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Abstract

Over many years, we developed the construction of the φ4-model on four-dimensional

Moyal space. The solution of the related matrix modelZ[E, J ] =
∫

d� exp(tr(J�−E�2−
λ
4
�4)) is given in terms of the solution of a non-linear equation for the 2-point function and

the eigenvalues of E. The resulting Schwinger functions in position space are symmetric

and invariant under the full Euclidean group. Locality is fulfilled. The Schwinger 2-point

function is reflection positive in special cases.

Keywords 4D noncommutative quantum field theory · Renormalisation ·
Non-perturbative solution · Integral equation

PACS 2010 11.10.Gh · 11.10.Lm · 02.30.Rz

1 Introduction

Professor Zeidler supported and influenced our common work over many years: During the

one-semester stay in 2000/2001 of one of us (HG), we enjoyed the friendly hospitality at

MPI Leipzig. On the other hand, from 2002 to 2005, RW was post-doc at the MPI. During

this time, we achieved the perturbative renormalisation proof of the noncommutative φ4
4 -

model. Prof. Zeidler was constantly interested in the progress of this work, financed our

mutual visits in Leipzig and Vienna and, most importantly, introduced Vincent Rivasseau to
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RW in December 2003. This changed life of all three of us. Vincent jumped to the subject

and pushed it enormously, together with his group. They extended the vanishing of the

beta-function to all orders in pertubation theory and led us to develop the non-perturbative

solution after 2009. On the first version of these equations, we had an intense exchange with

Prof. Zeidler in 2011. These discussions inspired our reduction of the equations to a fixed

point problem in 2012. In a contribution to a special volume dedicated to Prof. Zeidler’s

75th birthday, we were able to prove existence of a solution. We remember the long phone

conversation with Prof. Zeidler about this fixed point problem.

In this contribution, we summarise the main developments in our programme since

2002, referring to [8–16]. Originally intended as renormalisation of the noncommutative

φ4
4 -model, our work turned into a programme to exactly solve quantum field theory toy

models:

1. In December 1999, Minwalla, van Raamsdonk, and Seiberg pointed out [19] that Feyn-

man graphs for scalar fields on noncommutative R
4 show a novel type of singularity

(termed UV/IR-mixing) which prevented renormalisation. This came as big surprise,

and for several years, no solution was found. Eventually, combining the Wilson–

Polchinski programme for noncommutative φ4-theory with the harmonic oscillator base

of the Moyal plane (which avoids the phase factors appearing in momentum space), we

solved in a series of papers [9–11] the renormalisation problem. Thereby, we achieved

the remarkable balance of proving renormalisability of the φ4-model to all orders and

reconfirming the UV/IR-duality of [19]. The main steps are given in Section 2.

2. Soon after the renormalisation proof, we showed that the running coupling constant has

bounded flow to one-loop order (see [8], reviewed in Section 3). This result led to a

close collaboration with Vincent Rivasseau and his group. He emphasised that it should

be possible to construct this model non-perturbatively! They established the foundation

by proving that at a special self-duality point, the β-function vanishes to all orders

[5]. We understood that their method goes beyond the β-function and used it to derive

a closed non-perturbative equation for the 2-point function [12] (which we intensely

discussed with Prof. Zeidler).

3. In [14], we gave a rigorous derivation of these equations. As reviewed in Section 4,

Ward identities for the U(∞) group action lead to an exact solution of the quartic matrix

model in terms of the solution of a non-linear equation. As by-product, we find that any

renormalisable quartic matrix model has vanishing β-function.

4. Self-dual φ4
4 -theory on Moyal space [10, 11] is of that type. We give a summary of

the proof in Section 4.3. The non-perturbative solution leads, for extreme noncommu-

tativity θ → ∞, and after careful discussion of thermodynamic and continuum limit,

to a non-linear fixed point equation [14], for which a non-perturbative and non-trivial

solution exists for λ < 0 [16]. The key step is the observation that a certain difference

function satisfies a linear singular integral equation of Carleman type.

5. Following [13], we identify in Section 5 a limit to Schwinger functions for a scalar field

on R
4. Surprisingly for a highly noncommutative model, these Schwinger functions

show full Euclidean symmetry. Otherwise, they have unusual properties such as absent

momentum transfer in interaction processes. This seems to suggest triviality, but the

numerical investigation [15] of the 2-point function shows scattering remnants from

a noncommutative geometrical substructure. Most surprisingly, the Schwinger 2-point

function seems to be reflection positive in one of its phases.
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2 Renormalisation of Noncommutative φ4-theory to All Orders

The renormalised φ4-model corresponds to the classical action

S =
∫

d4x

(
1

2
∂μφ ⋆ ∂μφ +

	2

2
(x̃μφ) ⋆ (x̃μφ) +

μ2

2
φ ⋆ φ +

λ

4
φ ⋆ φ ⋆ φ ⋆ φ

)

(x), (1)

with x̃μ := 2(
−1)μν xν and the star product is defined by [6, 7]:

(a ⋆ b)(x) =
∫

dDydDk

(2π)D
a(x+ 1

2

 · k)b(x+y)eiky .

The appearance of the harmonic oscillator term 	2

2
(x̃μφ)⋆ (x̃μφ) in the action (1) is a result

of the renormalisation proof, as sketched below. It also permits a transformation

S[φ; μ0, λ, 	] �→ 	2S

[

φ;
μ0

	
,

λ

	2
,

1

	

]

(2)

under Langmann–Szabo duality [17].

Relativistic quantum field theories on noncommutative Minkowski space are much more

difficult [1]. Here the UV/IR-mixing problem occurs in different types of graphs [2].

2.1 The φ4-action in theMatrix Base

We assume for simplicity that θ12 = −θ21 = θ34 = −θ43 are the only non-vanishing

components. A key step is expansion of the fields in the harmonic oscillator base [7] which

in two dimensions reads

fmn(z) = 2(−1)m
√

m!
n!

