 2018) of the fully coupled ECHAM5/MPI-

OM-wiso atmosphere–ocean general circulation model equipped with stable isotope diagnostics (Werner et al., 2016). This70

simulation is forced by greenhouse gases, volcanic aerosols, total solar irradiance, land use changes, and changes in the Earth’s

orbital parameters. The model’s atmospheric component ECHAM5-wiso is run with a T31 spectral resolution (3.75◦ × 3.75◦)

and with 19 vertical levels (Sjolte et al., 2018). Compared to observations, the climatological relationship between temperature

and the precipitation isotopic composition is reproduced well by the model, but it is biased towards warm temperatures in the

T31 setup and its isotopic composition is not depleted enough over Antarctica (Werner et al., 2011). These issues can be im-75

proved upon by using a higher spatial resolution (Werner et al., 2011); however, such a higher-resolution model is not needed

for our study, since we are mainly interested in the relative variability between sites and not in the absolute temperature or

isotope values. The full atmosphere–ocean model was compared to observational data and palaeoclimate records for two equi-

librium simulations under pre-industrial and Last Glacial Maximum conditions (Werner et al., 2016), and the past-millennium

simulation was used to reconstruct North Atlantic atmospheric circulation in combination with ice-core isotope data (Sjolte80

et al., 2018).

In this study, we use the 1200-year ECHAM5/MPI-OM-wiso time series of two-metre surface air temperature (T2m), pre-

cipitation (p), and oxygen isotopic composition in precipitation (the relative abundance of oxygen-18 to oxygen-16 istopes,

denoted as δ18O) extracted from all Ngrid = 442 model grid cells on the Antarctic continent (Münch and Werner, 2020).
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2.2 Data processing85

The model simulation output has a monthly temporal resolution, while typically ice-core isotope records exhibit an annual

(or even lower) resolution. The latter is commonly achieved by averaging the isotopic data across annual layers of snow

and ice, which are determined through a dating approach. The resulting annual isotopic composition data therefore include a

weighting effect due to the intra-annual variability in the amount of precipitation. To account for this, we produce two versions

of annual data from the monthly model output (Münch and Werner, 2020): (1) the two-metre temperature and oxygen isotopic90

composition data are averaged to an annual resolution without any weighting (denoted as T2m and δ18O in the following),

and (2) the respective monthly data are averaged to an annual resolution including the weighting by the monthly precipitation

amount (denoted as precipitation-weighted data T
(pw)
2m and δ18O(pw)).

2.3 Data analyses

2.3.1 General approach95

We investigate the relationships among the model variables by assessing the Pearson correlation coefficient (r). To derive

implications for actual ice-core studies, we use the δ18O(pw) time series at the model grid cells as a surrogate for ice-core

isotope records. We thus neglect stratigraphic noise and any further depositional or post-depositional effects on the isotopic

record, since we are interested in the upper limit of the extent to which ice cores can reconstruct the climatic temperature signal

in the atmosphere. Our analyses are conducted relative to specified grid cells of interest (target sites; r0) to obtain results that100

are relevant on local-to-regional spatial scales.

2.3.2 Picking optimal sites

To determine an optimal set of ice-core locations to reconstruct T2m at a given target site we first randomly pick without

replacement a number N of the grid cells that lie within a circle of 2000 km radius around the target site and then correlate the

average δ18O(pw) time series from these N grid cells with the temperature at the target site. The optimal set of cores for each N105

is then determined from the maximum correlation value across all trials: For N = 1, we can directly pick the optimal location

from the maximum correlation value within the circle without random sampling; for N > 1, we set the maximum number n of

picking trials to 105 to ensure stable results.

2.3.3 Optimal sampling structure

To learn about the typical spatial scales associated with the processes contributing to the overall temperature–isotope relation-110

ship we use a more general approach that reduces local effects in the climate model data. We choose a given target site and

define consecutive rings around this site with a 250 km radial width until a maximum distance of 2000 km is achieved (Fig. 1).

Then, we identify all the grid cells that fall into each of these rings and randomly sample N grid cells from out of these rings.

This is implemented in a two-step process: (1) we determine all possible combinations of selecting N rings with replacement,
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Figure 1. Conceptual sketch of the general approach. Around a given Antarctic target site (black cross), we define consecutive rings (red

lines) of 250 km radial width and analyse all model grid cells that fall within each of the rings. Also shown are our main study regions (black

polygons) around the EDML (upward pointing triangle) and Vostok (downward pointing triangle) ice-core sites.

and then (2) for each ring combination we identify the possibilities of combining grid cells by selecting an individual grid cell115

from each ring. For each of these grid-cell combinations, we average the time series for a studied model variable (T2m, T
(pw)
2m ,

δ18O(pw)) and compute the degree of correlation with the target site temperature. Finally, we report the mean correlation for

every ring combination by averaging across all correlations of the analysed grid-cell combinations. This provides insight into

the average spatial structure of the correlation with the target site temperature for sampling N locations from the model field

depending on the distances between the locations. We denote this quantity as the sampling correlation structure. Note that in120

the one-dimensional case (N = 1), the sampling correlation structure is identical to what is often called the spatial correlation

structure, i.e., the average correlation as a function of distance.

