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Conversation scenes are a typical example in which
classical models of visual attention dramatically fail to
predict eye positions. Indeed, these models rarely
consider faces as particular gaze attractors and never
take into account the important auditory information
that always accompanies dynamic social scenes. We
recorded the eye movements of participants viewing
dynamic conversations taking place in various contexts.
Conversations were seen either with their original
soundtracks or with unrelated soundtracks (unrelated
speech and abrupt or continuous natural sounds). First,
we analyze how auditory conditions influence the eye
movement parameters of participants. Then, we model
the probability distribution of eye positions across each
video frame with a statistical method (Expectation-
Maximization), allowing the relative contribution of
different visual features such as static low-level visual
saliency (based on luminance contrast), dynamic low-
level visual saliency (based on motion amplitude), faces,
and center bias to be quantified. Through experimental
and modeling results, we show that regardless of the
auditory condition, participants look more at faces, and
especially at talking faces. Hearing the original soundtrack
makes participants follow the speech turn-taking more
closely. However, we do not find any difference between
the different types of unrelated soundtracks. These eye-
tracking results are confirmed by our model that shows
that faces, and particularly talking faces, are the features
that best explain the gazes recorded, especially in the
original soundtrack condition. Low-level saliency is not a
relevant feature to explain eye positions made on social
scenes, even dynamic ones. Finally, we propose
groundwork for an audiovisual saliency model.

Introduction

From the beginning of eye tracking, we know that
faces attract gaze and capture visual attention more

than any other visual feature (Buswell, 1935; Yarbus,
1967). When present in a scene, faces invariably draw
gazes, even if observers are explicitly asked to look at a
competing object (Bindemann, Burton, Hooge, Jen-
kins, & de Haan, 2005; Theeuwes & Van der Stigchel,
2006). Many studies have established that face per-
ception is holistic (Boremanse, Norcia, & Rossion,
2013; Farah, Wilson, Drain, & Tanaka, 1998; Hershler
& Hochstein, 2005) and pre-attentive (Bindemann,
Burton, Langton, Schweinberger, & Doherty, 2007;
Crouzet, Kirchner, & Thorpe, 2010), and the brain
structures specifically involved in face perception have
been pointed out (Haxby, Hoffman, & Gobbini, 2000;
Kanwisher, McDermott, & Chun, 1997). Despite their
leading role in attention allocation, faces have rarely
been considered in visual attention modeling. Over the
past 30 years, numerous computational saliency models
have been proposed to predict where gaze lands (see
Borji & Itti, 2012, for a taxonomy of 65 models). Most
of them are based on Treisman and Gelade’s (1980)
Feature Integration Theory, stating that low-level
features (edges, intensity, color, etc.) are extracted from
the visual scene and combined to direct visual attention
(Itti, Koch, & Niebur, 1998; Koch & Ullman, 1985; Le
Meur, Le Callet, & Barba, 2007; Marat et al., 2009).
However, these models cannot be generalized to many
experimental contexts, since the dynamic and social
nature of visual perception are not taken into account
(Tatler, Hayhoe, Land, & Ballard, 2011). Typical
examples in which they fail dramatically are visual
scenes involving faces (Birmingham & Kingstone,
2009). More recently, visual saliency models combining
face detection with classical low-level feature extraction
have been developed and have significantly outper-
formed the classical ones (Cerf, Harel, Einhäuser, &
Koch, 2008; Marat, Rahman, Pellerin, Guyader, &
Houzet, 2013).
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Despite these significant efforts focused on attention
modeling, auditory attention in general, and audiovi-
sual attention in particular, has been left aside. Visual
saliency models do not consider sound, even when
dealing with dynamic scenes. When running eye-
tracking experiments with videos, authors never men-
tion the soundtracks or explicitly remove them, making
participants look at silent movies, which is, of course,
not an ecologically valid situation. Indeed, we live in a
multimodal world and our attention is constantly
guided by the fusion between auditory and visual
information. Film directors offer a good illustration of
this by using soundtrack to strengthen their hold on the
audience. They manipulate the score to modulate the
tension and tempo in scenes or to highlight important
events in the story (Branigan, 2010; Zeppelzauer,
Mitrovic, & Breiteneder, 2011; Chion, 1994). Research
confirms that music may, in some cases, exert a
significant impact upon the perception, interpretation,
and remembering of film information (Boltz, 2004;
Cohen, 2005). Not only music, but auditory informa-
tion in general affects eye movements. In a previous
study, we showed that removing the original sound-
track from videos featuring various visual content
impacts eye positions, increasing the dispersion be-
tween the eye positions of different observers and
shortening saccade amplitudes (Coutrot, Guyader,
Ionescu, & Caplier, 2012).

