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Prediction errors (PE) are a central notion in theoretical models of reinforcement learn-

ing, perceptual inference, decision-making and cognition, and prediction error signals have

been reported across a wide range of brain regions and experimental paradigms. Here,

we will make an attempt to see the forest for the trees and consider the commonalities

and differences of reported PE signals in light of recent suggestions that the computation

of PE forms a fundamental mode of brain function. We discuss where different types of

PE are encoded, how they are generated, and the different functional roles they fulfill. We

suggest that while encoding of PE is a common computation across brain regions, the

content and function of these error signals can be very different and are determined by the

afferent and efferent connections within the neural circuitry in which they arise.

Keywords: prediction, prediction error, expectation, predictive coding, learning, perceptual inference, decision-

making

INTRODUCTION

Our ability to perceive structure and predict future states in the

world is a remarkable feat that evolution has bestowed upon us.

Recent theories have gone as far as surmising that the primary

function of the neocortex may lie in the prediction of future states

of the environment (Hawkins, 2004; Friston, 2005; Bar, 2009).

These theories propose that the brain’s primary objective is to

infer the causes of its sensory input by reducing surprise, in order

to allow it to successfully predict and interact with the world.

In support of these theories, there are many striking examples

of the predictive nature of neural computations, in visual (Bar

et al., 2006; Alink et al., 2010; Meyer and Olson, 2011), auditory

(Ulanovsky et al., 2003; Baldeweg, 2006; Todorovic et al., 2011),

and somatosensory perception (Akatsuka et al., 2007; van Ede

et al., 2011), as well as in action (Blakemore et al., 1998; Best-

mann et al., 2008; Franklin and Wolpert, 2011), language (Kutas

and Hillyard, 1980), memory (Erickson and Desimone, 1999;

Kumaran and Maguire, 2006, 2009), cognitive control (Alexander

and Brown, 2011), and motivational value processing (Schultz,

1998; Hare et al., 2008; Daw et al., 2011). Since the world is a con-

tinuously changing and stochastic environment, these predictions

likewise need to be continuously changed and fine-tuned on the

basis of novel information, which may conflict with the organ-

ism’s prior expectations. When such a mismatch between prior

expectations and reality arises, this is referred to as a prediction

error.

The study of prediction and prediction error signals in the

brain is encountered in the largely segregated research fields of

motivational control and perception. Prediction errors (PEs) are

prominent in models of perception (Rao and Ballard, 1999; Lee

and Mumford, 2003), which propose how prior expectations help

us to make sense of our environments. In these models, predictions

of impending perceptual events help us quickly interpret and dis-

ambiguate noisy and ambiguous input (Kersten and Yuille, 2003;

Sterzer et al., 2008). Predictions and PEs are also key concepts in

models of reward learning, motivational control, and decision-

making (e.g., Rescorla and Wagner, 1972; Pearce and Hall, 1980;

Behrens et al., 2007; Niv and Schoenbaum, 2008). These models

describe how we learn where the bad things lurk and the good

things live, and which actions to undertake to avoid them or seek

them out respectively (Schultz et al., 1997; Schultz and Dickinson,

2000; Wise, 2004).

In fact, PEs are reported in a bewildering breadth of (hun-

dreds of) studies. While these are all referred to as PEs, the signals

reported and discussed in the fields of perception on the one

hand and motivational control and learning on the other, do

not appear to be of the same nature or serve the same func-

tions. Nevertheless, recent experiments and theorizing suggest that

coding of PEs does reflect a general neural coding strategy (Fris-

ton, 2005; Clark, 2012). We will build on these ideas and aim to

bring closer these disparate literatures on the role of PEs in per-

ception and motivational control (Bromberg-Martin et al., 2010;

Redgrave et al., 2011). In the first section, we will give a brief

overview of the main “classes” of PEs that have been reported,

where we will focus on sensory cortical PEs versus motivationally

valenced subcortical PEs. Next, we will look in detail at where

and via which neurophysiological mechanisms these classes of

PEs are generated. Finally, we will look at what roles PEs play

in perception, attention, and motivational control and how they

help us to successfully interact with a continuously changing

world. We will outline how the same fundamental computational

operations can give rise to different functions and highlight the

importance of considering the neural circuits in which the PEs

arise.

www.frontiersin.org December 2012 | Volume 3 | Article 548 | 1

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/Perception_Science/10.3389/fpsyg.2012.00548/abstract
http://www.frontiersin.org/Perception_Science/10.3389/fpsyg.2012.00548/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=HannekeDen_Ouden&UID=10989
http://www.frontiersin.org/people/PeterKok/44234
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=FlorisDe_Lange&UID=1615
mailto:h.denouden@donders.ru.nl
http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

den Ouden et al. Prediction errors in learning and inference

WHAT ARE PREDICTION ERRORS, AND WHERE IN THE

BRAIN ARE THEY ENCODED?

Principally, a prediction error can be defined as the mismatch

between a prior expectation and reality. Prior expectations are

based on an agent’s model of the world, which is partly hard-wired

in the structure of neural circuits and partly derived from statis-

tical regularities in the sensory inputs that the agent experiences

over a lifetime. As such, a PE signals a deviation of the current state

with respect to what is predicted based on the current model of the

world, and calls for an update. Exposure to experimentally manip-

ulated environments indeed alters prior expectations, even when

such expectations are the result of a lifetime of experience, such

as the prior that light comes from above (Adams et al., 2004), or

that slow motion speeds are more likely than fast ones (Weiss et al.,

2002; Sotiropoulos et al., 2011). The notion of the coding of PEs as

a ubiquitous strategy is supported by the observation that PE sig-

nals appear ubiquitously throughout the brain, in relation to the

processing of sensory signals, value, motor actions, and cognitive

control. One may object that, if PEs are so general, to the degree

that all our brains do is code predictions and PEs – then how can

we achieve such extensive neural specialization for actions, emo-

tions, and generally functional specialization of areas? The answer

lies in the notion that, while coding in terms of PEs is a common

currency across brain regions, the exact content and nature of these

error signals vastly differs between areas and functional specializa-

tions. Below, we will first discuss two main classes of PEs that have

been reported in the last decades. Roughly, these can be divided

into on the one hand perceptual and cognitive PEs, which report

the degree of surprise with respect to a particular outcome, and

on the other hand motivational PEs, which also report the valence

(sign) of a PE, i.e., not only whether the outcome was surprising,

but also whether it was better or worse than expected.

