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Abstract

Numerous studies have noted that the evolution of new enzymatic specificities is accompanied by loss of the protein’s
thermodynamic stability (DDG), thus suggesting a tradeoff between the acquisition of new enzymatic functions and
stability. However, since most mutations are destabilizing (DDG.0), one should ask how destabilizing mutations that confer
new or altered enzymatic functions relative to all other mutations are. We applied DDG computations by FoldX to analyze
the effects of 548 mutations that arose from the directed evolution of 22 different enzymes. The stability effects, location,
and type of function-altering mutations were compared to DDG changes arising from all possible point mutations in the
same enzymes. We found that mutations that modulate enzymatic functions are mostly destabilizing (average
DDG= +0.9 kcal/mol), and are almost as destabilizing as the ‘‘average’’ mutation in these enzymes (+1.3 kcal/mol).
Although their stability effects are not as dramatic as in key catalytic residues, mutations that modify the substrate binding
pockets, and thus mediate new enzymatic specificities, place a larger stability burden than surface mutations that underline
neutral, non-adaptive evolutionary changes. How are the destabilizing effects of functional mutations balanced to enable
adaptation? Our analysis also indicated that many mutations that appear in directed evolution variants with no obvious role
in the new function exert stabilizing effects that may compensate for the destabilizing effects of the crucial function-altering
mutations. Thus, the evolution of new enzymatic activities, both in nature and in the laboratory, is dependent on the
compensatory, stabilizing effect of apparently ‘‘silent’’ mutations in regions of the protein that are irrelevant to its function.
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Introduction

With the exception of unstructured protein domains, the

integrity of a protein’s structure and function is largely dependent

on its thermodynamic stability. Evolutionary processes, be they

neutral, or adaptive, involve the acquisition of mutations that may

affect protein function and/or stability. For example, a mutation

that endows a desirable new function, but severely undermines

stability, will not become fixed. The relationship between

mutational effects, function and stability is therefore crucial to

our understanding not only of the evolutionary dynamics of

proteins [1–6], but also in engineering, designing, and evolving,

novel enzymes in the laboratory [7–12].

Stability-function tradeoffs became originally evident in en-

zymes, particularly in the structural tension created by the

arrangement of catalytic residues in active sites. From the point

of view of overall protein stability, active site organization is

inherently unfavorable for a number of reasons. Functional

residues, which are generally polar or charged, are embedded in

hydrophobic clefts [13], sometimes with proximal like charges.

Key catalytic residues often possess unfavorable backbone angles

[14,15]. Consequently, the substitution of an enzyme’s key

catalytic side chains (typically into alanine) can dramatically

increase stability whilst obviously sacrificing activity [16–23].

Such observations (notwithstanding exceptions such as residues

that contribute to both function and stability [24–26], and cases

where enzyme stability can be increased without comprising

function [10,27–31]) led to the generally accepted principle of

stability-function tradeoffs [16,19] that was later extended to

tradeoffs between new functions and stability [32]. However, as

discussed below, we surmise that there exists a fundamental

difference between mutations in key catalytic residues that relate to

the well established stability-function tradeoff, and mutations that

mediate the evolutionary divergence of new functions.

Enzymes evolve new functions via mutations that alter substrate

specificity, typically by increasing the affinity and rates for weak

promiscuous substrates. These changes involve mutational adjust-

ments of the active site, its periphery, or even the ‘‘second’’ and

‘‘third shell’’ of residues that surround it, while maintaining the key

catalytic residues intact. As shown below, in oppose to mutations

in key catalytic residues that typically involve an exchange into

alanine of a charged/polar residue within a hydrophobic

surroundings, the type and location of new function mutations is

far more diverse. As initially observed by Wang et al. [32,33], most

mutations that confer new functions have been proven to be

destabilizing (for recent examples see [34]). However, the

generality of stability-function tradeoffs with regard to new

functions should be addressed in view of the fact that, regardless

of their relevance to function, most mutations are destabilizing

[30,35–37]. Indeed, derivation of the DDG distributions of all

possible mutations in a series of globular proteins using the

experimentally validated FoldX algorithm [38,39]) indicated that

about 70% of mutations are destabilizing (DDG.0 kcal/mol), and

.20% are significantly destabilizing (DDG$2 kcal/mol) [40]. On
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the other hand, mutations that characterize neutral, non-adaptive