In the second step from the above two-step process, it is computationally feasible to identify all possible grid-cell combi-

nations until N = 2. For N ≥ 3 we resort to Monte Carlo sampling instead, for which we estimated the required number of

Monte Carlo iterations from comparing the Monte Carlo sampling solution for N = 2 with its exact solution, yielding sufficient125

convergence for 104 iterations. Based on this, we choose 105 iterations for sampling N ≥ 3 locations, since this larger number

of locations involves a larger number of possible ring combinations and thus many more possible grid-cell combinations.

2.3.4 Study regions

We focus our analyses predominantly on two subregions of the East Antarctic Plateau, the Dronning Maud Land (DML) region

and the Vostok region, both of which include existing deep ice-core drilling sites as well as large arrays of shallower ice and130

firn cores.
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For the DML region, we choose all model grid cells (Ngrid = 26) within a range of ±17.5◦ longitude and ±5◦ latitude around

the European Project for Ice Coring in Antarctica (EPICA) DML site (EDML; −75◦ S, 0◦ E; Fig. 1). This region encompasses

the site of the deep EDML ice core (EPICA community members, 2006; Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-

und Meeresforschung, 2016) and > 50 firn and shallow ice cores (Altnau et al., 2015). For the Vostok region, we choose an135

identical latitudinal and longitudinal coverage (Ngrid = 30) with respect to the Vostok station (−78.47◦ S, 106.83◦ E; Fig. 1),

encompassing the sites of the deep Vostok and Dome C ice cores and of several shallower cores (Stenni et al., 2017), and

the new deep drilling site (“Little Dome C”) where an ice core extending back more than one million years is envisaged

(Passalacqua et al., 2018).

3 Results140

3.1 Spatial scale of the temperature anomalies and the local temperature–isotope relationship

First, we asses the extent to which a local ice-core record, i.e., the annual isotope time series of a single grid cell in the model

simulation, is representative of the local and regional scale variability of the near-surface atmospheric temperature.

The temperature field over Antarctica in the climate model exhibits large scale coherent variations (Fig. 2) with a clear two-

part structure, which is roughly divided by the Transantarctic Mountain range: For most parts of the East Antarctic Plateau,145

the temperature field shows typical decorrelation lengths between ∼ 1500 and 2500 km, while the decorrelation lengths are

significantly lower with values . 1000 km for larger parts of the West Antarctic Ice Sheet and for the Antarctic Peninsula. Still,

for perfect ice cores, i.e., assuming an ideal temperature proxy record that is only governed by local temperature variations, a

single ice core would capture the temperature variability in both East and West Antarctic regions across hundreds of kilometres.

However, as simulated by the isotope-enabled climate model, actual single Antarctic ice-core isotope records only explain150

a low portion of the variations in the local and regional temperature fields: Correlating the annual precipitation-weighted field

of modelled δ18O(pw), the model variable which most closely mimics a real ice-core record, locally with the annual T2m time

series results in generally low correlations (mean of 0.36), which across all analysed grid cells range from < 0.1 up to ∼ 0.53

with ∼ 70% of the correlations ≤ 0.4 (Fig. 3a). The correlations are improved when the T
(pw)
2m time series is used instead of the

T2m time series with a mean local correlation of 0.51 (range ∼ 0 to 0.77; Fig. 3b). This shows that precipitation intermittency155

is a major limiting factor for the temperature–isotope correlation. In the following sections, we assess the extent to which the

correlation with temperature can be increased and how this relates to the spatial scales studied.

3.2 Choosing optimal ice-core sites for temperature reconstructions

The above analysis shows that isotope records from single ice cores likely only capture a small portion of the local interannual

temperature variability. This suggests that additional processes, such as precipitation intermittency, influence the isotopic signal160

and decrease the degree of correlation with the local temperature record. Interpreting these additional processes as noise raises

the question of whether the correlation with temperature can be improved upon by averaging isotope records across space. To
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Figure 2. Temperature decorrelation lengths across Antarctica. The temperature decorrelation lengths (τ , in km) for each Antarctic model

grid cell were estimated by fitting an exponential model to the correlation–distance relationship (cf. Eq. B4) obtained from correlating the

local annual near-surface T2m time series with the respective temperature time series from all other grid cells. Note that only the continental

grid cells were used for the fit. Although the decorrelation lengths show a strong partition between East and West Antarctica, they are larger

than 1000 km at most locations.

address this question, we assume an ideal world in which the climate model data are a perfect surrogate for the true climate

and proxy variations at each site, and set up the simple experiment of randomly picking and averaging δ18O(pw) grid cells to

determine what spatial array of N ice cores optimises the temperature correlation with a target site.165