PERCEPTUAL PREDICTION ERRORS

One of the most basic and robust paradigms to demonstrate neu-

ronal responses to unexpected stimuli is the oddball paradigm.

Here, presentation of a deviant oddball stimulus in a sequence of

repeated standard stimuli elicits larger neural activity over sensory

areas. This has become known as the mismatch negativity (MMN)

in electrophysiological research, because of a larger deflection of

a negative-going evoked potential, when measured with EEG. The

MMN was first described in the auditory domain (Näätänen,

1990), and has later also been observed in the visual (Stagg et al.,

2004) and somatosensory (Akatsuka et al., 2007) modalities.

The MMN was originally interpreted as resulting from change

detection, when a physically different stimulus followed a series

of physically identical stimuli. However, subsequent evidence has

shown that the MMN is different from simple repetition sup-

pression, and is the result of a violated prediction, rather than

a physical stimulus change (Summerfield and Koechlin, 2008;

Todorovic et al., 2011; Bendixen et al., 2012; Wacongne et al.,

2012; Figure 1A). For example, when a series of rising tones is

expected, an MMN is observed when two identical tones are played

in succession (Tervaniemi et al., 1994). Also, the neural effects

of expectation and repetition appear distinct: when orthogonally

manipulating stimulus expectation and stimulus repetition, neural

responses in a very early time window (40–60 ms) are attenuated

by stimulus repetition but not stimulus expectation, while neural

responses in a later time window (100–200 ms) are modulated by

expectation but not repetition (Todorovic and de Lange, 2012).

Perceptual PE responses can also be dissociated from related

concepts like adaptation and stimulus-driven attention in so-

called omission paradigms, in which the neural response to a

predicted but withheld event is measured. Remarkably, there is a

robust cortical response to such surprising stimulus omissions in

the relevant sensory cortical areas (den Ouden et al., 2009; Todor-

ovic et al., 2011; Wacongne et al., 2011; Kok et al., 2012b). Unlike

the reduced response for repeated items, it is difficult to explain

these brain responses to surprising omissions in terms of stimulus

adaptation, since there is no physical stimulus presented. Similarly,

while larger neural responses to surprising stimuli can potentially

be explained by larger bottom-up (stimulus-driven) attention, this

account fails to explain the larger activity for surprising omissions,

given the absence of a stimulus that one could attend to.

Although examples of perceptual surprise responses such as

the MMN are abundant in primary sensory cortices (den Ouden

et al., 2009; Alink et al., 2010; Kok et al., 2012a; Figure 1C), they

are also widely reported in more specialized visually responsive

regions. For example, Meyer and Olson observed a transitional

surprise effect in inferotemporal cortex, the terminus of the ventral

stream, where object-selective neurons exhibited a much stronger

response to unpredicted than predicted images after image transi-

tions were learned by associative pairing (Meyer and Olson, 2011,

Figure 1B).

Finally, PE responses have been reported not only within,

but also between sensory modalities, most notably between the

auditory and visual domain. For example, in audiovisual speech

perception, visual input (lip movements) predicts auditory input

(speech sounds), and artificial incongruence between the two has

been shown to distort speech perception (McGurk and MacDon-

ald, 1976) as well as increase neural activity in the superior tem-

poral sulcus, a well-known multisensory region (Arnal et al., 2009,

2011). In line with predictive coding accounts, the more predictive

a visual stimulus is of the subsequent spoken syllable, the stronger

the response in superior temporal sulcus when this prediction

is violated (Arnal et al., 2009). Interestingly, this PE response is

accompanied by increased functional connectivity between supe-

rior temporal sulcus and (unimodal) auditory and visual sensory

regions, as well as increased gamma-activity in these lower order

sensory regions (Arnal et al., 2011). These results are suggestive

of predictive hierarchical message-passing across modalities: the

increased gamma-activity reflects increased ascending informa-

tion from the unimodal sensory regions (Arnal and Giraud, 2012)

which send a PE to the superior temporal sulcus.

One may wonder why these PE or surprise responses should

be present in so many neural structures along the ventral visual

stream, from primary sensory cortices to inferotemporal cortex

and hippocampus. In other words: Why do we need so much “PE”

signaling? It is important to realize here that these PEs are not

simply an unspecific “surprise” response, but that they are linked

to a particular representation or prediction. As such, a PE response

in a V1 neuron signals surprise about the unexpected presence (or

absence) of an oriented edge in a particular part of the visual field,

whereas surprise responses in inferotemporal neurons pertain to
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den Ouden et al. Prediction errors in learning and inference