changes (mutational drifts with no changes in protein function and

structure) occur primarily on the surface, certainly at the first steps

of sequence divergence [41], and this subgroup of mutations is

much less destabilizing (average DDG=0.6 kcal/mol [40]. Thus,

better understanding of how the emergence of new functions

trades-off with protein stability requires a comparison of mutations

that confer new protein functions to all other possible mutations in

a protein, as well as to mutations that characterize neutral, non-

adaptive changes.

With this in mind, we investigated a large set of mutations that

were found in enzymes that acquired new substrate specificities in

directed evolution experiments and clinical isolates (548 mutations

in 22 different enzymes). We applied FoldX to compute the DDG

values of these mutations, and compared the type (hydrophibicity/

polarity), location (solvent accessibility and secondary structure

assignment), and DDG values of these mutations with all possible

point mutations in the same proteins. While realizing that the

FoldX values are a prediction of limited accuracy, they do enable

the examination the distributions of DDG values for a large set of

proteins and mutations, and on the whole, these predictions show

reasonable correlation with experimental data [40]. Thus, whilst

the values for individual mutations can considerably deviate from

the experimental values, the trends we observed are likely to be

relevant [42].

Results

Classification of Mutations
We systematically explored the directed evolution literature

from 2003 to date for cases amenable to our analysis. The criteria

included enzymes in which few, or more, mutations accumulated,

and a new substrate specificity evolved in response, and that have

a high resolution crystal structure (a list of the analyzed enzymes

and mutations is available as Table S1). TEM-1 mutations

observed in clinical isolates, and subsequently in laboratory

evolution experiments, were also included in our analysis.

Variants isolated in directed evolution experiments and clinical

isolates generally possess multiple mutations. Nevertheless, as with

natural enzymes, only some mutations are directly related to the

newly acquired function, while others are largely neutral. The

mutations in the studied enzyme variants were therefore classified

into two categories: (a) new-function mutations—i.e., mutations that

confer the new function, and (b) other mutations—i.e., all mutations

that accumulated in these variants alongside the adaptive

mutations. We assigned mutations as new-function mutations by

three criteria: (i) the mutation was the only mutation in the variant

showing the new activity or selectivity; (ii) the mutation was

identified by the authors as contributing to the new function; (iii) the

mutation was conserved, or dominant, in all the variants isolated

after several rounds of mutation and selection. Other mutations

included nonessential mutations that were seen in only one of the

isolated variants, or were shown to be irrelevant to the functional

change. Using these criteria, we classified 246 mutations as ‘‘new-

function’’ mutations, and 302 mutations as ‘‘other’’ mutations (Table

S2).

Type and Location of the Mutations
The location and type of a mutated residue affects the stability

changes induced by mutations in this residue. In particular, the

distribution of DDG values differs significantly for surface vs. core

residues. Thus, as the solvent accessibility (ASA) of a residue

decreases, the destabilizing DDG values of its mutation increase

[40]. It was therefore necessary to account for the location of ‘‘new-

function’’ and ‘‘other’’ mutations and thus ensure a balanced

comparison with all other possible mutations in residues of

equivalent type and location.

Type of mutations. The key catalytic residues of enzymes

are generally charged or polar [43]. However, our analysis showed

about 50% of new-function mutations involved changes in

hydrophobic residues (Figure 1a). This proportion is very similar

to that found for the other mutations, and indeed for all protein

residues. The fraction of polar residues seems to slightly increased

in new-function mutations, and a higher fraction of charged residues

were exchanged by other mutations The latter correlates with the

observation that other mutations tend to be in surface residues (see

below). The fraction of hydrophobic residues seems to slightly

increase after mutations in both the new-function (from 47% to 50%)

and other mutations (from 47% to 48%) have been incorporated.