(√

2
θ
z

)n−m

Ln−m
m

(
2|z|2

θ

)

e− |z|2
θ (3)

with z ∈ C ≡ R
2. Collecting them to fmn(x1, . . . , x4) = fm1n1

(x1 + ix2)fm2n2
(x3 + ix4)

where m = m1

m2 , these functions satisfy (fmn ⋆ fkl)(x) = δnkfml(x) and
∫

R4 dxfmn(x) =
(2πθ)2δmn. Working out the action of Laplace operator and multiplication by x on fmn and

expanding φ(x) =
∑

m,n �mnfmn(x), the action (1) takes the form

S[φ] ≡ S[�] = (2πθ)2
∑

m,n,k,l∈N2

(
1

2
�mn�mn;kl�kl +

λ

4
�mn�nk�kl�lm

)

, (4)

� m1 n1 k1 l1

;
m2 n2 k2 l2

=
(

μ2 +
2 + 2	2

θ
(m1+n1+m2+n2+2)

)

δn1k1δm1l1δn2k2δm2l2

−
2−2	2

θ

(√

k1l1δn1+1,k1δm1+1,l1+
√

m1n1δn1−1,k1δm1−1,l1

)

δn2k2δm2l2

−
2−2	2

θ

(√

k2l2δn2+1,k2δm2+1,l2+
√

m2n2δn2−1,k2δm2−1,l2

)

δn1k1δm1l1 .

The quantum field theory is constructed as a perturbative expansion about the free the-

ory, which is solved by the propagator Gmn;kl , the inverse of �mn;kl . After diagonalisation
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of �mn;kl (which leads to orthogonal Meixner polynomials) and the use of identities for

hypergeometric functions one arrives at

G m1 n1 k1 l1

;
m2 n2 k2 l2

=
θ

2(1+	)2
δm1+k1,n1+l1δm2+k2,n2+l2

×
m1+l1

2∑

v1= |m1−l1 |
2

m2+l2

2∑

v2= |m2−l2 |
2

B
(

1 + μ2θ
8	

+ 1
2
(m1 + k1 + m2 + k2) − v1 − v2, 1 + 2v1 + 2v2

)

×2F1

(

1 + 2v1+2v2,
μ2θ
8	

− 1
2
(m1 + k1 + m2 + k2) + v1 + v2

2 + μ2θ
8	

+ 1
2
(m1 + k1 + m2 + k2) + v1 + v2

∣
∣
∣
∣

(1 − 	)2

(1 + 	)2

)

×
(

1 − 	

1 + 	

)2v1+2v2

×
2
∏

i=1

√
(

ni

vi+ ni−ki

2

)(
ki

vi+ ki−ni

2

)(
mi

vi+mi−li

2

)(
li

vi+ li−mi

2

)

. (5)

It is important that the sums in (5) are finite.

2.2 Renormalisation Group Approach to Dynamical Matrix Models

The (Euclidean) quantum field theory is defined by the partition function

Z[J ] =
∫

D[φ] exp

⎛

⎝−S[�] − (2πθ)2
∑

m,n

�mnJnm

⎞

⎠ .

The idea inspired by Polchinski’s renormalisation proof of commutative φ4-theory is to

change the weights of the matrix indices in the kinetic part of S[�] as a smooth function

of an energy scale � and to compensate this by a careful adaptation of the effective action

L[�, �] such that Z[J ] becomes independent of the scale �. If the modification of the

weights of a matrix index m ∈ N is described by a function K
(

m

θ�2

)

, then the required

�-dependence of the effective action is given by the matrix Polchinski equation

�
∂L[�, �]

∂�
=
∑

mn,kl

1

2

(

2πθQnm;lk(�)
)
(

∂L[�, �]
∂�mn

∂L[�, �]
∂�kl

−
1

(2πθ)2

∂2L[�, �]
∂�mn∂�kl

)

,

(6)

where

2πθQnm;lk(�) := �
∂

∂�

⎛

⎝

∏

i∈m1,m2,...,l1,l2

K

(
i

θ�2

)

Gnm;lk(�)

⎞

⎠ . (7)

In this section, we look for a perturbative solution of the matrix Polchinski equation (6). In

terms of the expansion coefficients

L[�, �] =
∞
∑

V =1

λV

2V +2
∑

N=2

(2πθ)
N
2 −2

N !
∑

mi ,ni∈N2

A
(V )
m1n1;...;mNnN

[�]�m1n1
· · · φmNnN

(8)
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of the effective action, the matrix Polchinski equation (6) is represented by ribbon graphs

(we suppress n �→ n in ribbon graphs):

An internal double-line symbolises the propagator Qmn;kl(�). In this way, very

complicated ribbon graphs can be produced which cannot be drawn any more in a plane.

A ribbon graph represents a simplicial complex for a Riemann surface and thus defines

the topology of the Riemann surface on which it can be drawn. The Riemann surface is

characterised by its genus g computable via the Euler characteristic of the graph, g =
1 − 1

2
(L − I + V ), and the number B of holes. Here, L is the number of single-line loops

if we close the external lines of the graph, I is the number of double-line propagators and

V the number of vertices. The number B of holes coincides with the number of single-line

cycles which carry external legs. Accordingly, we also label the expansion coefficients in

(8) by the topology, A
(V ,B,g)

m1n1;...;mNnN
.

We have proven in [9] a power-counting estimation for these coefficients which relates

the �-scaling of a ribbon graph to the topology of the graph and to two asymptotic scal-

ing dimensions of the differentiated cut-off propagator Qmn;kl(�). As a result, if these

scaling dimensions coincide with the classical momentum space dimensions, then all non-

planar graphs are suppressed by the renormalisation flow. This is a necessary requirement

for the renormalisability of a model. On the other hand, as the expansion coefficients

A
(V )
m1n1;...;mNnN

[�] carry an infinite number of matrix indices, the general power-counting

estimation proven in [9] leaves, a priory, an infinite number of divergent planar graphs.

These planar graphs require a separate analysis.

2.3 Power-Counting Behaviour of the Noncommutative φ4-model

The key is the integration procedure of the Polchinski equation (9), which involves the entire

magic of renormalisation. We consider the example of the planar one-particle irreducible

four-point function with two vertices, A
(2,1,0)1PI
m1n1;...;m4n4

. The Polchinski equation (9) provides

the �-derivative of that function:
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Performing the �-integration of (10) from some initial scale �0 (sent to ∞ at the end)

down to �, we obtain A
(2,1,0)1PI
mn;nk;kl;lm[�] ∼ log

�0

�
, which diverges for �0 → ∞. Renor-

malisation can be understood as the change of the boundary condition for the integration.