FIGURE 1 |Top row: examples of unsigned prediction errors. (A) MEG:

larger evoked activity in the auditory cortex for repeated but unexpected

auditory stimuli. Reprinted from (Todorovic et al., 2011) with permission

from the authors. (B) Single-unit recordings: larger population firing rate in

the inferotemporal cortex for unexpected images. Reprinted from (Meyer

and Olson, 2011) with permission from the authors. (C) fMRI: correlation

between the degree of surprise evoked by a (present or absent) visual

stimulus and striatal (top and bottom left) and primary visual (bottom right)

hemodynamic activity. Reprinted from (den Ouden et al., 2009) with

permission from the authors. Bottom row: examples of signed

prediction errors: (D) fMRI: increased hemodynamic activity in the VTA

for outcomes that are better than expected, but decrease for worse than

expected. Reprinted from (Klein-Flugge et al., 2011), copyright (2011) with

permission from Elsevier. (E) Single-unit recordings: neurons in the lateral

habenula signal punishment prediction errors, as they fire stronger for

outcomes that are worse than expected, and less for outcomes that are

better than expected, both in the rewards (top) and punishment (bottom)

domain. Reprinted by permission from Macmillan Publishers, Ltd: nature

Neuroscience (Matsumoto and Hikosaka, 2009a), copyright (2009). (F)

Single-unit recordings. Top panel: firing rate of dopaminergic neurons in

the VTA at the time of the reward signaling cues (dark gray), and

presentation versus omission of reward (light gray block). Bottom panel:

GABAergic neurons fire in response to the predictive peaking at the time

of the predicted reward, independently of the nature of the outcome

(reward or no reward). Reprinted by permission from Macmillan

Publishers, Ltd: nature (Cohen et al., 2012), copyright (2012).

surprise with respect to highly specific categories of objects. In line

with this, Peelen and Kastner (2011) showed that the activity pat-

tern of omissions contains information about the identity of the

absent stimulus. Therefore, perceptual PEs do not merely signal

surprise, but have representational content.

COGNITIVE PREDICTION ERRORS

Cortical areas that are not considered to be part of a sensory

processing stream, but instead operate on higher-order represen-

tations have also been shown to be sensitive to both predictability

and surprise. For example the anterior hippocampus shows larger

activity for statistically structured compared to random sequences

(Turk-Browne et al., 2009), and exhibits largest activity for unex-

pected sequences of events, i.e., when predictions about how future

events will unfold are violated (Kumaran and Maguire, 2006,

2009). A recent study also suggests that the hippocampus stores

and generates predictions of complex visual shapes, in line with

the larger activity for unexpected shapes observed by earlier stud-

ies (Schapiro et al., 2012). This study found that the exact activity

patterns in the hippocampus to different stimuli became more

similar after a learning phase in which these stimuli were paired.

Interestingly, this shaping was “forward-looking/predictive” in the

CA2/3 and dentate gyrus sub-regions of the hippocampus. In this

experiment, two stimuli (A and B) were paired together, such that
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A was likely to be followed by B (A → B), but B was unlikely to

be followed by A. After learning, the activity pattern for stimu-

lus A (A-post) became more similar to the activity pattern for

stimulus B before learning (B-pre). However, the activity pattern

for B after training (B-post) did not become more similar to the

activity pattern to A before learning (A-pre), which excludes an

explanation in terms of simple association. Even higher in the cor-

tical hierarchy and further away from the “sensory” PEs are the

“cognitive” PE signals, repeatedly observed in the dorsolateral pre-

frontal cortex. In various paradigms, in which subjects need to

predict outcome stimuli based on previously learned associations,

the dorsolateral prefrontal cortex strongly responds to abstract

rule violations, independently of stimulus novelty (Fletcher et al.,

2001; Corlett et al., 2004; Turner et al., 2004).

MOTIVATIONAL PREDICTION ERRORS

The sensory and higher-order cognitive PEs described above reflect

only one aspect of the mismatch between a prediction and the out-

come, namely the size of this mismatch. In perceptual inference, an

outcome can be more or less surprising, but never better or worse

than expected. These PEs, which do not reflect the valence of the

outcome but simply the surprise engendered by this outcome, are

often referred to as “unsigned” PEs. However, in order to learn and

use PEs to guide motivational action, not only the size but also its

valence (i.e., sign) of the PE is of relevance. In other words, the PE

has to reflect also whether an outcome was better or worse than

expected.

Signed PEs play a central role in many computational models

of reinforcement learning. These models describe how an agent

learns the value of actions and stimuli in a complex environment,

and signed PEs that contain information about the direction in

which the prediction was wrong, serve as a teaching signal that

allows for updating of the value of the current action or stimulus.

In a seminal series of studies, Schultz and colleagues showed that

the firing pattern of phasic dopamine neurons in the macaque

ventral tegmental area (VTA) reflects exactly such reward PEs

(Romo and Schultz, 1990; Mirenowicz and Schultz, 1994, 1996;

Schultz, 1998). These neurons (i) increase their firing rate when

an outcome was better than expected, (ii) do not change when the

outcome was expected, and (iii) fall silent when an expected reward

is omitted (Figures 1D–F). This neuronal behavior supports the

hypothesis that the dopamine neurons in the VTA signal reward

PE (Schultz and Dickinson, 2000). Computational reinforcement

learning models propose that PEs in part determine the size and

direction of the update of the prediction engendered by the cue

(Rescorla and Wagner, 1972; Schultz and Dickinson, 2000), and as

such play a central role in motivational learning.

Inspired by the results from these animal experiments, fMRI

studies have subsequently shown that also in humans the VTA

responds to the difference between expected and actual rewards

(D’Ardenne et al., 2008; Klein-Flugge et al., 2011). Additionally,

many human fMRI studies reported reward PE responses in the

ventral striatum for a wide range of stimuli including attractive

faces, money, and food (e.g., Pagnoni et al., 2002; McClure et al.,

2003; O’Doherty et al., 2003; Abler et al., 2006; Rodriguez et al.,

2006; Bray and O’Doherty, 2007; Seymour et al., 2007; Yacubian

et al., 2007; Hare et al., 2008; Niv et al., 2012).