Thus, what we hear has an impact on what we see.
This is particularly true for speech and faces, which are
known to strongly interact, as evidenced by the huge
literature on audiovisual speech integration (Bailly,
Perrier, & Vatikiotis-Bateson, 2012; Schwartz, Robert-
Ribes, & Escudier, 1998; Summerfield, 1987). To
investigate audiovisual integration, most of these
studies presented talking faces to observers and
measured how visual or auditory modifications im-
pacted observers’ eye movements or speech compre-
hension (Bailly, Raidt, & Elisei, 2010; Lansing &
McConkie, 2003; Vatikiotis-Bateson, Eigsti, Yano, &
Munhall, 1998). They identified the eyes and the mouth
as two strong gaze attractors during audiovisual speech
processing, and showed that the degree to which gaze is
directed toward the mouth depends on the difficulty of
the speech identification task. Yet, results emanating
from experimental set-ups using isolated close-ups of
faces might not be generally applied to the real world,
where everything is continuously moving and embed-
ded in a complex social and dynamic context. To
address this issue, Võ, Smith, Mital, and Henderson
(2012) eye-tracked participants watching videos of a
pedestrian engaged in an interview. They showed that
observers’ gazes were dynamically directed to the eyes,
the nose, or the mouth of the interviewee, according to
events depicted (speech onsets, eye contact with the
camera, quick movement of the head). The authors also

found that removing the speech signal decreased the
number of fixations on the pedestrian’s face in favor of
the scene background.

Nevertheless, in daily life, conversations are often
made of several speakers embedded in a complex scene
(objects, background), not only listening to what is
being said but interacting dynamically. Thus, Foulsham
and colleagues eye-tracked observers viewing video clips
of people taking part in a decision-making task.
(Foulsham, Cheng, Tracy, Henrich, & Kingstone, 2010).
These authors showed that gazes followed the speech
turn-taking, especially when the speaker had high social
status. These results indicate that during dynamic face
viewing, our visual system operates in a functional,
information-seeking fashion. A few very recent papers
quantified how the turn-taking affects the gaze of a
noninvolved viewer of natural conversations (Foulsham
& Sanderson, 2013; Hirvenkari et al., 2013). These
studies presented conversations to participants with the
related speech soundtracks or without any sound. They
both showed that sound changed the timing of looks.
With the related speech soundtracks, speakers were
fixated on more often and more quickly after they took
the floor, leading to a greater attentional synchrony.