For our specific model simulation and specifying the EDML drilling site as the target site, we obtain the interesting result

that the optimal location for a single ice core is not the local grid cell as one might expect, but a site ∼ 1100 km away from

the target towards the southeast (Fig. 4a). Choosing this more distant site increases the correlation with the target temperature

from an r value of 0.26 for the local EDML site to a value of 0.44. Furthermore, by analysing the maximum correlations with

the EDML target temperature for an average of three or five cores (Fig. 4b–c) we find optimal locations that in both cases are170

scattered at significant distances around the target and which yield an even further increase in correlation (r = 0.49 in both

cases). We obtain comparable results when the Vostok drilling site is specified as the target (Fig. 4d–f). The optimal single core

would be at a location ∼ 420 km north of Vostok (r = 0.45, compared to the local correlation of r = 0.34), and the optimal

locations for averaging three or five cores all lie again scattered around the target without including it, and, as for EDML, result

in a significant increase in correlation for N = 3 (r = 0.57) but in no further increase for N = 5 (r = 0.56).175
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Figure 3. The local temperature–isotope relationship across Antarctica. Shown are the local correlations for each model grid cell between the

annual time series of precipitation-weighted oxygen isotope composition and of (a) near-surface temperature and (b) precipitation-weighted

near-surface temperature. The difference between the maps clearly demonstrates that precipitation intermittency is a major limiting factor

for the temperature–isotope relationship.

We generalise these findings by considering each Antarctic model grid cell as a target site and determining in each case the

ice core location that results in an optimal correlation with the target site. Similarly to the above case studies, the majority

(∼ 67 %) of optimal locations for a single ice core are situated at distances between 400 and 1000 km from the respective target

sites, while only about 20 % lie within 400 km from the targets. We note that this distribution might be affected by the number

of available sampling points (i.e., model grid cells) per distance bin which increase with increasing distance from the target180

site.

3.3 Optimal ice-core sampling structures

The approach for choosing optimal ice-core locations yields straightforward and instructive results. However, it might be

doubtful as to whether these results can be directly applied to the real world, since they might depend on the specific simulated

climate state or result from statistical overfitting. Thus, as a next step, we adapt our approach to learn more about the general185

spatial arrangement of the optimal ice-core locations which yield the maximum correlation with temperature. To address this

issue, we compute the mean of correlation results obtained between a target site temperature and individual grid cells in order

to reduce local variability in the model data. We perform this averaging step across several combinations of 250 km wide

concentric rings with a target site at the centre (“sampling correlation structure”; Fig. 1 and Sect. 2.3.3) to derive results which
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Figure 4. Choosing ice-core locations that optimally reconstruct interannual temperatures at the EDML and Vostok drilling sites. The maps

show the correlation coefficient in the climate model data between the annual temperature time series at the target sites (black crosses) EDML

(a–c) and Vostok (d–f) with the time series fields of precipitation-weighted oxygen isotope composition. Filled black circles denote grid cells

that maximise the correlation between the target site temperature and either a single grid cell (N = 1; a, d) or for an average across N = 3

(b, e) or N = 5 (c, f) grid cells. Interestingly, non-local ice-core locations systematically show the strongest relationship with the target site

temperature.

are only a function of radial distance. Additionally, if applicable, we average the obtained results across the target sites within190

our defined DML and Vostok regions (Sect. 2.3.4) to get regional estimates. Finally, we analyse each of the model variables to

highlight the differences between the individual fields.

The sampling correlation structure from this approach is, when we sample only a single location (N = 1), conceptually

equivalent to the average correlation with distance, and it therefore simply gives the spatial decorrelation in the case of sampling

from the T2m field itself. Indeed, the sampling correlation structures for T2m in the DML and Vostok region (Fig. 5) can195

be described by an exponential decay with a length scale of ∼ 1900 km in both cases, consistent with the estimated spatial

decorrelation lengths on the local scale (Fig. 2). We note that these results show that the maximum average correlation with the

target site temperature is obtained from sampling the innermost ring only, consistent with the general expectation.

When we compare these results to the sampling correlation structure for the δ18O field, we find in the DML region a much

lower average correlation with the target site temperature as a function of distance (Fig. 5a). The average local (< 250 km)200

correlation is ∼ 0.4, but decreases only slightly within the first ∼ 1000 km, followed by a little steeper decrease and near

constant levels of r . 0.2 for distances & 1700 km. For the Vostok region (Fig. 5b), the sampling correlation structure for δ18O

exhibits a nearly linear decrease from an initial value of r & 0.5 to r ∼ 0.1 in the final ring (> 2000 km). When we analyse the

δ18O(pw) fields we find that precipitation weighting overall induces even lower correlation values in both regions, but that it

does not have a large effect on the sampling correlation structure itself.205
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Figure 5. Sampling correlation structures with temperature for the DML and Vostok regions in the case of sampling single locations. Shown

is the average correlation as a function of distance between the interannual near-surface temperature (T2m) at a target site and the spatial

fields of T2m (black), oxygen isotope composition (δ18
O, green) and precipitation-weighted oxygen isotope composition (δ18

O
(pw), blue).

Averaging was performed in two steps: first, correlations were averaged across grid cells falling within 250 km wide consecutive rings

around a given target site, and secondly, the results were averaged across all respective target sites in the DML (a) and Vostok (b) region (see

Methods). The black dashed lines indicate an exponential fit to the T2m data.