Complementing research on reward PEs, there is some evidence

for neurons or neuronal populations responding in a manner

consistent with punishment PEs. Neurons in the primate lateral

habenula, for example, show increased activity after an unexpected

punishment, and decreased activity after an unexpected reward

(Matsumoto and Hikosaka, 2007, Figure 1E). Such punishment

PEs are also observed in the VTA, possibly resulting from pro-

jections from the lateral habenula to VTA GABAergic neurons

(Cohen et al., 2012). Using fMRI, punishment PEs have also been

reported in the human striatum (Seymour et al., 2007) and in the

amygdala (Yacubian et al., 2006).

The unsigned PEs described in the previous sections on per-

ceptual and cognitive PEs were all observed in cortical regions,

whereas the signed reward and punishment PEs in this section

were generally reported from subcortical areas. This may create

the impression of a cortical/subcortical divide with respect to the

information content of the prediction errors. However, subcortical

unsigned PEs to valenced stimuli have also been reported, notably

in the primate midbrain dopamine neurons in the substantia nigra.

These neurons increase their firing rate to unexpected stimuli,

independent of the valence (reward or punishment; Matsumoto

and Hikosaka, 2009b). Similarly, a hemodynamic correlate of

unsigned PEs has also been observed in the human brain even in

response to affectively neutral stimuli, both in the striatum (Zink

et al., 2003; den Ouden et al., 2009, 2010), and in the VTA (Bun-

zeck and Düzel, 2006). Although rarer, signed motivational error

signals have also been reported in cortical areas, including in the

orbitofrontal cortex to reward (Takahashi et al., 2009; Sul et al.,

2010), the insular cortex to punishment (Pessiglione et al., 2006),

and in the medial prefrontal cortex to both positive and negative

feedback (Matsumoto et al., 2007).

HOW ARE PREDICTION ERRORS GENERATED?

As discussed above, PEs appear ubiquitously throughout the brain,

lending support to the notion that coding of PEs is a general neural

coding strategy (Friston, 2005; Clark, 2012). In models of pre-

dictive coding, the brain constructs a generative model of how

causes in the world elicit sensory inputs. Then, given some sen-

sory inputs, this model can be inverted to recognize the causes of

these inputs. In this scheme, each level of the processing hierarchy

receives bottom-up sensory input from the level below and top-

down predictions from the level above. Prediction error, i.e., the

difference between the true and estimated probability distribution

of the causes, is minimized at all levels of the hierarchy by adjusting

connection strengths through synaptic plasticity (Friston, 2005).

In this next section we will discuss in more detail how these PEs

may be generated.

CORTICAL PREDICTION ERRORS: LAYERS AND COLUMNS

Contemporary predictive coding models (Rao and Ballard, 1999;

Friston, 2005; Spratling, 2008) posit the existence of separate “rep-

resentation” or “prediction” units (P) and PE units within each

cortical column. In these models, the cortical column is considered

the basic computational module (Mountcastle, 1997; Bastos et al.,

2012, although see Horton and Adams, 2005). There are intrin-

sic (within the cortical column) and extrinsic (between columns)

connections between P and PE units (Figure 2A). There are several
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flavors of predictive coding architectures, and while these models

differ in terms of their exact connectivity pattern, at the heart of

all of these models are the interactions between excitatory and

inhibitory P and PE units (Spratling, 2008).

Figure 2A illustrates a potentially neurophysiologically plausi-

ble implementation of message-passing within and between P and

PE units. Here, PEs could be generated in the granular layer (L4)

of a cortical column, by subtracting the prediction (P) response

from the agranular layers from the input (which is provided by

the lower level). Large PEs lead to updating of predictions, which

are then sent forward as input to higher cortical areas (via super-

ficial layers, L2/3), as well as backward to update predictions in

lower areas (via deep layers, L5/6). In this scheme, the excita-

tory feedback from higher to lower P units can be thought of

as activating hypotheses, and provides a natural explanation for

phenomena such as “omission responses” (see paragraph on “Per-

ceptual PEs” earlier). Namely, predictions (P units) at higher levels

activate predictions (P units) at lower levels, giving rise to a neural

response even when no stimulus is presented but a stimulus is

expected. While this scheme differs in some respects to imple-

mentations suggested previously (Rao and Ballard, 1999; Friston,

2005), it has been shown to be mathematically equivalent under

some simplifying assumptions (Spratling, 2008) and relies on the

same general principle of inhibition of PE units by P units. Note

that this message-passing scheme is not necessarily restricted to

early sensory cortex (where it has been studied in most detail), but

is thought to represent a general coding scheme of cortico-cortical

interactions.

Although the scheme described above is appealing, future

empirical work on the timing of activity in different layers, as well

as a fuller understanding of the intrinsic and extrinsic connec-

tivity patterns within and between cortical units is sorely needed

to provide a stronger empirical basis for this theoretical proposi-

tion. More generally speaking, since there is at present no direct

evidence for distinct P and PE units within the cortical hierarchy

(Summerfield and Egner, 2009), it will be imperative for future

studies to concurrently measure several cortical units with greater

(laminar) specificity, in order to further elucidate the actual neural

implementation of the communication between potential P and

PE signals.