All the previously reviewed studies reported behav-
ioral and eye movement analyses, but did not quantify
the relative contributions of faces (mute or talking) and
of classical visual features to guide eye movements.
Birmingham and Kingstone (2009) showed static social
scenes to observers and compared their eye positions to
the corresponding low-level saliency maps (within the
meaning of Itti & Koch, 2000). The authors showed that
saliency did not predict fixations better than chance.
They noticed that classical low-level saliency models do
not account for the bias of observers to look at the eyes
within static social scenes. But what about dynamic
scenes, where motion is known to be highly predictive of
fixations, much more than static visual features (Mital,
Smith, Hill, & Henderson, 2010)? What are the relative
powers of classical visual features to attract gaze? How
is their attractiveness modulated by auditory informa-
tion? In this study, we first quantified temporally how
different visual features explain the gaze behavior of
noninvolved viewers looking at natural conversations
embedded in complex natural scenes. Five classical
visual features were compared: the face of the conver-
sation partners, the low-level static saliency, the low-
level dynamic saliency, the center area, and chance (a
uniform spatial distribution). We chose these features
because they are often pointed out by the visual
exploration literature. The center area reflects the center
bias, i.e., the tendency one has to gaze more often at the
center of the image than at the edges (Tseng, Carmi,
Cameron, Munoz, & Itti, 2009). Then, we measured the
influence of auditory information on these features.
Previous studies showed that different types of sounds
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interact differently with visual information when
viewing videos (Vroomen & Stekelenburg, 2011; Song,
Pellerin, & Granjon, 2013). Other studies dealing with
static images and lateralized natural sounds showed that
eye positions are biased toward sound sources, de-
pending on saliencies of both auditory and visual
stimuli (Onat, Libertus, & König, 2007). Like visual
saliency, auditory saliency is measured by how much an
auditory event stands out from the surrounding scene
(Kayser, Petkov, Lippert, & Logothetis, 2005). Thus,
one can legitimately hypothesize that different auditory
scenes (with different auditory saliency profiles) would
have different impacts in the way one listens in on a
conversation. For instance, an abrupt auditory event,
with local saliency peaks, may not influence gaze in the
same way as a continuous auditory stream. We
extracted conversation scenes from Hollywood-like
movies. We recorded the eye movements of participants
watching the movies either with the original speech
soundtrack, with an unrelated speech soundtrack, with
the noise of moving objects (abrupt onsets, e.g., falling
cutlery), or with landscape continuous sound (slowly
changing components, e.g., wind blowing). We modeled
the different recorded gaze patterns with the expecta-
tion-maximization (EM) algorithm, a statistical method
widely used in statistics and machine learning, and
recently successfully applied to visual attention model-
ing (Gautier & Le Meur, 2012; Ho-Phuoc, Guyader, &
Guerin-Dugue, 2010; Vincent, Baddeley, Correani,
Troscianko, & Leonards, 2009). This method is a
mixture model approach that uses participants’ eye
positions to estimate the relative contribution of
different potential gaze-guiding features. In the follow-
ing, we first study the impact of sound on classical
(saccade amplitudes, fixation durations, dispersion
between eye positions) and less classical (distance
between scanpaths) eye movement parameters. Then,
thanks to the EM algorithm, we analyze how auditory
information modulates the relative predictive power of
different visual items (faces, low-level static and
dynamic visual saliencies, center bias).

Methods

The experiment described in the following is part of a
broader study (Coutrot & Guyader, 2013). The stimuli
and the eye-tracking data described below are available
at http://www.gipsa-lab.fr/;antoine.coutrot/.

Participants

Seventy-two participants took part in the experi-
ment: 30 women and 42 men, from 20 to 35 years old

(M ¼ 23.5; SD¼ 2.1). Participants were not aware of
the purpose of the experiment and gave their informed
consent to participate. This study was approved by the
local ethics committee. All were French native speak-
ers, had a normal or corrected-to-normal vision, and
reported normal hearing.

Stimuli

The visual material consisted of 15 one-shot
conversation scenes extracted from French Hollywood-
like movies. Videos featured two to four conversation
partners embedded in a natural environment. Videos
lasted from 12 to 30 s (M ¼ 19.6; SD¼ 4.9), had a
resolution of 720 · 576 pixels2 (28 · 22.5 squared
degrees of visual angle), and a frame rate of 25 frames
per second. We chose stimuli featuring conversation
partners embedded in complex scenes (cafe, streets,
corridor, office, etc.) involving different moving objects
(glasses, spoons, cigarettes, papers, etc.). Faces occu-
pied an area of 3.3 6 0.4 · 5.2 6 0.9 deg2 and were
separated from each other by 108 6 28. Thus, on
average, each face only occupied (3.3 · 5.2) / (28 ·
22.5)¼ 2.7% of the frame area. The auditory material
consisted of 45 monophonic soundtracks: a first set of
15 soundtracks extracted from the conversation scenes
(dialogues), a second set of 15 soundtracks made up of
noises from moving objects (short abrupt onsets, e.g.,
falling cutlery), and a third set of 15 soundtracks
extracted from landscape scenes (continuous auditory
stream, e.g., wind blowing).