Thus, integrating (10) from a renormalisation scale �R up to �, we have A
(2,1,0)1PI
mn;nk;kl;lm[�] ∼

log �
�R

, and there would be no problem for �0 → ∞. However, since there is an infinite

number of matrix indices and there is no symmetry which could relate the amplitudes, that

integration procedure entails an infinite number of initial conditions A
(2,1,0)1PI
mn;nk;kl;lm[�R]. To

have a renormalisable model, we can only afford a finite number of integrations from �R

up to �. Thus, the correct choice is

The second graph in the first line on the right-hand side and the graph in brackets in the last

line are identical, because only the indices on the propagators determine the value of the

graph. Moreover, the vertex in the last line in front of the bracket equals 1. Thus, differen-

tiating (11) with respect to � we obtain indeed (10). As a further check one can consider

(11) for m = n = k = l = 0

0
. Finally, the independence of A

(2,1,0)1PI
mn;nk;kl;lm[�0] on the indices

m, n, k, l is built-in. This property is, for �0 → ∞, dynamically generated by the model.

There is a similar �0-�R-mixed integration procedure for the planar 1PI two-point

functions A
(V ,1,0)1PI
m1 n1 n1 m1

;
m2 n2 n2 m2

, A
(V ,1,0)1PI
m1 + 1 n1 + 1 n1 m1

;
m2 n2 n2 m2

, A
(V ,1,0)1PI
m1 n1 n1 m1

;
m2 + 1 n2 + 1 n2 m2

and all other A
(V ,1,0)1PI
mn;nk;kl;lm.

These involve in total four different sub-integrations from �R up to �. We refer to [10] for

details. All other graphs are integrated from �0 down to �, e.g.,

Theorem 1 The previous integration procedure yields

∣
∣
∣A

(V ,B,g)

m1n1;...;mNnN
[�]
∣
∣
∣ (13)

≤
(√

θ�
)(4−N)+4(1−B−2g)

P 4V −N

[
max(|m1|, |n1|, . . . |nN |)

θ�2

]

P 2V − N
2

[

log
�

�R

]

,

where P q [X] stands for a polynomial of degree q in X and | m
1

m2 | = m1 + m2.
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Idea of the proof. For the choice K(x) = 1 for 0 ≤ x ≤ 1 and K(x) = 0 for x ≥ 2 of the

cut-off function in (7) one has

|Qmn;kl(�)| <
C0

	θ�2
δm+k,n+l . (14)

Thus, the propagator and the volume of a loop summation have the same power-counting

dimensions as a commutative φ4-model in momentum space, giving the total power-

counting degree 4 − N for an N -point function.

This is (more or less) correct for planar graphs. The scaling behavior of non-planar

graphs is considerably improved by the quasi-locality of the propagator:

As a consequence, for given index m of the propagator Qmn;kl(�) = , the contri-

bution to a graph is strongly suppressed unless the other index l on the trajectory through m

is close to m. Thus, the sum over l for given m converges and does not alter (apart from a

factor 	−1) the power-counting behaviour of (14):

∑

l∈N2

(

max
n,k

|Qmn;kl(�)|
)

<
C1

θ	2�2
. (16)

In a non-planar graph like the one in (12), the index n3—fixed as an external index—

localises the summation index p ≈ n3. Thus, we save one volume factor θ2�4 compared

with a true loop summation as in (2.3). In general, each hole in the Riemann surface saves

one volume factor, and each handle even saves two.

A more careful analysis of (5) shows that also planar graphs get suppressed with
∣
∣
∣
∣
Q m1 n1 k1 l1

;
m2 n2 k2 l2

(�)

∣
∣
∣<

C2

	θ�2

∏2
i=1

(
max(mi ,li )+1

θ�2

) |mi−li |
2

, for mi ≤ ni , if the index along a

trajectory jumps. This leaves the functions A
(V ,1,0)1PI
mn;nk;kl;lm, A

(V ,1,0)1PI
m1 n1 n1 m1

;
m2 n2 n2 m2

, A
(V ,1,0)1PI
m1 + 1 n1 + 1 n1 m1

;
m2 n2 n2 m2

,

and A
(V ,1,0)1PI
m1 n1 n1 m1

;
m2 + 1 n2 + 1 n2 m2

as the only relevant or marginal ones. In these functions one has to

use a discrete version of the Taylor expansion such as

∣
∣
∣
∣
Q m1 n1 n1 m1

;
m2 n2 n2 m2

(�) − Q 0 n1 n1 0;
0 n2 n2 0

(�)

∣
∣
∣
∣
<

C3

	θ�2

(
max(m1, m2)

θ�2

)

,
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which can be traced back to the Meixner polynomials. The discrete Taylor subtractions are

used in the integration from �0 down to � in prescriptions like (11):

This explains the polynomial in fractions like
|m|
θ�2 in (13).

As the estimation (13) is achieved by a finite number of initial conditions at �R (see

(11)), the noncommutative φ4-model with oscillator term is renormalisable to all orders in

perturbation theory. These initial conditions correspond to normalisation experiments for

the mass, the field amplitude, the coupling constant, and the oscillator frequency in the bare

action related to (1).

3 Vanishing of the β-Function

Knowing the relevant/marginal couplings, we can compute Feynman graphs with sharp

matrix cut-off N . The most important question concerns the β-function appearing in the

renormalisation group equation which describes the cut-off dependence of the expansion

coefficients Ŵm1n1;...;mNnN
of the effective action when imposing normalisation conditions

for the relevant and marginal couplings. We have [8]

lim
N→∞

(

N
∂

∂N
+ Nγ + μ2

0βμ0

∂

∂μ2
0

+ βλ

∂

∂λ
+ β	

∂

∂	

)

Ŵm1n1;...;mNnN
[μ0, λ, 	,N ] = 0,

where

βλ = N
∂

∂N
(λ[μR, λR, 	R,N ]) , β	 = N

∂

∂N
(	[μR, λR, 	R,N ]) ,

βμ0
=

N

μ2
0

∂

∂N

(

μ2
0[μR, λR, 	R,N ]

)

, γ = N
∂

∂N
(lnZ[μR, λR, 	R,N ]) . (18)

Here, Z is the wavefunction renormalisation. To one-loop order, we find [8]

βλ =
λ2

R

48π2

(1−	2
R)

(1+	2
R)3

, β	 = λR	R

96π2

(1−	2
R)

(1+	2
R)3

, (19)

βμ0
= −

λR

(

4N ln(2) + (8+θμ2
R)	2

R

(1+	2
R)2

)

48π2θμ2
R(1+	2

R)
, γ =

λR

96π2

	2
R

(1+	2
R)3

.