This tendency might relate to biases in the mutagenesis methods

employed [44]. Overall, this analysis indicated that, in contrast to

key catalytic residues where charged and polar residues dominate,

the types of residues in which new-function mutations occur are

distributed in a manner similar to the rest of the protein.

Secondary structure. About 70% of the total residues in

enzymes occur in secondary structures such as a-helices and b-

sheets. The remaining 30% are found in random coils. In contrast,

about 50% of active site residues are located in random coils [43].

In accordance, the new-function mutations are more often found in

random coils than in a-helices and b-sheets, and those proportions

are similar to key catalytic residues (Figure 1b). Other mutations are

found less in random coils than new-function mutations, closer to all

mutations (Figure 1b). This supports the fact that the other mutations

are not directly involved in the acquisition of new function.

Solvent accessibility. In general, catalytic residues tend to

be partially exposed to solvent [43]. However, the ASA values of

new-function mutations are distributed in a manner similar to all

residues, whereas other mutations tend to locate more to the

enzyme surface than its core (Figure 2), thus indicating that other

Author Summary

To perform its function, a protein must fold into a
complex, three-dimensional structure that is maintained
by a network of interactions between its amino acid
residues. Evolution of a new protein function will be driven
by mutation of amino acids in key positions (new-function
mutations). Such mutation can also hamper interactions
that ensure the stability of a protein’s fold—sometimes to
a degree that renders the protein non-functional. Indeed,
previous studies have noted that the evolution of new
enzymatic functions is accompanied by significant losses
in protein stability, suggesting a ‘‘tradeoff’’ between
acquisition of new enzymatic functions and stability. But
since most mutations are destabilizing, we sought to
compare new-function mutations with other types of
mutations. We performed a comprehensive analysis of
the type, location, and stability effects of mutations that
have conferred new enzymatic functions in laboratory
evolution experiments. We found that stability changes
(DDG) of new-function mutations are similar to those of
all other mutations, but are weaker than those of
mutations that characterize neutral evolutionary changes
(mutations that accumulate with no change of structure
and function). Our analysis also revealed the important
role of neutral (i.e., ‘‘non-functional’’) mutations in
compensating for the destabilizing effects of the ‘‘new-
function’’ mutations.

Protein Stability and New Functions
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mutations are involved in a different process, most likely neutral,

non-adaptive evolution. Contrary, new-function mutations are

distributed similarly to all other mutations, and with significantly

more mutations in the core (ASA,0.25) than observed with other

mutations, thus implying their role in the acquisition of new

functions, and their larger destabilizing effects.

Overall, therefore, the new-function mutations are in quite similar

types and positions as all residues, with the exception that they

have a greater tendency to be located on random coils. The other

mutations show a strong tendency to be located on the surface.

The DDG Distributions
The stability effects of mutations (DDG) were computed with the

protein design software FoldX, whose force-field is based on

empirical energy terms correlated with experimental DDG

measurements [38,39]. In a previous work, we found that DDG

distributions of all possible mutations in globular, monomeric,

single domain proteins of #340 amino acids can be described by a

universal bi-Gaussian function with only one free parameter (the

protein’s chain length) [40]. The vast majority of enzymes

analyzed in the study, especially those that possess large number

of mutations, meet the above size criterion (Table 1). We have

therefore compared the distribution of DDG values for new-function

mutations, and other mutations, with the distributions for all

possible mutations that are attainable by single nucleotide

substitutions from the protein’s wild type sequence (all mutations).

Although certain variants carry multiple mutations, we based our

tradeoff analysis on the DDG values of individual mutations. In

nature, and frequently in the lab, function-altering mutations tend

to accumulate one at a time, and are combined only in subsequent

generations. Indeed, in most cases, DDG and functional effects of

multiple mutations are largely additive [30,45].