To investigate the effect of auditory information on
gaze allocation during a conversation, we created four
auditory versions of the same visual scene, each one of
them corresponding to an auditory condition. The
Original version in which visual scenes were accompa-
nied by their original soundtracks, the Unrelated
Speech version in which the original soundtrack was
replaced by another speech soundtrack from the first
set, the Abrupt Sounds version in which the original
soundtrack was replaced by a soundtrack from the
second set, and the Continuous Sound version in which
the original soundtrack was replaced by a soundtrack
from the third set. In the following, Unrelated Speech,
Abrupt Sounds, and Continuous Sound conditions will
be referred to as the Nonoriginal conditions. A
soundtrack was associated to a particular visual scene
only once. The soundtracks were monophonic and
sampled at 48,000 Hz. All dialogues were in French.

Apparatus

Participants were seated 57 cm away from a 21-in.
CRT monitor with a spatial resolution of 1024 · 768
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pixels and a refresh rate of 75 Hz. The head was
stabilized with a chin rest, forehead rest, and headband.
The audio signal was presented via headphones
(HD280 Pro, 64X, Sennheiser, Wedemark, Germany).
Eye movements were recorded using an eye-tracker
(Eyelink 1000, SR Research, Eyelink, Ottawa, Canada)
with a sampling rate of 1000 Hz and a nominal spatial
resolution of 0.01 degree of visual angle. We recorded
the eye movements of the dominant eye in monocular
pupil–corneal reflection tracking mode.

Procedure

Each participant viewed the 15 different conversa-
tion scenes. The different auditory versions were
balanced (e.g., four scenes in Original condition, four in
Unrelated Speech condition, four in Abrupt Sounds
condition, and three in Continuous Sound condition).
Participants were told to carefully look at each video.
Each experiment was preceded by a calibration
procedure, during which participants focused their gaze
on nine separate targets in a 3 · 3 grid that occupied
the entire display. A drift correction was carried out
between each video, and a new calibration procedure
was performed if the drift error was above 0.58. Before
each video, a fixation cross was displayed in the center
of the screen for 1 s. After that time, and only if the
participant looked at the center of the screen (gaze
contingent display), the video was played on a mean
gray level background. Between two consecutive
videos, a gray screen was displayed for 1 s. To avoid
any order effect, videos were randomly displayed. Each
visual scene was seen in each auditory condition by 18
different participants.

Data extraction

Eye positions

The eye-tracker system sampled eye positions at 1000
Hz. Since videos had a frame rate of 25 frames per
second, 40 eye positions were recorded per frame and
per participant. In the following, an eye position is the
median of the 40 raw eye positions: There is one eye
position per frame and per subject. We discarded from

analysis the eye positions landing outside the video
area.

Saccades

Saccades were automatically detected by the Eyelink
software using three thresholds: velocity (308/s), accel-
eration (80008/s2), and saccadic motion (0.158).

Fixations

Fixations were detected as long as the pupil was
visible and as long as there was no saccade in progress.

Face labeling

The face of each conversation partner was marked
by an oval mask. Since faces were moving, the
coordinates of each mask were defined dynamically for
each frame of each video. We used Sensarea, an in-
house authoring tool allowing spatio-temporal seg-
mentation of video objects to be performed automat-
ically or semi-automatically (Bertolino, 2012).

Eye-tracking results

How does sound influence eye movements when
viewing other people having a conversation? In this
section, we characterize how some general eye move-
ment parameters such as saccade amplitudes and
fixation durations are affected by the auditory content.
We also analyze the variability of eye movements
between participants. Then, we perform a temporal
analysis to describe how a given soundtrack influences
observers’ sequence of fixations across the exploration
(scanpaths).