Figure 6. Sampling correlation structure with temperature in the two-dimensional case of sampling two locations in the DML region. Shown

is the mean correlation of all possible single correlations for the average of two grid cells of (a) T2m, (b) T
(pw)
2m and (c) δ18

O
(pw) time series

sampled from the same ring or from two different rings, averaged over all target sites in the given region. The axes display the distance from

the target site, where the x (y) axis represents the first (second) sampled ring and the tick marks indicate the midpoint radii of the rings. Note

the marked difference in the locations of the correlation maxima between T2m and δ18
O

(pw).

Extending this analysis to the two-dimensional case of sampling and averaging N = 2 locations offers the possibility of

investigating the average correlation not only as a function of distance from the target site but also as a function of distance

between the two sampled locations (Fig. 6). We find that the difference in the sampling correlation structure between the

fields of T2m and δ18O(pw) is even more pronounced for N = 2 than for N = 1. As one would expect, the maximum average

correlation for T2m is still found when both sampling locations are from the innermost ring, as shown for the DML region210
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c) and Vostok (b, d) drilling sites. Displayed are subsets of the sampling correlation structures for N = 3 and 5, showing along the vertical

axis the optimal five of all possible combinations of rings, i.e., those which exhibit the highest mean correlation across 10
5 random trials

of averaging N = 3 (a, b) or N = 5 (c, d) grid cells from these rings. The ring bin borders are marked by thin vertical lines with their

distances from the target site given on the horizontal axis; the selected optimal ring combinations are marked as black dots. Systematically,

arrangements with several ice cores sampled at 500 to 1000 km distances are found to be optimal.

(Fig. 6a). However, for δ18O(pw) the optimal arrangement of two locations to obtain the maximum average correlation is to

sample one location from the innermost ring and the second location from the fifth ring, i.e., between ∼ 1000 and 1250 km

from the target site (Fig. 6c). Part of this structure is related to the effect of precipitation intermittency, which can be seen from

the sampling correlation structure of the T
(pw)
2m field (Fig. 6b). Here, in contrast to T2m, the correlation is about as high when

we combine the innermost ring and one ring further away, as when we sample both locations from the innermost ring.215

Analysing the Vostok study region leads to comparable results (Appendix A: Fig. A1), with a similar difference in sampling

correlation structure between T2m and T
(pw)
2m as for the DML region, and a similar structure of T

(pw)
2m and δ18O(pw) for distances

. 1000 km. However, the results for the δ18O(pw) field (Fig. A1c) do not display such a pronounced maximum correlation

when one location is sampled from the innermost ring and the second one from a ring further away as is observed for the DML

region. This suggests the regional differences in the spatial correlation structure of the δ18O field (Fig. 5) to have an influence220

here.

The general feature of the optimal δ18O(pw) sampling arrangement is robust throughout Antarctica, despite the above re-

gional differences. When we analyse all available Antarctic target sites, setting the first location to the innermost ring and

looking for an optimal ring of the second location, in which the average correlation with the target site temperature is maximal,

we find that in ∼ 77% of all cases the optimal configuration for the second location is at least the second ring (> 250 km), and225

in ∼ 61% of the cases it is within the second to fourth ring (250–1000 km).
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Furthermore, we obtain similar results also when averaging N = 3 or 5 locations of the δ18O(pw) field to reconstruct the

target site temperature (Fig. 7). When EDML is set as the target site, the optimal sampling configuration is such that one

location lies in the innermost ring while the others are distributed at distances between ∼ 500 and 1500 km from the target.

For reconstructing the Vostok target site temperature, the optimal locations are mostly distributed across the second to third230

(250–750 km) ring.

In summary, averaging the δ18O(pw) time series across several locations clearly increases the average correlation with the

target site temperature, if this averaging follows an optimal combination of rings, as compared to sampling all locations only

locally (Fig. 8a). The increase in correlation becomes larger by averaging more locations: while the local correlation stays

constant at 0.27 (EDML) and 0.34 (Vostok), the optimal correlation rises for N = 2 to 0.32 and 0.40, respectively, and for235

N = 10 to 0.39 and 0.49. This is equivalent to nearly a doubling in the explained variance.

We note that these results are the mean value from averaging across many possible combinations of individual locations.

In reality, any new drilling campaign or reanalysis of existing ice cores only represents one single combination of locations.

Therefore, we assess the risk of an “adverse optimal sampling”, i.e., the probability of choosing by chance a specific sampling

realisation from the optimal ring combination which yields a lower correlation than the correlation for sampling locally. For240

this purpose, we compare the distribution of individual correlations from sampling the optimal ring combination with the

value obtained from sampling only the local sites which lie in the innermost ring. Overall we find the risk of adverse optimal

sampling to be low, since more than 92% of all individual correlation values in the example of N = 3 are actually larger than

the respective local correlation (Fig. 8b).