SUBCORTICAL PREDICTION ERRORS

A similar integration of feedback predictions and feedforward

inputs is thought to give rise to the generation of PEs in sub-

cortical circuits. An elegant recent optogenetic study showed in

detail a mechanism at the level of the microcircuits that under-

lies the generation of a dopaminergic reward PE signal in the

VTA (Cohen et al., 2012). This study revealed that a top-down

inhibitory input on the dopaminergic neurons in the VTA in pro-

portion to the expected reward is present during the delay between

a predictive cue and the outcome, as previously proposed by the-

oretical models (Schultz et al., 1997). While dopaminergic VTA

neurons showed responses consistent with coding of reward PEs,

GABAergic neurons showed persistent activity during the delay

between a reward-predicting cue and the outcome. This activity

was not sensitive to the actual outcome, i.e., whether the reward

was delivered or omitted, but was proportional to the reward pre-

diction engendered by the cue. Thus, VTA GABAergic neurons

provide an inhibitory input counteracting the bottom-up “drive”

from expected but not unexpected rewards. These GABAergic VTA

neurons in turn receive prefrontal and subcortical inputs, which

could relay the reward prediction signals engendered by the cues

(Matsumoto and Hikosaka, 2007; Takahashi et al., 2011). Thus,

top-down cortical and subcortical predictions may set a threshold

via GABAergic VTA neurons that the bottom-up primary reward

signals that are driving the dopaminergic VTA neurons need to

overcome. Negative reward PEs observed in the VTA neurons, i.e.,

a dip in response to a punishing event, could be driven by lateral

habenula neurons that respond to aversive events and project to

the VTA GABAergic neurons (Jhou et al., 2009).

In the previous example, the PE was computed within the

midbrain itself. However, subcortical PE signals may also arise as
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FIGURE 2 | (A) Generation of prediction errors within a cortical ensemble.

PEs are generated by mismatch between predictions (P, in agranular layers,

inhibitory) and input (originating from L2/3 from lower unit, arriving in L4,

excitatory). The PE unit therefore reflects the difference between input and

prediction, and activity in P units will be updated to minimize this discrepancy.

Predictions (P) are both sent forward as input to a hierarchically higher level

(via supragranular layers, L2/3) and backward to update predictions at a lower

level (via infragranular layers, L5/6). (B) Generation of PEs within the

hippocampus. Predictions, based on stored memories drive CA3 via layer 2 of

the entorinal cortex. CA3 provides an inhibitory signal to CA1. At the same

time, sensory inputs from layer 3 of the entorhinal cortex provide excitatory

input to CA1, which is thought to serve as a “comparator” between

predictions and input. The resulting mismatch is sent as output to (a.o.) VTA.

(C) Generation of PEs within VTA. VTA GABAergic neurons exert an inhibitory

influence that counteracts the driving excitatory input from primary rewards

when the reward is expected, see also Figure 1F.
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input signals from cortical areas. For example, the hippocampus

induces novelty-dependent dopaminergic responses in the VTA

(Lisman and Grace, 2005). Here, area CA1 of the hippocampus

acts as a “comparator,” of predictions from neurons in CA3, trig-

gered by sensory cues, to “reality” from sensory cortical inputs.

A second example are the unsigned PEs at very short latencies in

the dopaminergic neurons of the substantia nigra pars compacta

(Matsumoto and Hikosaka, 2009b) that are a result of projections

from the primary sensory superior colliculus, which signals novel,

salient, and unexpected events in a retinotopic fashion (Comoli

et al., 2003).

A FUNDAMENTAL COMPUTATION

Having taken a closer look at the mechanisms by which PEs are

generated in both cortical and subcortical structures, it appears

that there are some universal mechanisms underlying the gen-

eration of PEs. In short, feedback “prediction units” (e.g., deep

layers in hierarchically higher visual areas, CA3, prefrontal cortex)

set an activity pattern that is integrated with feedforward inputs

in “PE units” (e.g., granular layer in hierarchically lower visual

areas, CA1, VTA), to reflect the difference between prediction and

reality (Figure 2). The exact content and nature of the PEs is deter-

mined by the neural circuitry in which the PEs arise. Within the

visual processing hierarchy, predictions concern primary visual

“currencies” such as orientation and contrast, and therefore PEs

will reflect surprise about orientation and contrast. These PEs per-

colate up to and are integrated in messages sent to higher-order

areas, where predictions pertain to, for example, faces and houses,

and PEs will reflect surprise about faces and houses. In limbic

areas, feedback predictions will concern expectations about good

and bad upcoming events, and so PEs will reflect surprise in this

domain. Similarly, the role that a particular PE plays will depend

crucially on the neural circuit in which it arises: PE signals that

are projected to sensory areas are in a position to affect perceptual

inference, whereas PE signals arriving in motor areas can (more

directly) affect behavior. In the next section we will discuss various

neural circuits and the different functions that PEs may fulfill.

HOW ARE PREDICTION ERRORS USED?

The exact role a PE plays depends on several factors. First, the

information content carried by PEs affects how they may be used.

Unsigned perceptual PEs carry information about the surprising

presence or absence of a stimulus feature in the visual scene (i.e.,

represent the difference between current predictions and sensory

input), and thereby allow to update the current model of the world.

Signed reward PEs contain information about the direction of the

error, and therefore can afford learning by signaling the direction

of an update, or motivational processing by signaling the valence

of an outcome. Second, PE neurons can affect post-synaptic signal-

ing on different timescales. Post-synaptic effects may be short-lived

and directly affect perception, behavior or attention, or they might

control storage and updating of predictions by inducing changes

in synaptic strength.

In this section, we will discuss the various roles cortical and

subcortical PEs may play. We discuss three main functions of PEs.

First we will discuss how perceptual PEs aid us to rapidly make

sense of sensory inputs, i.e., perceptual inference, and how PEs are

crucial in shaping of internal generative models of the world that

allow us to interact with the world. Next we will discuss how these

sensory and higher-order cortical PEs can alert us to unexpected

events and allow for reorienting responses. Then we will zoom in

on the role of PEs in motivational learning and action selection.

We will use the role of PE signals in the basal ganglia in selection

of cortical representations to illustrate how the same fundamental

computation may lead to different functional results, underlin-

ing the importance of taking into account the neural network in

which a PE arises. Finally, we will discuss how the impact of PEs

may depend on not only on their magnitude, but also on their

precision.