Global analysis

Saccade amplitudes

For each participant, we computed the mean saccade
amplitude in each auditory condition (see Table 1). One-
way repeated measures ANOVA with mean saccade

Auditory conditions

Original Unrelated speech Abrupt sounds Continuous sound

Saccade amplitudes (degree) 4.5 6 0.2 4.9 6 0.2 5.0 6 0.2 4.9 6 0.2

Fixation durations (ms) 430 6 23 423 6 21 412 6 21 419 6 22

Dispersions (degree) 4.8 6 0.5 5.3 6 0.5 5.6 6 0.6 5.5 6 0.6

Table 1. General eye movement parameters in each auditory condition. Notes: Saccade amplitudes and fixation durations are
averaged over participants, whereas dispersions are averaged over stimuli. (M 6 SE).
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amplitude per subject as a dependent variable and
auditory condition (Original, Unrelated Speech, Abrupt
Sounds, and Continuous Sound) as within-subject factor
was performed. A principal effect of the auditory
condition was found, F(3, 213)¼ 7.72; p , 0.001, and
Bonferroni posthoc pairwise comparisons revealed that
saccade amplitudes are higher for the three Nonoriginal
conditions compared to the Original condition (all
ps , 0.01). No difference was found between Non-
original auditory conditions (all ps¼ 1).

Saccade amplitudes follow a bimodal distribution,
with modes around 18 and 78, as shown Figure 1a. We
can notice that the first mode of Original distribution is
significantly higher than the first mode of Unrelated
Speech, Abrupt Sounds, and Continuous Sound
distributions. (Three two-sample Kolmogorov-Smirnov
tests between the Original condition and the three other
conditions, all ps , 0.001). To further understand this
bimodal distribution, we split the saccades into two
groups: short (,38) saccades, corresponding to the first
mode, and large (.38) saccades, corresponding to the
second mode. In each group, we compared the
proportion of saccades (a) starting from one face and
landing on another one (Inter); (b) starting from one
face and landing on the same one (Intra); and (c)
starting from or landing on the background (Other; see
Figure 1b). There are no Inter saccades in the first
mode and almost no Intra saccades in the second mode.
Thus it is reasonable to assume that the first mode
represents the saccades made within a given face (from
eyes to mouth, to nose, etc.) and that the second mode
represents the saccade made between faces.

Fixation durations

We conducted one-way repeated measures ANOVA
with mean fixation duration per subject as a dependent
variable and auditory condition as within subject
factor. We did not find any effect of the auditory
condition, F(3, 213)¼0.39; p¼0.76. Fixation durations
follow a classical positively skewed, long-tailed distri-
bution.

Dispersion

To estimate the variability of eye positions between
observers, we used a dispersion metric. For a frame and
n observers (p¼ (xi, yi)i�[1..n] the eye position
coordinates), the dispersion D is defined as follows:

DðpÞ ¼ 1

nðn� 1Þ
Xn
i¼1

Xn

j¼1
j6¼i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2

q
ð1Þ

The dispersion is the mean Euclidian distance between
the eye positions of different observers for a given
frame. Small dispersion values reflect clustered eye
positions.

We averaged dispersion values over all frames and
compared the results obtained for the 15 videos in each
auditory condition (Table 1). We conducted one-way
repeated measures ANOVA with mean dispersion per
video as a dependent variable and auditory condition
as within subject factor. A principal effect of the
auditory condition was found, F(3, 42) ¼ 17.97; p ,
0.001, and Bonferroni posthoc pairwise comparisons
revealed that dispersion is higher in the three Non-
original conditions compared to the Original condition

Figure 1. (a) Probability density estimate of saccade amplitudes in each auditory condition. The density is evaluated at 100 equally

spaced points covering the range of data (ksdensity Matlab function). (b) Proportion of saccades starting from one face and landing

on another one (Interfaces); starting from one face and landing on the same face (Intrafaces); and starting from or landing on the

background (Other). Saccades are separated in two groups: ,38 saccades (corresponding to the first mode of Figure 1a) and .38

saccades (corresponding to the second mode of Figure 1a).
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(all ps , .001). We found no difference between
Nonoriginal conditions (Abrupt Sounds vs. Unrelated
Speech: p¼ 0.07; Continuous Sound vs. Abrupt
Sounds: p¼ 1; Continuous Sound vs. Unrelated
Speech: p¼ 0.79).