From (18) and (19), one finds that λ

	2 remains constant under the renormalisation flow. The

integration of the resulting differential equation shows that, starting from given small values

for 	R, λR at NR , the frequency grows in a small region around ln N
NR

= 48π2

λR
to 	 ≈ 1.
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The coupling constant approaches λ∞ = λR

	2
R

, which can be made small for sufficiently

small λR . This leaves the chance of a non-perturbative construction [23] of this model.

The key observation for all subsequent work is the following: The one-loop renormalisa-

tion flow has a non-trivial UV fixed point given by the self-dual model 	 = 1 in (2) where

β	 = 0 to all orders. Working exactly at 	 = 1 leads according to (4) to the formulation as

a matrix model

S[�] = (2πθ)2

⎛

⎝
1

2

∑

m,n

Hmn�mn�nm +
λZ2

4

∑

m,n,k,l∈N2

�mn�nk�kl�lm

⎞

⎠ , (20)

where Hmn = Z 4
θ
(|m|+ |n|)+ (μ2

bare +2) and |m| := m1 +m2. Up to an inessential factor
1

64π2 and a shift μ2
bare + 2 �→ μ2

bare, this action can also be written as

S[�] = V tr

(

E�2 +
λZ2

4
�4

)

, (21)

where E = (Emδmn) with Em = Z
|m|√

V
+ 1

2
μ2

bare and V = ( θ
4
)2. This form, closely

related to models studied in [18], will be the starting point of a general treatment of such

models in Section 4. Starting from (20), Disertori and Rivasseau were able to prove that

the β-function vanishes to three-loop order [4]. This result led to the conjecture of β = 0

to all orders, which was eventually proved in [5] by a combination of Ward identities and

Schwinger–Dyson equation.

We understood immediately that the method suggested in [5] has the potential to provide

an exact solution of the model. Indeed we proved in [12] that the 2-point function satisfies

(in a certain limit) a closed non-linear integral equation, which is essentially equation (30)

below, but expressed in other variables. In [12], we also gave a perturbative approximation

of the solution. In the following years, we tried to extract non-perturbative information out

of (27). We were joined by Prof. Zeidler in 2011 who tried to use techniques from non-linear

functional analysis. Although a breakthrough was not achieved in this way, the exchange

with Prof. Zeidler stimulated a different strategy via singular integral equations, which will

be described in the next section.

4 Exact Solution of the Quartic Matrix Model

Adding a source term to the action (21), we define the partition function as

Z[J ] =
∫

D[�] exp(−S[�] + V tr(�J )),

where D[�] is the extension of the Lebesgue measure from finite-rank operators to L2(H)

and J a test function matrix. For λ = 0 in (21), D[�]
Z[0] would be the Gaussian measure of

covariance determined by E. In the presence of interaction λ �= 0, a rigorous construction of

the measure cannot be expected. Instead we will derive, for finite matrix size N , equations

between connected correlation functions formally defined by

〈ϕa1b1
. . . ϕaNbN

〉c =
∂N logZ[J ]

∂Jb1a1
. . . ∂JbNaN

∣
∣
∣
∣
J=0

. (22)

101



H. Grosse, R. Wulkenhaar

Then, we prove that, after renormalisation, these equations have a well-defined limit

N , V → ∞ which is exact in λ. We are then able to reduce this problem to a fixed point

problem where analytic and numerical techniques are applied.

4.1 Ward Identity

The first steps apply for actions of the form (21) with arbitrary positive E and even general

polynomial interaction λ
4
�4 �→ P [�].

Unitary operators U give rise to a transformation � �→ �̃ = U�U∗. Since the space of

selfadjoint compact operators is invariant under the adjoint action, we have

∫

D[�] exp(−S[�] + V tr(�J )) =
∫

D[�̃] exp(−S[�̃] + V tr(�̃J )).

Unitary invariance D[�̃] = D[�] of the Lebesgue measure implies

0 =
∫

D[�]
{

exp(−S[�] + V tr(�J )) − exp(−S[�̃] + V tr(�̃J ))
}

.

Note that the integrand {. . . } itself does not vanish because tr(E�2) and tr(�J ) are not

unitary invariant; only the interaction term tr(P [�]) = tr(P [�̃]) is invariant. Linearisation

of U about the identity operator leads to the Ward identity

0 =
∫

D[�]{E�� − ��E − J� + �J } exp(−S[�] + V tr(�J )). (23)

We can always place ourselves in an orthonormal basis of H where E is diagonal (but J is

not). Since E is of compact resolvent, E has eigenvalues Ea > 0 of finite multiplicity μa .

We thus label the matrices by an enumeration of the (necessarily discrete) eigenvalues of E

and an enumeration of the basis vectors of the finite-dimensional eigenspaces. Writing � in

{. . . } of (23) as functional derivative �ab = ∂
V ∂Jba

, we have proved (first obtained in [5]):

Proposition 1 The partition function Z[J ] of the matrix model defined by the external

matrix E satisfies the |I | × |I | Ward identities

0 =
∑

n∈I

(
(Ea − Ep)

V

∂2Z

∂Jan∂Jnp

+ Jpn

∂Z

∂Jan

− Jna

∂Z

∂Jnp

)

. (24)

Without loss of generality, we can assume that the map I ∋ m �→ Em ∈ R+ is injective.

Namely, correlation functions will only depend on the set of eigenvalues (Em) of E. Parti-

tioning the index set I into equivalence classes [m] which have the same Em, the index sum

over a function that only depends on Em becomes
∑

m∈I f (m) =
∑

[m]∈[I ] μ[m]f ([m]).
Therefore, at the expense of adding a measure μ[m] = dim ker(E − Emid), we can assume

that m �→ Em is injective.

Next, we turn the Ward identity (24) for injective m �→ Em into a formula for the second

derivative
∑

n∈I
∂2Z[J ]

∂Jan∂Jnp
of the partition function. Thereby, a term proportional to δap arises

which was identified in [14, Theorem 2.3].

102



How Prof. Zeidler Supported our Research on...