PERCEPTUAL INFERENCE

The role of PEs in inference has been elaborated on most exten-

sively in the domain of perception. Helmholtz famously viewed

perception as the generation of a best guess (i.e., inference) about

the state of the world, in view of the data (Von Helmholtz, 1867).

In other words, the brain creates an internal generative model of

the world that embodies a prediction of what will be observed

next. PEs can then be seen as a measure of how good such a guess

is; iterative hypothesis testing (i.e., PE minimization) across the

cortical hierarchy will result in the best possible explanation of the

input given the agent’s generative model. Crucially then, the brain’s

generative models shape perception; what we perceive is that part

of our model of the world that best fits current inputs and expec-

tations, rather than simply an accumulation of sensory evidence.

This view is corroborated by the fact that in the brain, “waves”

of feedforward and feedback activity have been observed (Lamme

and Roelfsema, 2000) and that feedback connections greatly out-

weigh feedforward connections, even in very basic sensory areas

such as between V1 and LGN (Peters et al., 1994). Functionally,

it has been shown that processing in even the earliest stages of

the cortical hierarchy is affected by prior expectations (den Ouden

et al., 2009; Alink et al., 2010; Todorovic et al., 2011; Kok et al.,

2012a). Specifically, valid prior expectations allow for selection of

the proper hypotheses (i.e., activating relevant P units) in advance

of stimulation, facilitation of perception (Bar, 2004), and enhance-

ment of neural representations of stimuli, while reducing the

amount of processing required. Empirical support is provided by a

recent behavioral/modeling study which has found that the effects

of prior expectations on contrast sensitivity are well explained by

an increase of baseline activity in signal-selective sensory neurons,

reflecting the activation of P units (Wyart et al., 2012). This issue

was also tackled by a recent fMRI study in our lab that manip-

ulated subjects’ expectations about upcoming visual stimuli, and

probed the effects this had on neural activity in the primary visual

cortex (V1; Kok et al., 2012a). Crucially, this study investigated

not only the amplitude of the neural response evoked by stim-

uli, but also used multivoxel pattern analysis to study the effect

of expectation on the amount of information contained in the

neural signal. Interestingly, a valid expectation led to a decrease in

the amplitude of the neural signal evoked by stimuli in V1, but

an increase in the amount of stimulus information contained in

the signal. That is, when the proper hypothesis is selected prior to

stimulation, less message-passing across the hierarchy is needed to

settle on the best explanation of the incoming data, allowing the
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brain to settle on the best explanation of the incoming data more

efficiently. Such neural representations are also more unequivocal,

since hypotheses that are not pre-selected are not tested, unless

there is strong evidence for them in the input, i.e., unless the prior

expectation was invalid and large PEs ensue. Therefore, when sen-

sory information is ambiguous, prior information can serve to

disambiguate perception (Sterzer et al., 2008; Hsieh et al., 2010;

Wyart et al., 2012).

Further empirical evidence for the shaping of internal gener-

ative models based on the statistics of the world comes from a

study that used neural recordings in ferrets (Berkes et al., 2011).

These authors investigated spontaneous cortical activity in early

visual cortex, in absence of any visual stimulation, and compared

this to visual activity evoked by natural scenes. Interestingly, the

similarity between these activity patterns increased with age, and

was specific to responses evoked by natural scenes. These results

suggest that the spontaneous fluctuations in the visual cortex may

embody internal models, which are optimally adapted to the sta-

tistics of the environment as the animals learn to navigate their

environment.

ALERTING AND ORIENTING

Perceptual PEs have also been proposed to signal salience

(Spratling, 2012). Under this account, salience is determined by

how unexpected an input is, and not solely by bottom-up stim-

ulus characteristics such as contrast (Li, 2002). In fact, salience

arises quite naturally from predictive coding theories of neural

processing, since the amplitude of the response a stimulus evokes is

directly determined by how unexpected it is. This allows the brain

to devote relatively little (attentional and metabolic) resources to

expected inputs, such as when driving a car in a familiar envi-

ronment, without losing sensitivity to potentially vital unexpected

inputs such as a deer crossing the road. In fact, silencing expected

inputs would make such an unexpected event stand out even more.

This benefit is due to the fact that, in predictive coding, silencing

occurs on the basis of (learned) expectations, as opposed to atten-

tional suppression of particular parts of the sensory inputs, such as

certain spatial locations or features, which would reduce sensitivity

for stimuli sharing (some of) those features.

Detection of a salient stimulus can then be used as an alert-

ing/reorienting signal, and relayed to the appropriate nodes that

can implement a shift in attention or behavior. In line with this,

midbrain dopamine neurons (substantia nigra pars compacta)

show a fast (<100 ms) phasic increase in firing in response to

salient unexpected sensory stimuli, via a direct projection from

the superior colliculus (Comoli et al., 2003; Dommett et al., 2005).

These salience-encoding neurons fit well with theories suggesting

that dopamine plays an important role in alerting, orienting, and

arousing responses (Redgrave et al., 1999; Kapur, 2003; Redgrave

and Gurney, 2006). The lateral substantia nigra pars compacta also

receives excitatory cortical inputs from somatosensory and motor

cortex (Watabe-Uchida et al., 2012), as well as the subthalamic

nucleus, which in general responds to sudden changes in the envi-

ronment as well as various motor and reward events (Matsumura

et al., 1992).

The basal ganglia form an important output target of the sub-

stantia nigra dopamine neurons, and are in an excellent position to

implement a reorienting action in response to a salient stimulus, to

enable further processing of this stimulus (Redgrave et al., 2011).