We showed that in Nonoriginal auditory conditions,
the dispersion between the eye positions of different
subjects is higher and saccade amplitudes are larger.
These results reflect a greater attentional synchrony in
the Original condition: Eye positions are more clus-
tered in a few regions of interest. To better understand
these global results, we looked at the temporal
evolution of gaze behavior and compared subjects’
scanpaths in each auditory condition.

Temporal analysis

In this section, we first look at the temporal
evolution of the variability between observers’ eye
positions (dispersion) and of their distance from the
screen center (distance to center [DtC]). For the sake of
clarity, only the evolution along the 80 first frames was
plotted but analyses were carried out over whole
videos. Then, for each auditory condition, we compare
the number of fixations and the fixation sequences
(scanpaths) landing on talking and mute faces. In the
following, by talking face, we mean a face that talks in
the Original auditory condition.

Dispersion

We represented the frame-by-frame evolution of
dispersion (Figure 2). During the five first frames,
dispersion remains small (around 0.58), regardless of

the auditory condition. Then, it increases sharply and
reaches a plateau after the first second (around 25
frames) of visual exploration. During the first second,
all dispersion curves are superimposed. But once the
plateau has been reached, the dispersion curve in the
Original condition stays below the others, as we found
in the global analysis.

Distance to Center

DtC is defined, for a given frame, as the mean
distance between observers’ eye positions and the
screen center. A small DtC value corresponds to a
strong center bias, and can be seen as an indicator of
the type of exploration strategy (active or passive). The
center bias reflects the tendency one has to gaze more
often at the center of the image than at the edges (see
the Modeling section below). The DtC (not represent-
ed) follows the same pattern as dispersion. It stays
small (around 0.58) during the five first frames, then it
increases sharply and reaches a plateau after the
twentieth frame (around 6.58). Contrary to dispersion,
DtC curves do not differ significantly between auditory
conditions during the whole experiment.

Fixation ratio

We matched the eye positions to the frame-by-frame
labeled faces previously defined. We also manually
spotted the time periods during which each face was
speaking. Speaking and mute time periods were defined
in the Original auditory condition, i.e., when the face
was actually articulating. Thus, we were able to spatio-
temporally distinguish talking faces from mute faces.
For each of the 33 faces present in our stimuli and for
each frame, we computed a fixation ratio, i.e., the
number of fixations landing on the faces divided by the
total number of fixations. We then averaged these
ratios over the speaking and the mute periods of time
(28 faces talked at least once and 27 faces were silent at
least once; see Table 2). We found that talking faces
attracted gaze around twice as much as mute faces,
regardless of the auditory condition. One-way repeated
measures ANOVA with fixation ratio on talking faces
as a dependent variable and auditory condition as
within factor was performed. A principal effect of the
auditory condition was found, F(3, 81)¼8.9; p , 0.001,
and Bonferroni posthoc pairwise comparisons revealed
that talking faces were more fixated in the Original than
in the three Nonoriginal conditions (all ps , 0.001), but
that there was no difference between Nonoriginal
conditions (all ps ¼ 1).

The same analysis was performed with mute faces.
We did not find any effect of the auditory condition,
F(3, 78) ¼ 1.5; p ¼ 0.21. These ratios might seem low
compared with the literature. This is understandable

Figure 2. Temporal evolution of the dispersion between

observers’ eye positions. Dispersions are computed frame-by-

frame and averaged over the 15 videos of each auditory

condition. Values are given in degree of visual angle with error

bars corresponding to the standard errors.

Journal of Vision (2014) 14(8):5, 1–17 Coutrot & Guyader 6



since we used stimuli featuring conversation partners
embedded in complex natural environments, and many
objects that could also attract observers’ gaze. To
further understand how soundtracks impact on the
timing of looks in talking and mute faces, we used a
string edit distance to directly compare observers’
scanpaths.