4.2 Schwinger–Dyson Equations

We can write the action as S = V
2

∑

a,b(Ea + Eb)�ab�ba + V Sint [�], where Ea are the

eigenvalues of E. Functional integration yields, up to an irrelevant constant,

Z[J ] = e−V Sint [ ∂
V ∂J

]e
V
2 〈J,J 〉E , 〈J, J 〉E :=

∑

m,n∈I

JmnJnm

Em + En

. (25)

Instead of a perturbative expansion of e−V Sint [ ∂
V ∂J

], we apply those J -derivatives to (25)

which give rise to a correlation function G... on the left-hand side. On the right-hand side of

(25), these external derivatives combine with internal derivatives from Sint [ ∂
V ∂J

] to certain

identities for G.... These Schwinger–Dyson equations are often of little use because they

express an N -point function in terms of (N + 2)-point functions.

In the field-theoretical matrix models under consideration, the Ward identity lets this

tower of Schwinger–Dyson equation collapse. We prove in [14]:

Proposition 2 The 2-point function of a quartic matrix model with action S = V tr(E�2 +
λ
4
�4) satisfies for injective m �→ Em the Schwinger–Dyson equation

G|ab| =
1

Ea + Eb

−
λ

Ea + Eb

1

V

∑

p∈I

(

G|ab|G|ap| −
G|pb| − G|ab|

Ep − Ea

)
}

(26a)

−
λ

V 2(Ea + Eb)

(

G|a|a|G|ab| +
1

V

∑

n∈I

G|an|ab|

+G|aaab| + G|baba| −
G|b|b| − G|a|b|

Eb − Ea

)

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

(26b)

−
λ

V 4(Ea + Eb)
G|a|a|ab|.

}

(26c)

It can be checked [14] that in a genus expansion G... =
∑∞

g=0 V −2gG(g)
... (which is

probably not convergent but Borel summable), precisely the line (26a) preserves the genus,

the lines (26b) increase g �→ g + 1 and the line (26c) increases g �→ g + 2. In particular, in

a scaling limit V → ∞ with 1
V

∑

p∈I finite, the exact Schwinger–Dyson equation for G|ab|
coincides with its restriction (26a) to the planar sector g = 0, a closed non-linear equation

for G
(0)
|ab| alone:

G
(0)
|ab| =

1

Ea + Eb

−
λ

Ea + Eb

1

V

∑

p∈I

(

G
(0)
|ab|G

(0)
|ap| −

G
(0)
|pb| − G

(0)
|ab|

Ep − Ea

)

. (27)

We have derived in 2007/2008 this self-consistency equation for the Moyal model by the

graphical method proposed by [5]. In this form, (27) is meaningless because
∑

p∈I diverges.

In 2009 we solved the renormalisation problem, namely the renormalisation of infinitely

many Feynman graphs at once [12]. This renormalisation increases the non-linearity. In

[12] we have solved (27) perturbatively to O(λ3). After several years of setbacks with the

non-perturbative solution, a breakthrough came in 2012: The equation (27) can be turned

into an equation (given in (32) below) which is linear in the difference G
(0)
|ab| − G

(0)
|a0| to the

boundary and non-linear only in G
(0)
|a0|!
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It turns out that a real theory with � = �∗ admits a short-cut which directly gives the

higher N -point functions without any index summation. Since the equations for G... are

real and Jab = Jba , the reality Z = Z implies (in addition to invariance under cyclic

permutations) invariance under orientation reversal

G|p1
0p1

1 ...p1
N1−1|...|p

B
0 pB

1 ...pB
NB−1|

= G|p1
0p1

N1−1...p
1
1 |...|pB

0 pB
NB−1...p

B
1 |. (28)

Whereas empty for G|ab|, in (Ea+Eb1
)Gab1b2...bN−1

− (Ea+EbN−1
)GabN−1...b2b1

the iden-

tities (28) lead to many cancellations which result in a universal algebraic recursion

formula:

Proposition 3

G|b0b1...bN−1| = (−λ)

N−2
2∑

l=1

G|b0b1...b2l−1|G|b2lb2l+1...bN−1| − G|b2lb1...b2l−1|G|b0b2l+1...bN−1|
(Eb0

− Eb2l
)(Eb1

− EbN−1
)

+
(−λ)

V

N−1
∑

k=1

G|b0b1...bk−1|bkbk+1...bN−1| − G|bkb1...bk−1|b0bk+1...bN−1|
(Eb0

− Ebk
)(Eb1

− EbN−1
)

. (29)

The last line of (29) increases the genus and is absent in G
(0)
|b0b1...bN−1|.

We make the following key observation: An affine transformation E �→ ZE+C together

with a corresponding rescaling λ �→ Z2λ leaves the algebraic (29) invariant:

Theorem 2 Given a real quartic matrix model with S = V tr(E�2 + λ
4
�4) and m �→ Em

injective, which determines the set G|p1
1 ...p1

N1
|...|pB

1 ...pB
NB

| of (N1 +· · ·+NB)-point functions.

Assume that the basic functions with all Ni ≤ 2 are turned finite by Ea �→ Z(Ea + μ2

2
−

μ2
bare

2
) and λ �→ Z2λ. Then all functions with one Ni ≥ 3

1. are finite without further need of a renormalisation of λ, i.e., all renormalisable quartic

matrix models have vanishing β-function,

2. are given by universal algebraic recursion formulae in terms of renormalised basic

functions with Ni ≤ 2.

The theorem tells us that vanishing of the β-function for the self-dual �4
4-model on

Moyal space (proved in [5] to all orders in perturbation theory) is generic to all quartic

matrix models, and the result even holds non-perturbatively!

The universal recursion formula (29) computes the planar N -point function G|b0...bN−1|
at B = 1 as a sum of fractions with products of 2-point functions in the numerator and

products of differences of eigenvalues of E in the denominator. This structure admits an

interesting graphical interpretation. We draw the indices b0, . . . bN−1 in cyclic order on the

circle S1 and represent a factor Gbibj
as a chord connecting bi with bj and a factor 1

Ebi
−Ebj

as an arrow from bi to bj .

The chords form the non-crossing chord diagrams counted by the Catalan number

CN
2
= N !