We and others have shown hemodynamic activity in response to

unsigned PEs in the main input node of the basal ganglia, the

striatum (Zink et al., 2003; Wittmann et al., 2007), even to surpris-

ingly absent stimuli (den Ouden et al., 2010). Such fast, unsigned

PEs from sensory areas may allow the basal ganglia to act as a

circuit breaker, by inhibiting ongoing behavior or processing and

allowing for reorienting toward an unexpected stimulus (Redgrave

et al., 1999; Bromberg-Martin et al., 2010). In line with these sug-

gestions, we have shown using fMRI that striatal PE activity gates

effective connectivity from visual areas to the premotor cortex,

upregulating visual input in response to unexpected stimuli, which

required an unexpected response (den Ouden et al., 2010). Under-

lining the universality of the basal ganglia gating function, we

also showed that striatal activity to salient stimuli gated prefrontal

inputs to visual areas to upregulate processing of the visual stim-

uli accompanying an attentional shift (van Schouwenburg et al.,

2010).

MOTIVATIONAL CONTROL AND LEARNING

As mentioned above, reinforcement learning models suggest a cru-

cial role for PEs in learning (Rescorla and Wagner, 1972; Pearce

and Hall, 1980). Experimentally, it has been shown that surprise

is crucial for learning through a phenomenon called “blocking”

(Kamin, 1969). Here, when the presence of a reinforcer can be

fully predicted by the cues present, then an additional cue will

not become associated with the reinforcer, even if they are paired

repeatedly.

Dopaminergic (signed) reward PEs in the VTA have long

been suggested to play a crucial role in reinforcement learning

(Schultz et al., 1997). Systemic manipulations of dopamine levels

in patients and healthy subjects show opposite effects on reward-

and punishment-based learning (Frank et al., 2004; Moustafa

et al., 2008; Cools et al., 2009; Palminteri et al., 2009). These

opposite effects are suggested to reflect modulation of distinct stri-

atal pathways that mediate activation and inhibition of responses

via frontostriatal coupling changes (Frank, 2005). A large posi-

tive reward PE will strengthen the associated action, whereas a

negative reward PE would inhibit actions. This will then result

in a selection bias toward the positively reinforced actions in

the future. Thus, reward PEs in the basal ganglia lead to both

direct motivational effects in terms of action selection, but also

to long term learning as a result of a selection bias of reinforced

actions.

The role of the striatum as a gateway in the translation of envi-

ronmental cues into behavioral activation (or inhibition) is not

new (Mogenson and Yang, 1991). More recently, it has been pro-

posed that this selection function of the basal ganglia is not limited

to action selection or reinforcement learning. Given that the basal

ganglia receive cortical, limbic, and brainstem inputs and thus have

access to motivational, affective, cognitive, and motor information,

they may form the final common pathway where information from

a wide variety of sources is integrated and then guide selection

among cortical representations, actions and goals. In this view the

same computations are performed across the basal ganglia in a

consistent but parallel fashion. The critical functional distinction
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between phenomenologically different functions of the basal gan-

glia system then stems from the differences in input sources and

output targets, not from the fundamental differences in the nature

of the performed computational operations themselves.

This fundamental function is the integration and implemen-

tation of information to allow PEs to guide switching between

cortical representations, actions and goals. This view is supported

by the observation that the microcircuitry of the basal ganglia is

remarkably preserved across different parts of the striatum, sug-

gesting that the same basic computations are performed, if indeed

structure follows function (Pennartz et al., 2011). Functional dif-

ferences then arise from differences in the input sources and output

targets. For example, outcome predictions in dorsolateral stria-

tum will be derived from inputs from sensorimotor areas and will

lead to action selection, whereas nucleus accumbens, with inputs

from the amygdala and VTA, will report reward PEs in a rein-

forcement learning task and allow motivational aspects to guide

behavior. Hippocampal and prefrontal glutamatergic inputs to the

ventral striatum may provide the top-down context information

or predictions to modulate neural activity. We provided empirical

support for this hypothesized general gating role of the surprise

signals in the basal ganglia across both reward and non-reward

contexts (den Ouden et al., 2010; van Schouwenburg et al., 2010,

in revision). In the first of these studies we showed that PE sig-

nals in response to stimuli that required an update were present in

the putamen, which is known to connect to cortical motor plan-

ning areas (den Ouden et al., 2010). This putamen activity then

upregulated the influence of sensory areas to the premotor cor-

tex whenever a surprising motor response was required based on

surprising visual input. In two further studies, we showed that

more ventral parts of the basal ganglia, which are part of the

attentional network, upregulated feedback inputs from prefrontal

attentional areas to the visual cortex, in response to attentional

shifts, which enhanced processing of newly attended visual stimuli

(van Schouwenburg et al., 2010; in revision).

How may these experience-dependent changes in the interac-

tions between prediction and PE units be implemented at a physio-

logical level? Already in 1949, Donald Hebb suggested that changes

in connectivity are central to the physiological implementation of

association learning, where co-activation of pre and post-synaptic

neurons would lead to synaptic strengthening (Hebb, 1949), a

principle also known as“firing together results in wiring together.”

Predictive coding theories propose that PEs are minimized by

adjusting the synaptic efficacies (or connections strengths) both

between and within different levels of the processing hierarchy

(Figure 2).The glutamatergic NMDA receptor found at excitatory

synapses has unique molecular properties that allow it to func-

tion as a coincidence detector of afferent and efferent activity,

and as such initiate synaptic plasticity (Genoux and Montgomery,

2007). Activation of the NMDA-receptors results in recruitment

of a different type of glutamatergic receptors, called AMPA recep-

tors. These post-synaptic AMPA receptors determine the current

strength of the excitatory connections (Malinow and Malenka,

2002). Thus activation of the NMDA-receptors by concurrent pre

and post-synaptic activity leads to more permanent strengthen-

ing of this synapse. Indeed, NMDA-dependent mechanisms have

been found to play a key role in plasticity in learning and memory

processes in the brain (e.g., see Morris, 1989; Gu, 2002; Ji et al.,

2005; Genoux and Montgomery, 2007; Tye et al., 2008). Modu-

latory neurotransmitters play an important role in strengthening

or weakening these effects. For example, dopaminergic firing sig-

naling reward PEs have been proposed to serve as a supervised

learning signal determining the weight of the associative strength

between actions and stimuli (Schultz and Dickinson, 2000; Friston

et al., 2012), as we will discuss in the next section.