4 Discussion245

Oxygen isotope records derived from ice cores are commonly interpreted to reflect local temperature changes at the ice-core

drilling site. Here, in a systematic study of analysing the interannual correlation between precipitation-weighted oxygen iso-

tope composition and near-surface atmospheric temperature in a climate model, we showed that while there is local isotope–

temperature correlation (Fig. 3a), this correlation can be increased considerably by averaging isotope records across space

(Fig. 8a) following a distinct spatial pattern which combines the local target site with locations located between a few hundred250

kilometres to up to ∼ 1000 km from the target site (Figs. 6c, 7 and A1c). In the next section, we develop a qualitative under-

standing of these results from a conceptual model that predicts the sampling correlation structure from the processes that shape

the isotopic composition time series, before discussing the relevance of our results to actual ice-cores studies.

4.1 Conceptual model of the optimal sampling structure

For a conceptual model of the sampling correlation structure, we focus on three processes that influence the oxygen isotope255

records in ice cores: (i) temperature variations, (ii) precipitation intermittency, and (iii) the temperature–isotope relationship.

We statistically model the associated fields of T2m, T
(pw)
2m and δ18O(pw) separately in order to understand the influence of

each process (see Appendix B for details), and we assess, for comparable results, the predicted average sampling correlation
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Figure 8. Gain in correlation and risk of adverse sampling. (a) The average correlation with the target temperature at the EDML (red) and

Vostok (blue) sites depending on the number of locations, N , used for averaging the δ18
O

(pw) time series. Sampling is performed either

locally from the innermost ring only (dashed lines), or from all possible individual combinations of locations for the respective optimal

ring combination determined for each N (solid lines). Compared to the local samples which show virtually no increase with the number

of sampled locations, the correlation increases markedly with N when sampling from the optimal rings, as highlighted by the shaded area.

(b) Histogram of individual correlations for sampling from the optimal ring combination when averaging N = 3 locations compared to the

correlation (vertical lines) for sampling from the innermost ring only, displayed for the EDML (red) and Vostok (blue) target sites. For more

than 90% of the optimal ring combination samples, the correlation is higher than the local value.

structure with the target site temperature in the two-dimensional case of averaging two locations in the same manner that we

analysed the climate model data.260

To model the atmospheric temperature field, we assume an isotropic exponential decay of the spatial correlation with a

constant decorrelation length (Appendix B2). Such an exponential temperature decorrelation is a commonly observed feature

(Jones et al., 1997) and also confirmed by our climate model data (Figs. 2 and 5). Given this relationship, we find a good

agreement for the two-dimensional sampling correlation structure between the conceptual model and the climate model data,

both regarding absolute correlation values as well as the spatial pattern (Fig. B1a). We emphasise that the maximum correlation265

with the target site temperature naturally occurs, in case of an isotropic correlation decay, when the averaged two (or N )

locations are close to the target site, as any location which is further away will result in a temperature signal that is less similar

between the locations.

To elucidate the role of precipitation intermittency, we follow the simplest assumption which is that this process can be

described by partly aliasing the original temperature signal into temporal white noise (Laepple et al., 2018; Casado et al., 2020).270

We further assume that this noise is not independent between sites but that it follows the spatial scale of precipitation events,

which we describe as an exponential decorrelation in space with a second length scale (Appendix B3). This intermittency length

scale is related to the atmospheric processes that deliver precipitation, e.g., synoptic systems, and is hence assumed to be smaller

than the length scale of the temperature anomalies. The introduction of this second length scale into our conceptual model
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generally explains the optimal sampling structure we obtained from the climate model data. Qualitatively, close-by locations275

exhibit a strong correlation in temperature but also in the noise from precipitation intermittency; therefore, this noise cannot be

reduced by averaging the locations, yielding an overall low signal-to-noise ratio. However, with increasing distance between

the locations, the intermittency noise decorrelates faster than the temperature field due to the different decorrelation scales,

resulting in an optimal distance of maximum signal-to-noise ratio. This is also reflected in our conceptual model (Fig. B1b, e).

When fixing one location to the target site and varying the distance from the target site of the second location, the correlation280

with the target site temperature first increases with increasing distance of the second location and then maximises at an optimal

distance, before it decays with a further increase in distance. In the climate model data, we observed a similar feature for the

precipitation-weighted temperature (Figs. 6 and A1), though it was not as clear as in the conceptual model. This mismatch

could be related to the assumed isotropy in the conceptual model and the according azimuthal averaging done in the climate

model data analysis, which potentially smears the intermittency effect in the climate model data due to slight differences in the285

decorrelation lengths between the different horizontal directions.

In order to incorporate the δ18O(pw) field into the conceptual model, we need to account for the spatial temperature–isotope

relationship. To accomplish this, we parameterise the spatial dependence of the correlation between temperature and the oxygen

isotope composition with a simple isotropic linear model based on the climate model data results (Fig. 5 and Appendix B4).