( N
2 +1)! N

2 ! .
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4.3 Renormalisation and Integral Representation

We return to the noncommutative φ4-model at self-duality point 	 = 1, where the action is

given by Eq. (20). Our general results on quartic matrix models imply that the planar 2-point

function G
(0)
|ab| satisfies the self-consistency equation (27),

G
(0)
|ab| =

1

Ea + Eb

−
Z2λ

Ea + Eb

1

V

∑

p∈N2
N

⎛

⎝G
(0)
|ab|G

(0)
|ap| −

G
(0)
|pb| − G

(0)
|ab|

Ep − Ea

⎞

⎠ , (30)

where we recall Em = Z

(

|m|√
V

+ μ2
bare

2

)

. We have introduced a cut-off N2
N in the matrix

size; the index sum diverges for N2
N �→ N

2. As usual, the renormalisation strategy consists

in adjusting Z, μbare in such a way that the limit N2
N �→ N

2 exists. This will be achieved

by normalisation conditions for the 1PI function Ŵab defined by G
(0)
|ab| =: (Hab − Ŵab)

−1,

where Hab := Ea +Eb. We express (30) in terms of Ŵab and write Ŵab as first-order Taylor

formula with remainder Ŵren
ab ,

Ŵab = Zμ2
bare − μ2 + (Z−1)√

V
(|a| + |b|) + Ŵren

ab , Ŵren
00 = 0, (∂Ŵren)00 = 0.

Equation (30) for Ŵab

[

Ŵren
ab , μ2

bare, Z
]

together with Ŵren
00 = 0 and (∂Ŵren)00 constitute

three equations to determine the three functions Ŵren
ab , μ2

bare, Z. Eliminating μ2
bare, Z thus

gives rise to a closed equation for the renormalised function Ŵren
ab alone. For this elimi-

nation, it is important to note that the equations for Ŵren
ab , μ2

bare, Z depend on a, b only

via the norms |a|, |b| which parametrise the spectrum of E. Therefore, Ŵab is actually a

function only of |a|, |b|, and consequently the index sum reduces to
∑

p∈N2
N

f (|p|) =
∑N

|p|=0(|p|+1)f (|p|).
We study a particular scaling limit in which matrix size N and volume V are simul-

taneously sent to ∞ such that the ratio N√
V μ4

= �2(1+Y) is kept fixed. Note that

V =
(

θ
4

)2 → ∞ is a limit of extreme noncommutativity! The new parameter (1+Y) corre-

sponds to a finite wavefunction renormalisation, identified later to decouple our equations.

The parameter �2 represents an ultraviolet cut-off which is sent to � → ∞ in the very

end (continuum limit). In the scaling limit, functions of
|p|
√

V
=: μ2(1 + Y)p converge to

functions of ‘continuous matrix indices’ p ∈ [0, �2]. In the same way, Ŵren
a b converges to a

function μ2Ŵab with a, b ∈ [0,�2], and the discrete sum converges to a Riemann integral

1

V

N
∑

|p|=0

(|p| + 1)f
( |p|

√
V

)

−→ μ4(1 + Y)2

∫ �2

0

p dpf
(

μ2(1 + Y)p
)

.

This limit makes the restriction to the planar sector (27) of (26a)–(26c) exact.

Applying d
db

|a=b=0 we get Z in terms of Ŵab (and its derivative). Inserted back one

gets a highly non-linear integro-differential equation. We can reduce the non-linearity

by subtracting from it the same equation taken at b = 0. In terms of Gab :=
((a + b)(1 + Y) + 1 − Ŵab)

−1, this difference equation reads

Z−1

(1 + Y)

(
1

Gab

−
1

Ga0

)

= b − λ

∫ �2

0

p dp

Gpb

Gab
− Gp0

Ga0

p − a
. (31)
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Differentiation d
db

|a=b=0 of (31) yields Z in terms of Gab and its derivative. The resulting

derivative G′ can be avoided by adjusting

Y := −λ lim
b→0

∫ �2

0

dp
Gpb − Gp0

b
.

This choice leads to Z−1

(1+Y)
= 1 −λ

∫ �2

0 dpGp0, which is a perturbatively divergent integral

for � → ∞. Inserting Z−1 and Y back into (31) we end up in a linear integral equation for

the difference function Dab := a
b
(Gab − Ga0) to the boundary:

(
b

a
+

1

aGa0

)

Dab + Ga0 = λ

∫ �2

0

dp

⎛

⎝
Dpb − Dab

Gp0

Ga0

p − a

⎞

⎠ . (32)

The non-linearity restricts to the boundary function Ga0 where the second index is put to

zero. Assuming a �→ Gab Hölder-continuous, we can pass to Cauchy principal values. In

terms of the finite Hilbert transform

H�
a [f (•)] :=

1

π
lim
ǫ→0

(
∫ a−ǫ

0

+
∫ �2

a+ǫ

)

f (q)dq

q − a
, (33)

the integral equation (32) becomes

(
b

a
+

1 + λπaH�
a [G•0]

aGa0

)

Dab − λπH�
a [D•b] = −Ga0. (34)

4.4 The Carleman Solution

Equation (34) is a well-known singular integral equation of Carleman type [3, 24]:

Theorem 3 ([24], transformed from [−1, 1] to [0,�2]) The singular linear integral

equation

h(a)y(a) − λπH�
a [y] = f (a), a ∈ ]0, �2[,

is for h(a) continuous on ]0,�2[, Hölder-continuous near 0,�2, and f ∈ Lp for some

p > 1 (determined by ϑ(0) and ϑ(�2)) solved by

y(a) =
sin(ϑ(a))e−H�

a [π−ϑ]

λπa

(

af (a)eH
�
a [π−ϑ] cos(ϑ(a))

+H�
a

[

eH
�
• [π−ϑ] • f (•) sin(ϑ(•))

]

+ C
)

(35a)

∗=
sin(ϑ(a))eH

�
a [ϑ]

λπ

(

f (a)e−H�
a [ϑ] cos(ϑ(a))

+H�
a

[

e−H�
• [ϑ]f (•) sin(ϑ(•))

]

+
C′

�2 − a

)

, (35b)

where ϑ(a) = arctan[0,π]
(

λπ
h(a)

)

, sin(ϑ(a)) = |λπ |√
(h(a))2+(λπ)2

≥ 0 and C, C′ are

arbitrary constants.
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The possibility of C, C′ �= 0 is due to the fact that the finite Hilbert transform has a

kernel, in contrast to the infinite Hilbert transform with integration over R. The two formu-

lae (35a) and (35b) are formally equivalent, but the solutions belong to different function

classes and normalisation conditions may (and will) make a choice.