PRECISION OF PREDICTION ERRORS

Since PEs cause us to update our model of the world, either on the

short term (inference) or long term (learning), it is important to

know how reliable these errors are. For example, it is important

to know whether certain sensory inputs fail to match our prior

expectations because they contain information that disproves our

current hypothesis (e.g., we hear a dog but see a cat), or because

the sensory inputs are simply too noisy (we hear a dog but see only

mist). While the former should cause us to update our beliefs (a

barking cat!), the latter should not. In traditional reinforcement

learning models, this dilemma of how to weigh PEs with respect

to prior beliefs is solved by the inclusion of a learning rate that

determines this relative weight (Rescorla and Wagner, 1972). The

importance of the reliability, or precision, of PEs has also been

recognized in recent formulations of predictive coding theories

(Friston, 2005). Specifically, it has been suggested that PEs are

weighted by their precision (i.e., reliability), leading to less weight

being put on less reliable sensory information. This means that

the brain needs to estimate not only the errors themselves, but

also the precision of these errors, and it has been suggested that

attention is the process whereby the brain optimizes precision esti-

mates (Friston, 2009; Feldman and Friston, 2010; Hohwy, 2012).

By enhancing the precision of specific PEs, attention increases the

weight that is put on these errors in subsequent inference and

learning. This is equivalent to proposals of attention increasing

synaptic gain (precision) of specific sensory neurons (PE units).

Note that in predictive coding models, sensory data and PE are

equivalent, since these errors are the only sensory information

that is yet to be explained.

Empirical support for such a role for attention comes from a

recent study showing that while valid prior expectations indeed

lead to reduced activity in primary visual cortex, attention can

reverse this effect and boost activity in the same region (Kok et al.,

2012b). This effect of attention was specific to areas of visual

cortex where a sensory input was expected, demonstrating that

attention does not indiscriminately increase activity, but does so

in conjunction with current expectations. Such a role for atten-

tion within a predictive coding framework resolves a seeming

contradiction in the literature regarding the effects of expecta-

tion on neural activity. Specifically, expectation has often been

reported to reduce neural activity when stimuli are task-irrelevant

(unattended), but to enhance neural activity when stimuli are

task-relevant (attended; Rauss et al., 2011). Such findings sit com-

fortably within a framework wherein attention boosts PEs related

to current expectations.

It has recently been suggested that tonic dopamine firing con-

trols the precision of cues that engender actions (Friston et al.,

2012). This account extends the models of predictive coding such
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that dopamine determines the relative “weight” of feedforward

sensory PEs with respect to the predictions. In the original model,

superficial pyramidal cells integrate the effects of excitatory inputs

encoding feedforward sensory PEs, and inhibitory inputs encoding

predictions. Tonic dopaminergic firing in the substantia nigra and

VTA then encode the precision of the incoming information and

modulate the postsynaptic (dendritic) responses to these PEs in

proportion to their precision. This modulation is implemented via

widespread dopaminergic projections from the substantia nigra

and VTA to the superior colliculus, striatum, and throughout the

cortex. In line with this account, dopamine neurons have been

reported in the primate midbrain that report uncertainty about

the predictions (Fiorillo et al., 2003).

The importance of appropriate precision weighting of PEs

becomes clear when one considers what happens when things go

awry. For example, one of the mechanisms suggested to be involved

in psychosis is aberrant PE signaling (Corlett et al., 2010). During

early stages of psychosis, patients often report increased inten-

sity of their perceptual experiences (i.e., brighter colors, louder

sounds), consistent with an abnormally large PE (and subsequent

increased salience) being evoked by these events, presumably due

to an inability to “explain away” sensory inputs through top-down

predictions. Indeed, a model for these early stages of psychosis that

is often used, is the administration of ketamine, a drug known to

block NMDA-receptors (surmised to be involved in top-down pre-

dictions), and enhance AMPA receptors (involved in feedforward

signaling, and therefore a likely candidate for PE signaling). Such

augmented PEs in turn lead to inappropriate updating of these

patients’ model of the world, causing delusions to arise in later

stages of the disease.

CONCLUSION

In this review we aimed to expose the generality and universal-

ity of the neural coding of prediction errors. PEs appear to be

omnipresent in the brain, as empirical support has been provided

in perceptual, attentional, cognitive, and motivational processes in

both cortical and subcortical regions. We suggest that the compu-

tation of these PEs follows a general principle, where a comparison

is made between bottom-up inputs and top-down predictions,

and of which the exact form depends on the type of compu-

tation (signed or unsigned PEs), and neural structures (cortical

or subcortical units). Importantly, PEs are not necessarily a non-

specific surprise/arousal signal, but can carry detailed content with

respect to how the input is surprising, owing to the specific location

and connectivity of the PE unit in the cortical hierarchy. Thereby,

PEs can update perception, trigger attentional orienting and affect

motivational learning and control, as well as initiate the formation

of new memories. Finally, the precision (i.e., fidelity, inverse vari-

ance) of PEs should be taken into account in deciding how much

internal models should be updated. It is speculated that there may

be a role for tonic dopamine in controlling this parameter. In sum-

mary, while the encoding of PEs is a common currency across brain

regions, the exact content and nature of these error signals differs

between areas and functional specializations and is determined by

the afferent and efferent connections within the neural circuitry

in which they arise.
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