In addition, we assume that the same effect of precipitation intermittency that we adopted for the temperature field is also290

applicable to the oxygen isotope field. With these simple assumptions, we obtain a good qualitative agreement for the DML

region between the conceptual model and the climate model data results (cf. Figs. B1c and 6c). In addition, when we change the

parameterised isotope–temperature relationship such that it more closely resembles the Vostok region data (Fig. 5b), the sam-

pling correlation structure in the conceptual model (Fig. B1f) is more similar to the observed correlation structure (Fig. A1c).

However, in general the conceptual model fails for δ18O(pw) to reproduce the actual range in correlations as it produces much295

lower values than expected.

In summary, our conceptual model provides a quantitative understanding of the spatial correlation of the temperature in the

climate model data, and, at least, a qualitative understanding of the processes that affect the correlation between temperature

and the δ18O(pw) field, i.e., precipitation intermittency and the spatial temperature–isotope relationship. The deficiencies in

the conceptual model may be attributed to its simplicity. For the governing processes, we assumed spatially constant and300

isotropic length scales, neglecting local and direction-related differences in, e.g., temperature decorrelation lengths (cf. Fig. 2)

or the spatial extent of the coherence of precipitation intermittency. Instead of being constant, the latter may differ depending

on the type of precipitation, e.g., synoptic versus clear-sky precipitation, and may exhibit directional dependencies related to

topography. Furthermore, we assumed constant variance for all time series, thereby ignoring potential weighting effects on the

correlations for the spatial average of several locations due to different variabilities between them.305

14

https://doi.org/10.5194/cp-2020-128

Preprint. Discussion started: 5 October 2020

c© Author(s) 2020. CC BY 4.0 License.



4.2 Relevance for ice-core studies

Our results which we obtained from analysing the climate model data and substantiated with our conceptual model provide

guidance on where to drill N = 1,2,3 or more ice cores, or from which locations to analyse them, in order to optimally

reconstruct the atmospheric temperature signal for a certain target site or region.

The first possibility is to follow the recommendations obtained from directly choosing the specific locations which max-310

imise the correlation with the target site temperature (Fig. 4). However, it is unclear whether these results can be one-to-one

transferred to the real world, since they might depend on dynamical processes in the atmosphere which could differ between

climate states or depend on initial conditions. One indication for this is that we obtain different optimal single core locations

for more than half of all investigated Antarctic target sites, when we analyse only the first or the second half of the respective

climate model time series as compared to the full 1200 years.315

Here we argue that the optimal spatial sampling configuration is on average governed by the interplay of the different

underlying correlation length scales, which we expect to vary less in between different climate periods or states. This is

substantiated by the fact that the sampling correlation structures for two cores (Figs. 6 and A1), obtained from averaging the

correlations from individual sampling locations across concentric rings around the target site, are much more robust against

analysing only the first or the second half of the model time series, different to the results from directly choosing optimal320

locations.

Using the sampling correlation structures we arrive at the following recommendations for optimal ice core sampling config-

urations. If it is only possible to drill or analyse a single ice core, our results show that it is always best to sample locally, i.e.,

to place this core near the target site of interest. This is also common practice, given the usual interpretation of ice-core isotope

records as a proxy for local temperatures. However, due to the effect of precipitation intermittency, in the case of drilling two325

ice cores it is no longer optimal to collect both cores near the target site, but instead to drill one core at the target site and one at

least 500 km away. Where three or more ice cores will be drilled or analysed, we expect the optimal spatial configuration to be

more dependent on the study region. However, our results indicate that in general it is still likely better to place one core near

the target site and distribute the others across several hundreds of kilometres.

These inferences are based on data from a single climate model simulation together with a simple statistical conceptual330

model, which should be tested against observations. We thus need to create an isotope record that is in first order only governed

by temperature variations and precipitation intermittency, and remove the impact of local stratigraphic noise from the actual

measured records (assuming that any further processes in the pre-depositional to depositional phase contribute negligibly to

the local isotopic variations). To accomplish this one possible strategy would be to use trench sampling campaigns (see Münch

et al., 2016, 2017 for the EDML site). Then, one test of our optimal sampling configurations could be to combine one trench335

record, e.g., one from EDML, with another trench sampled at the optimal distance based on our results for N = 2, and correlate

the average of these two trench records with the instrumental temperature data set available for EDML. Based on the results

in this study we would expect a higher degree of correlation in this case compared to using only one local trench record from
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EDML. We acknowledge that such an approach would be challenging due to the small amount of available instrumental data

(∼ 20 years for EDML) and by the inevitable dating uncertainties between the two trench records.340

5 Conclusions

In this study we assessed the spatial sampling configuration of ice cores to optimally reconstruct the annual near-surface

temperature at a specific target site. This problem was motivated by the expectation that the major processes influencing the

isotopic records of ice cores operate on different spatial scales.

Indeed, by analysing the temperature and isotope data of an isotope-enabled atmosphere–ocean climate model simulating the345

climatic history over the last millennium in Antarctica, we showed that while in the optimal setup a single ice core should be

placed close to the target site of interest, a second core should be located far (> 500 km) from the first core. While this may seem

surprising at first glance, it can be straightforwardly explained by the interplay of two different correlation lengths in space:

one for the temperature anomalies and one parameterising the spatial coherence of the effect of precipitation intermittency, as

demonstrated by a simple conceptual model. Despite the fact that these results were specifically obtained for two regions of the350

East Antarctic Plateau, we expect similar results to hold for other parts of Antarctica, and potentially also for other large-scale

ice-coring regions such as Greenland.