From (34), one introduces an angle function, which leads to a representation first for

Ga0:

Lemma 1 The angle function τb(a) := arctan[0,π]

(

|λ|πa

b+ 1+λπaH�
a [G•0]

Ga0

)

is for b = 0 reverted

to

Ga0 =
sin(τ0(a))

|λ|πa
esign(λ)(H�

0 [τ0(•)]−H�
a [τ0(•)])

{

1 for λ < 0,
(

1 + Ca

�2−a

)

for λ > 0,
(36)

where C is an arbitrary constant.

Recall that Ga0 forms the inhomogeneity in the Carleman equation (34). We insert

(36) into the Carleman solution (35) for (34) and obtain with the addition theorem

|λ|πa sin(τd(a) − τb(a)) = (b − d) sin τb(a) sin τd(a) after essentially the same steps as in

the proof of (36):

Theorem 4 ([15]) The full matrix 2-point function Gab of self-dual φ4
4 -theory on Moyal

space is in the limit θ → ∞ given in terms of the boundary 2-point function Ga0 by the

equation

Gab =
sin(τb(a))

|λ|πa
esign(λ)(H�

0 [τ0(•)]−H�
a [τb(•)])

{

1 for λ < 0,
(

1+Ca+bF(b)

�2−a

)

for λ > 0,
(37)

where C is an undetermined constant and bF(b) an undetermined function of b vanishing

at b = 0.

Some remarks:

– We have proved this theorem in [14] for λ > 0 under the assumption C′ = 0

in (35b), but knew that non-trivial solutions of the homogeneous Carleman equation

parametrised by C′ �= 0 are possible. That no such term arises for λ < 0 (if angles are

redefined ϑ �→ τ ) was proved in [15].

– We expect C, F to be �-dependent so that
(

1 + Ca+bF(b)

�2−a

)
�→∞−→ 1 + C̃a + bF̃ (b).

– An important observation is Gab ≥ 0, at least for λ < 0. This is a truly non-perturbative

result; individual Feynman graphs show no positivity at all!

– As in [12], the equation for Gab can be solved perturbatively. Matching at λ = 0

requires C, F to be flat functions of λ (all derivatives vanish at zero). Because of

H�
a [G•0]

a→�2

−→ −∞, the naı̈ve arctan series is dangerous for λ > 0. Unless there are

cancellations, we expect zero radius of convergence!

– From (37), we deduce the finite wavefunction renormalisation

Y := −1−
dGab

db

∣
∣
∣
∣
a=b=0

=
∫ �2

0

dp

(λπp)2 +
(

1+λπpH�
p [G•0]

Gp0

)2
−
{

0 for λ < 0,

F (0) for λ > 0.

(38)
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– The partition function Z is undefined for λ < 0. But the Schwinger–Dyson equa-

tions for Gab and for higher functions, and with them logZ , extend to λ < 0. These

extensions are unique but probably not analytic in a neighbourhood of λ = 0.

Given the boundary function Ga0, the Carleman theory computes the full 2-point func-

tion Gab via (37). In particular, we get G0b as function of Ga0. But the 2-point function is

symmetric, Gab = Gba , and the special case b = 0 leads to the following self-consistency

equation:

Proposition 4 The limit θ → ∞ of φ4
4 -theory on Moyal space is determined by the solution

of the fixed point equation G = T G,

Gb0 =

{

1 for λ < 0,

1 + bF(b) for λ > 0

}

1+b
exp

⎛

⎜
⎜
⎜
⎝

−λ

∫ b

0

dt

∫ �2

0

dp

(λπp)2 +
(

t+ 1+λπpH�
p [G•0]

Gp0

)2

⎞

⎟
⎟
⎟
⎠

.

(39)

At this point, we can eventually send � → ∞.

In [14], we proved via the Schauder fixed point theorem that (39) has a (smooth) solution

for λ > 0 (assuming F(b) = 0) bounded by 0 ≤ Gb0 ≤ 1
1+b

. For the much more compli-

cated case λ < 0, we proved in our contribution [16] to the 75th birthday of Prof. Zeidler

the following result:

Theorem 5 Let − 1
6

≤ λ ≤ 0. Then, (39) has a C1
0 -solution

1

(1 + b)1−|λ| ≤ G0b ≤
1

(1 + b)
1− |λ|

1−2|λ|
.

In [15], we solved (39) numerically by approximating G0b as a piecewise linear function

on [0,�2] sampled according to a geometric progression and by viewing (39) as iteration

Gi+1
0b = (T Gi)0b for some initial function G0. We confirmed the convergence of this itera-

tion in Lipschitz norm for a large range λ ∈ R of either sign. It turned out that the required

symmetry Gab = Gba does not hold for λ > 0, which is a clear hint that F(b) �= 0 for

λ > 0. For λ < 0 everything is consistent within small numerical errors. From the solution

of (39) we get Gab via (37) and then all higher correlation functions via the universal alge-

braic recursion formulae. For λ < 0, all these quantities of the model can be obtained with

sufficient precision.

We find clear evidence in [15] for a second-order phase transition at λc ≈ −0.39, which

is a common critical value in several independent problems. The most obvious signal is a

plot of the derivative 1 + Y := − dG0b

db
|b=0 as function of λ shown in Fig. 1.

Globally, we found that the numeric solution is close to (but not exactly) a power

law Gb0 ∝ 1
(1+b)1−η(λ)/2 , where η has opposite sign as λ. This numerical conjecture was

later made precise and proved in [16]. We have indications that the exact critical coupling

constant will be λc = − 1
π

.

We discuss in the next section how the sign on η relates to reflection positivity of

Schwinger functions made from G.... Reflection positivity requires η ≥ 0 which excludes

(unless F(b) �= 0 reverses the behaviour) the stable case λ > 0 and prefers λ ≤ 0 where the

partition function is meaningless.
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Fig. 1 1 + Y := − dG0b

db
|b=0 as function of λ, based on G0b computed for �2=107 with L = 2000 sample

points

5 Schwinger Functions and Reflection Positivity

5.1 Reverting theMatrix Basis

We are interested here in the limit to Schwinger functions in position space. For this end,

we revert the matrix representation and take the infinite volume limit V μ4 → ∞, where

we carefully have to pass to densities. Absolute position x ∈ R
4 have no meaning, only μx

can be used. This means that we consider

〈φ(μx1) . . . φ(μxN )〉 ≡
∑

m1,n1,...,mN ,nN∈N2

fm1m2
(μx1) · · · fmNmN

(μxN )
〈

ϕm1n1
. . . ϕmNnN

〉

,

where the matrix correlation functions are formally given by (22) and the fmn by (3) and

subsequent equations. More precisely we define:

Definition 1 The connected Schwinger functions associated with the action (20) are

μNSc(μx1, . . . , μxN )

:= lim
V μ4→∞

∑

m1,n1,...,mN ,nN∈N2

fm1n1
(μx1) · · · fmNnN

(μxN )
μ4N∂NF [J ]

∂Jm1n1
. . .∂JmNnN

|J=0, (40)

F [J ] :=
1

64π2V 2μ8
log

(∫

D[�]e−S[�]+V
∑

a,b∈N2 �abJba

∫

D[�]e−S[�]

)

Zμ2
bare �→μ2

Z �→(1+Y)

.