In all 22 enzymes analyzed here, the average DDG values for

new-function mutations were found to be comparable to those of all

mutations (Table 1). Overall, the distributions of DDG values for

new-function mutations are nearly identical to those of all mutations,

although there are significantly fewer highly destabilizing muta-

tions (DDG.3 kcal/mol) in new-function mutations (8%) than in all

mutations (15%) (Figure 3). This observation is expected as highly

destabilizing mutations undermine the enzyme’s structure and are

therefore eliminated by selection, and is consistent with the

analysis of DDG values of mutations that accumulated in a neutral

drift under strong purifying selection (DDG#3 kcal/mol) [46].

Because new-function mutations are distributed in different

secondary structure elements than the rest of the protein

(Figure 1b), their location might bias DDG distributions. To

ameliorate this we adjusted the DDG distributions of all mutations

to have the same proportion of secondary structure elements as
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Figure 1. Distribution of mutations with respect to residue type (a), and their location in secondary structural elements (b). Noted
are: all protein residues (referring to mutations attainable in all protein residues by single nucleotide exchanges); key catalytic residues (data adapted
from Bartlett et al. [43]); and residues in which mutations identified in directed evolution experiments occur, divided to new-function mutations, and
other mutations, as explained in the text.
doi:10.1371/journal.pcbi.1000002.g001
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new-function mutations by comparing the DDG distributions of

random coils, a-helices, and b-sheets, of four of the studied

enzymes (PON, CAII, Lipase, and TEM-1). The DDG values of b-

sheets appeared to be more destabilizing than those of random

coils and a-helices (Figure S1), as previously observed [47,48].

Nevertheless, the overall effect of this adjustment was minor, and

the distributions of DDG values for new-function mutations remained

nearly identical to those of all mutations (Figure S1).

The overall picture that emerges is that the new-function

mutations are distributed as all other mutations. The majority of

both all- and new-function mutations are destabilizing (43% of

mutations exhibit DDG values higher than 1 kcal/mol), and a

significant fraction of mutations are actually stabilizing (7% of

mutations exhibit DDG ,21 kcal/mol). Thus, the mutations

associated with the acquisition of new functions are as destabilizing

as the ‘‘average mutation’’.

However, the othermutations (those that accumulated in variants

alongside function altering mutations) are distributed in a different

manner. They contain many more neutral, and stabilizing

mutations, and fewer destabilizing mutations (30% .1 kcal/mol)

than all- and new-function mutations (Figure 3). This distribution

indicates that other mutations largely reflect neutral, non-adaptive

evolution, whereby destabilizing mutations are purged out.

Nevertheless, the significantly higher fraction of stabilizing

mutations 38% ,0 kcal/mol vs. 21% in all mutations) indicates

that other mutations can also play a role in increasing protein

stability, and thereby compensate for the destabilizing effects of the

new-function mutations that drive the adaptive process.

Discussion

Do New Functions Tradeoff with Stability?
It is widely accepted that active site construction is thermody-

namically unfavorable. Thus, many active site mutations, and the

removal of key catalytic residues in particular, dramatically

stabilize enzymes at the expense of activity [16–23]. By the same

logic, stability is likely to be compromised when enzymes acquire

new activities by evolutionary processes. To date, this hypothesis

was supported by several sets of experimental data, but lacked a

comprehensive analysis that compares the distribution of DDG

effects of mutations that drive the acquisition of new functions over

all other mutations. A comprehensive analysis of this kind can only

be performed computationally simply because of the vast number

of mutations that need to be analyzed. Although the computed

FoldX values are of limited accuracy, they do enable the

examination the distributions of DDG values for a large set of

proteins and mutations, and on the whole, these predictions show

reasonable correlation with experimental data [38,40]. The

computed average of DDG values for mutation endowing new

functions (+0.9 kcal/mol) is also within the range of experimental

values obtained for such mutations; the average of DDG value for

six mutants that conferred new function in TEM-1 b-lactamase is

+1.7 kcal/mol (+0.22 to +4.04 kcal/mol) [32].