Our study therefore explicitly improves the planning of drilling or analysis campaigns for spatial networks of ice-core isotope

records. In addition, it provides a strategy to analyse an optimal configuration of sampling locations for any proxy which is

influenced by two or more processes that exhibit different spatial correlation scales. This likely applies to various marine as355

well as terrestrial proxy types, and our strategy thus might offer a step forward in the best use of sampling and measurement

capacity for quantitative climate reconstructions.

Code and data availability. The climate model data used in this study is freely available from the Zenodo database under https://doi.org/10.

5281/zenodo.4001565 (Münch and Werner, 2020). Software to run the analyses and produce the figures is available as R code hosted in the

public git repository at https://github.com/EarthSystemDiagnostics/optimalcores. A snapshot of the software code will be archived on the360

Zenodo database once the paper is accepted.

Appendix A: Two-dimensional sampling correlation structure for the Vostok region

In order to reduce the number of figures in the main text, we provide the results of the average two-dimensional sampling

correlation structures (N = 2) for the Vostok study region here in Fig. A1.
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Figure A1. Same as Fig. 6 but for the Vostok region. Note that for δ18
O

(pw) the – albeit marginal – correlation maximum is achieved by

combining the innermost ring with the ring between 500–750 km.

Appendix B: Conceptual model of sampling correlation structures365

B1 General model

We set up a conceptual model for the correlation between a target temperature time series and a spatial average based on a set

of locations sampled from a climatic field (sampling correlation structure). Our model assumes simple isotropic and exponen-

tial decorrelation structures for the involved climatic fields and is based on previous work which suggests that precipitation

intermittency can be described by partly aliasing the original temperature signal into white noise (Laepple et al., 2018).370

In the model, we consider a temperature time series T0 at some target site r0 and a field x of a given climate variable. From

this field, we select N time series xi at the locations ri, i = 1, . . . ,N , and denote the spatial average of these time series by

x = 1
N

∑N
i=1 xi. The distances of the N locations from the target site and the distances between the locations are given by

ri = |ri − r0| and by dij = |ri − rj |, respectively. The correlation between T0 and x follows from

cor(T0,x) =
cov(T0,x)

√

var(T0)var(x)
, (B1)375

and it is governed by the covariance between the temperature at the target site and the climate field at the sampling locations

ri,

cov(T0,x) =
1

N

N
∑

i

cov(T0,xi), (B2)

and by the covariance between the sampling locations through the variance of their spatial average,

var(x) =
1

N2





N
∑

i

var(xi) + 2
N−1
∑

i

N
∑

j

cov(xi,xj)



 . (B3)380

In our model, these quantities depend on the distance between sites and on the correlation structure of the respective field x, as

we show in the following.
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B2 Temperature

For the near-surface temperature field, x ≡ T , we assume a spatially constant variance, var(T0) = var(Ti) ≡ σ2
T , and an

isotropic decorrelation following an exponential decay with a decorrelation length τ ; i.e., the covariance between sites is385

cov(T0,Ti) = σ2
T exp

(

−ri

τ

)

, (B4)

cov(Ti,Tj) = σ2
T exp

(

−dij

τ

)

. (B5)

The correlation between the target site temperature and the spatial average of N temperature time series is then obtained from

cor(T0,T ) =

∑N
i=1 exp

(

− ri

τ

)

√

N + 2
∑N−1

i=1

∑N
j=i+1 exp

(

−dij

τ

)

. (B6)

B3 Precipitation-weighted temperature390

To model the effect of precipitation intermittency, we follow Laepple et al. (2018) and assume that precipitation intermittency

redistributes the energy of the temperature time series constantly across frequencies, i.e., creating temporal white noise without

changing the total variance. Then, the precipitation-weighted temperature time series at location ri arises from Ti as

T
(pw)
i = (1− ξ)

1/2
Ti + ξ1/2σT εi(0,1), (B7)

where εi(0,1) are independent and normally distributed random variables with a mean of zero and a standard deviation of 1.395

The parameter 0 ≤ ξ ≤ 1 determines the fraction of the input temperature time series which is aliased into white noise.

The covariance between the target site temperature and a precipitation-weighted temperature time series is then

cov(T0,T
(pw)
i ) = (1− ξ)1/2σ2

T exp
(

−ri

τ

)

, (B8)

which implies that the spatial correlation structure between T0 and the precipitation-weighted temperature follows the same

exponential decay as in Eq. (B4), only scaled by the factor (1− ξ)1/2. The factor ξ can be estimated from the climate model400

data by analysing the local correlation, i.e., at the same grid cell, between the temperature and the precipitation-weighted

temperature.

We further assume that the effect of precipitation intermittency is not independent between sites but is related to the spatial

coherence of the precipitation fields, for which we assume an exponential decorrelation structure with a decay length τpw.