By ( )Zμ2
bare �→μ2

Z �→(1+Y)

, we symbolise the renormalisation of Section 4.3.
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The main question is whether these Schwinger functions satisfy the Osterwalder–

Schrader axioms [20, 21] which would allow to analytically continue the model to a true

Wightman quantum field theory. The first step consists in an explicit evaluation of (40). In

[13], we proved the following result:

Theorem 6 The connected N -point Schwinger functions of the φ4
4 -model on extreme Moyal

space θ → ∞ are given by

Sc(μx1, . . . , μxN )

=
1

64π2

∑

N1+···+NB=N
Nβ even

∑

σ∈SN

⎛

⎝

B
∏

β=1

4Nβ

Nβ

∫

R4

dpβ

4π2μ4
e

i

〈
pβ
μ

,
∑Nβ

i=1(−1)i−1μxσ(N1+...+Nβ−1+i)

〉⎞

⎠

×G∣
∣
∣
∣

‖p1‖2

2μ2(1 + Y)
, . . . ,

‖p1‖2

2μ2(1 + Y)
︸ ︷︷ ︸

N1

∣
∣
∣
∣
...

∣
∣
∣
∣

‖pB‖2

2μ2(1 + Y)
, . . . ,

‖pB‖2

2μ2(1 + Y)
︸ ︷︷ ︸

NB

∣
∣
∣
∣

. (41)

Some comments:

– Only a restricted sector of the underlying matrix model contributes to position space:

All strands of the same boundary component carry the same matrix index.

– Schwinger functions are symmetric and invariant under the full Euclidean group. This

comes truly surprising since θ �= 0 breaks both translation invariance and manifest

rotation invariance. The limit θ → ∞ was expected to make this symmetry violation

even worse!

– The most interesting sector is the case where every boundary component has

Nβ = 2 indices. It is described by the (2 + · · · + 2)-point functions

G∣∣
∣
∣

‖p1‖2

2μ2(1+Y)

‖p1‖2

2μ2(1+Y)

∣
∣
∣
∣
...

∣
∣
∣
∣

‖pB ‖2

2μ2(1+Y)

‖pB ‖2

2μ2(1+Y)

∣
∣
∣
∣

.

– This sector describes the propagation and interaction of B particles without any

momentum exchange. This is acceptable for a 2D model. In four dimensions, the

absence of momentum transfer is a sign of triviality.

– However, typical triviality proofs rely on clustering, analyticity in Mandelstam repre-

sentation or absence of bound states. All this needs verification.

It is already clear that clustering is maximally violated. Looking for instance at the (2 +
2)-sector, we have

lim
μa→∞

S2+2
c (μx1, μx2, μ(x3 + a), μ(x4 + a))

=
∫

dp dq

4π6μ4
G∣∣
∣

‖p‖2

2μ2(1+Y)

‖p‖2

2μ2(1+Y)

∣
∣
∣

‖q‖2

2μ2(1+Y)

‖q‖2

2μ2(1+Y)

∣
∣
∣

ei〈p,x1−x2〉+i〈q,x3−x4〉

independent of the distance between {x1, x2} on the one hand and {x3, x4} on the other hand.

The absence of clustering means that the state that we constructed is a mixed state. States

can always be decomposed into pure states.

5.2 Reflection Positivity

Reflection positivity is the most decisive Osterwalder–Schrader axiom. It gives the spectrum

condition and positivity of the reconstructed Hilbert space of the Minkowski model [20,
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21]. This guarantees a representation as a Laplace transform in the time component of the

coordinate ξ0, hence analyticity in Re(ξ0) > 0.

We have shown in [13] that the Schwinger 2-point function S(x1, x2) given by (41) is

reflection positive if and only if a �→ Gaa is a Stieltjes function ([25]),

Gaa =
∫ ∞

0

d(ρ(t))

a + t

for a positive and non-decreasing measure ρ. The proof follows from the Källén–Lehmann

representation of the two-point function.

The numerical results [15] exclude reflection positivity for any λ > 0 (due to renormali-

sation). Interestingly, it thus favours the wrong-sign λφ4-model studied in [22]. A rigorous

proof that Gaa satisfies the Stieltjes property for λ < 0 is still missing, although the

numerical results of [15] provide strong evidence that this will be true.

6 Summary

By applying the Wilson–Polchinski ideas to the noncommutative �4-theory with harmonic

oscillator term we were able to solve the renormalisation problem. We obtained renormal-

isability to all orders of pertubation theory and reconfirmed the UV/IR-duality. Next, we

showed that the running coupling constant has bounded flow to one-loop order. This led

to a close collaboration with Vincent Rivasseau and his group. They proved the essential

result, that at a special self-duality point, the β-function vanishes to all orders in perturbation

theory.

Ward identities are the reason behind this result. They allow to decouple the hierarchy of

Schwinger–Dyson equations, which allows to solve the model.

We have shown that the φ4
4 -model on noncommutative Moyal space, considered in the

limit θ → ∞ of extreme noncommutativity, is an exactly solvable and non-trivial matrix

model. Euclidean symmetry is violated in the beginning, but we identified a limit which

projects to diagonal matrices where Euclidean symmetry is restored. Surprisingly, the first

consistency checks for OS positivity are passed for the only interesting interval [λc, 0] of

the coupling constant! This model is somewhat strange as ‘particles’ keep their momenta

in interaction processes. Nevertheless, the theory is not completely trivial. We find scatter-

ing remnants from the noncommutative geometrical (i.e., matricial) substructure. Only the

external matrix indices are put ‘on-shell’, internally all degrees of freedom contribute. We

have seen that clustering is maximally violated. The interaction is insensitive to positions in

different boundary components. In particular, ‘particles’ are never asymptotically free.
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