The computational analysis indicated that new-function mutations

are as destabilizing as mutations in other parts of the protein, and

thus, there seems to be no distinct tradeoff between new functions

and stability. Sanchez et al. have recently reached a similar

conclusion by analyzing the correlation between DDG values and

the frequency of mutations in functional sites of natural proteins.

They found that selection for function is overruling selection for

stability, but observed no anti-correlation between function and

stability [49]. The above said, we also found that the type and

location of new-function mutations are almost indistinguishable from

the rest of the protein (other than a tendency to locate to random

coils). That the solvent accessibility of new-function mutations is

distributed as the rest of the protein (Figure 2) is indicative of their

special nature. Neutral (non-adaptive) drift (i.e., the gradual

accumulation of mutations while retaining function or structural)

initially involves surface residues [41,50], and thus minor stability

changes. This is also reflected in the nature of the othermutations that

tend to be on the surface and exhibit minor stability changes, and

even stabilizing, compensatory effects as discussed below. In contrast,

the acquisition of new-function involves also core residues, and is

therefore more demanding in stability terms than a neutral drift. In

that respect, i.e., when comparing neutral, to adaptive evolutionary

changes, one could say that new function does trade-off with stability.

The tendency of new-function mutations to locate to random coils

is also in accordance with the notion that the routes leading to new

functions do not usually involve modification of either the

enzyme’s scaffold or key catalytic residues, but rather involve

multiple, and often subtle, changes in loops that comprise the

substrate binding pocket [51–53]. Indeed, directed evolution

experiments indicated that most new-function mutations are located

relatively far from the key catalytic residues, often being found in

the periphery of the active site [51,54–56]. Thus, the changes that

drive divergence towards new functions do not usually involve the

incorporation of the same type of thermodynamically unfavorable

active site residues that provide the main catalytic function of the

enzyme. Indeed, in enzyme superfamilies, despite a wealth of

different reactions and substrates, scaffolds and key catalytic

residues remain unchanged [57].

Our analysis therefore indicates that the two classes of

residues—i.e., key catalytic residues, and new function residues,

are subject to different rules. Key catalytic residues are inherently,

and dramatically destabilizing, and therefore exhibit distinct

function-stability tradeoffs. In contrast, new function residues as

destabilizing as the ‘‘average’’ protein mutation, although they

appear to be more destabilizing than mutations that occur during

non-adaptive evolutionary changes.

Protein Stability and the Evolution of New Functions
Although our findings indicate no specific tradeoffs between

new function and stability, at the end of the day, the majority of

new-function mutations are destabilizing. Furthermore, the fact
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Figure 3. The DDG distributions of new-function mutations in
comparison with other mutations and all possible mutations.
The DDG values of mutations were computed by FoldX as described
[38–40]. The resulting values were presented in histograms by
classifying 25 bins, each 1.0 kcal/mol wide.
doi:10.1371/journal.pcbi.1000002.g003
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that there are fewer highly destabilizing mutations amongst

‘‘successful’’ new-function mutations (Figure 3) is another manifes-

tation of the notion that stability severely constrains adaptive

evolution (i.e., the acquisition of new functions) [32–34]. Thus,

although in principle new function mutations can be highly

destabilizing, similar to mutations in key catalytic residues, such

detrimental mutations are not commonly seen in proteins evolving

new functions, either in nature, or in the laboratory. It also follows,

that increasing the initial stability of the starting point enzyme will

enable the subsequent acquisition of function altering mutations

that are otherwise not tolerated [1,2,6,34,58].