Based on these assumptions, the spatial covariance between sites of the white noise terms induced by the effect of precipitation405

intermittency has the form

cov(εi,εj) = exp

(

− dij

τpw

)

. (B9)

Then, the correlation between the target site temperature and the spatial average of N precipitation-weighted temperature time

series is governed by the intermittency factor ξ and by the two spatial length scales τ and τpw,

cor
(

T0,T
(pw)

)

=

√
1− ξ

∑N
i=1 exp

(

− ri

τ

)

√

N + 2
∑N−1

i=1

∑N
j=i+1 g(dij ;τ,τpw, ξ)

, (B10)410
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with

g(dij ;τ,τpw, ξ) := (1− ξ)exp

(

−dij

τ

)

+ ξ exp

(

− dij

τpw

)

. (B11)

B4 Precipitation-weighted oxygen isotope composition

For the precipitation-weighted oxygen isotope composition field, x ≡ δ(pw), we assume the same effect of precipitation in-

termittency as on the temperature field. Furthermore, an analysis of the climate model data suggests that the oxygen isotope415

field largely exhibits an exponential decorrelation structure in space (not shown). Hence, the correlation between the target site

temperature and the spatial average of N δ(pw) time series is obtained in a similar manner as for T (pw), i.e.,

cor
(

T0, δ
(pw)

)

=

√
1− ξ

∑N
i=1 cor(T0, δi)

√

N + 2
∑N−1

i=1

∑N
j=i+1 g(dij ;τδ, τpw, ξ)

, (B12)

where τδ is the decorrelation length of the δ field and the only difference to Eq. (B10) is the unknown spatial correlation

structure between the temperature at the target site and the oxygen isotope field, cor(T0, δi). Based on our climate model420

results (Fig. 5), we parameterise this function with a simple linear decay of the form

cor(T0, δi) =











c0 − γd, d ≤ d0,

0, d > d0,
(B13)

where γ = c0/d0 and d0 is some threshold distance above which the correlation is zero.

B5 Model parameter estimation and model results

Overall, our model is governed by three decorrelation lengths (τ , τδ , τpw), the intermittency factor ξ, and two parameters425

describing the temperature–isotope correlation (c0, d0).

We estimate τ from the climate model data for the DML and Vostok regions (Fig. 5) and find for both regions values of

τ = 1900 km. In the same way we estimate a value of τδ = 1100 km for both regions. The intermittency factor ξ is derived

from the local correlation between temperature and precipitation-weighted temperature (Eq. B8). We find an average value

for the DML region of ξDML = 0.73, which is close to the average value across all of Antarctica (ξAnt. = 0.71), while the430

intermittency is stronger for the Vostok region (ξVostok = 0.82). We parameterise the temperature–isotope correlation in the

DML region with c0 = 0.4 and d0 = 6000 km and in the Vostok region with c0 = 0.5 and d0 = 2500 km (Fig. 5). The only

unconstrained parameter is the decorrelation length of the effect of precipitation intermittency, τpw, since it is unclear by

which precipitation variable it is mainly governed (total annual amount, seasonal amount, or its distribution). An investigation

with reanalysis data yielded scales between ∼ 300 to 500 km for different precipitation variables (Münch and Laepple, 2018),435

while our model data exhibits an average decorrelation length of ∼ 600 km for the annual precipitation amount. Here, for the

conceptual model we choose a value of 500 km.

We can test our assumption for the effect of intermittency based on using the estimated values of τ and ξ to predict the

spatial decorrelation between temperature and precipitation-weighted temperature (Eq. B8). Indeed, this yields a comparably
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Figure B1. Two-dimensional sampling correlation structures with temperature as predicted from our conceptual model using the model

parameters from the DML (a–c) and Vostok (d–f) regions. Shown is the mean correlation of all possible single correlations for the average

of two time series sampled from a pair of concentric rings around the target site for the fields of (a, d) T2m, (b, e) T
(pw)
2m and (c, f) δ18

O
(pw).

Note that the plots (a) and (c) are based on the same parameters and therefore identical.

good fit to the data as an independent fit (root mean square deviation of ∼ 0.03 between data and fit in both cases), supporting440

our assumption that intermittency can be parameterised by a partial conversion of the time series into white noise.

Similarly to analysing the climate model data, we now use our conceptual model to predict the two-dimensional (N = 2)

sampling correlation structures for the different model fields of T2m, T
(pw)
2m and δ18O(pw) (Eqs. B6, B10 and B12). Since our

model space is continuous, we sample from locations placed on concentric rings around the target site. We either sample the

two locations from the same ring or from two different rings, using ring radii from 0 to 2000 km in increments of 10 km,445

and calculate the average correlation for a specific ring combination. To obtain meaningful expectation values, we choose 36

locations distributed uniformly across each ring in steps of 10◦, combine these locations one by one for each ring combination,

and average across the correlations for each location pair. With the model parameters from the DML and Vostok regions we

obtain the results displayed in Fig. (B1), which are discussed and compared to the estimated results from the climate model

data in the main text.450
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