The destabilizing effects of new function mutations should also

be considered in view of the fact that the acquisition of new

functions typically depends on multiple mutations. Indeed,

proteins posses a threshold of stability that can initially buffer

some of the deleterious effects of destabilizing mutations. Once this

threshold is exhausted, however, protein ‘‘fitness’’ (i.e., expression

and activity levels) is rapidly lost. This is manifested in the non-

additive, or negative, epistatic effects of mutations on protein

fitness—despite their DDG effects being largely additive [46]. Thus,

as the adaptive process continues, proteins must regain stability

through other mutations [32]. This scenario is evident in the role of

Met181Thr mutation played in the evolution of TEM-1—(a global

suppressor found in clinical isolates and directed evolution

experiments, stabilizing 22.67 kcal/mol) towards the hydrolysis of

a third-generation antibiotic [32]. Indeed, our analysis indicates that

many of the other mutations seen in directed evolution experiments

might play an essential role in compensating for loss of stability, and

are thus involved in the process despite having no direct role in

altering the activity of the evolving enzyme.

Thus, despite the fact that no specific activity-stability tradeoffs

are associated with the acquisition of new functions, it appears that

that the pattern of stability loss and restoration does underpin the

evolution of new enzyme activities as previously noted [32]. It is

clear therefore, that a more profound understanding of the

dynamics and mechanism of stability restoration, and the ability to

reproduce them in the laboratory, might be the key to achieving

more rapid and effective enzyme evolution.

Methods

We search the ISI web of science database for all articles

containing: ‘‘directed evolution’’ and enzyme. The search included

these terms within title, abstract, and key words, for the period of

2003 till the end of September 2007. The resulting articles were

further screened for all cases amenable to our analysis; the criteria

being: (i) crystal structure of the evolved enzyme at #2.5 Å

resolution; (ii) directed evolution aimed at new substrate specificity,

or catalytic activity, but not higher stability and other stability

related properties such as tolerance to organic solvents; (iii) a

detailed description of more than few mutations related to

functional changes, typically including the description of single

mutants to enable a distinction between new-function and other

mutations. The screen resulted in a total of 22 enzymes and 548

mutations that were further analyzed.

The thermodynamic stability changes of mutations were

computed using the protein design tool FoldX (version 2.52).

We followed a four-step procedure as described in detail

previously [38–40]. First, 3D structures were taken from the

Protein Data Bank (PDB accession codes are listed in Table S1)

were optimized using the repair function of FoldX. Second,

structures corresponding to each of the single point mutants

(including self-mutated structures) were generated by the repair

position scan function of FoldX. Third, the energies for these

structures were calculated using the energy calculation function of

FoldX. Finally, the DDG of mutations were obtained by comparing

the energy values of the mutant structure with those of the wild

type structures. The energy values obtained by FoldX were

converted to realistic values based on a normalization function

obtained by fitting the experimental and computed data

(DDGexperiment= (DDGFoldX
+0.078)/1.14) [40]. The ASA value of

each amino acid residue was calculated by the web server program

‘‘ASA view’’ (http://www.netasa.org/asaview/). The DDG values

obtained by FoldX were classified to 25 bins, each 1.0 kcal/mol

wide, from 210 kcal/mol to 15 kcal/mol (all possible mutations

with DDG.14 kcal/mol were classified into the 14–15 kcal/mol

bin, and mutations with DDG,29 kcal/mol into the (210)–(29)

bin). The number of mutations in each bin was counted to make

the distribution of DDG.

Supporting Information

Figure S1 The difference of C distribution with secondary

structure propensity. (A) The DDG distribution of each secondary

structure. (B) The composed DDG distribution according to the

secondary structure propensity of new-function mutations

(Figure 1b) comparing with new-function mutations and all

residues.

Found at: doi:10.1371/journal.pcbi.1000002.s001 (0.53 MB EPS)

Table S1 Summary of enzymes.

Found at: doi:10.1371/journal.pcbi.1000002.s002 (0.04 MB XLS)

Table S2 Point mutations included in the study.

Found at: doi:10.1371/journal.pcbi.1000002.s003 (0.13 MB XLS)
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