Scanpath comparison

To compare scanpaths, a classical method is to use
the Levenshtein distance, a string edit distance mea-
suring the number of differences between two se-
quences (Levenshtein, 1966). This distance gives the
minimum number of operations needed to transform
one sequence into the other (insertion, deletion, or
substitution of a single character), and has been widely
used to compare scanpaths. In this case, the compared
sequence is the sequence of successive fixations made by
an observer across visual exploration (see Le Meur &
Baccino, 2013, for a review). Here, we used quite a
simple approach, since we only intended to compare
the observer fixation patterns in regions of interest

(faces), without considering the distance between them.
For a given video, we sampled the eye movement
sequence of each subject frame by frame. To each
frame, we assigned a character corresponding to the
area of the scene currently looked at (face a, face b, . . .,
background; see Figure 3). We also defined the ground
truth sequence, or GT, of each video. If a video lasts m
frames, GT is an array of length m, such as if face a
speaks at frame i, then GT(i)¼ a. If no face speaks at
frame j, then GT(j)¼ background. This choice is quite
conservative since even when no one is speaking,
observers usually continue looking at faces. For each
subject, we compared the Levenshtein distance between
the fixation sequence recorded on each video and GT,
normalized by the length m of the video. We conducted
one-way repeated measures ANOVA with mean-
normalized Levenshtein distance per subject as a
dependent variable and auditory condition as within
subject factor. A principal effect of the auditory
condition was found, F(3, 213) ¼ 17.6; p , 0.001, and
Bonferroni posthoc pairwise comparisons revealed that
the Levenshtein distance was smaller between GT and
the eye movement sequences recorded in the Original

Auditory conditions

Original Unrelated speech Abrupt sounds Continuous sound

Fixation in talking faces (%) 48 6 5 40 6 4 38 6 4 38 6 5

Fixation in mute faces (%) 20 6 4 23 6 3 22 6 3 22 6 3

Table 2. Fixation ratios (number of fixations landing on faces divided by the total number of fixations). Notes: Fixation ratios are
computed for each face in each video. By averaging these ratios over speaking and silent time periods, we obtain fixation ratios for
talking and mute faces. (M 6 SE).

Figure 3. Left: Frames are split into five regions of interest (face a, face b, face c, face d, and background e). At the bottom, each line

represents the scanpath of a subject: Each letter stands for the region the subject was looking at during each frame. Right: Mean

normalized Levenshtein distance between the scanpaths and the ground truth sequence, in each auditory condition. Error bars

correspond to the standard errors.
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than in the three Nonoriginal conditions (all ps ,
0.001). No difference between Nonoriginal conditions
was found (Abrupt Sounds vs. Unrelated Speech: p ¼
0.12; Continuous Sound vs. Abrupt Sounds: p¼ 1;
Unrelated Speech vs. Continuous Sound: p ¼ 0.64).
Thus, we found a greater similarity between scanpaths
and the ground truth sequences in Original than in
Nonoriginal conditions.

Interim summary

We show that the presence of faces deeply impact
visual exploration by attracting most fixations toward
them. In particular, talking faces attract gaze around
twice as many as mute faces, regardless of the auditory
condition. In the Original auditory condition, eye
positions are more clustered within face areas, leading
to smaller saccade amplitudes. Temporal analysis
reveals that, in contrast to mute faces, talking faces
attract more observers’ gazes in the Original condition.
We find no significant difference between Nonoriginal
conditions. These results are confirmed by the com-
parison between scanpaths and speech turn-taking,
pointing out that in the Original condition, partici-
pants’ gaze follows the speech turn-taking (GT) more
closely than in Nonoriginal conditions.

To better characterize the differences between
exploration strategies in each auditory condition, we
quantify the importance of different visual features
likely to drive gaze when viewing conversations. To do
so, we model the probability distribution of eye
positions by a mixture of different causes and separate
their contributions with a statistical method, the EM
algorithm.

Modeling

In this section, we quantify how soundtracks
modulate the strength of potential gaze guiding
features such as static and dynamic low-level visual
saliencies, faces, and center bias (see below). To
separate and quantify the contribution of the different
gaze guiding features, we used the EM algorithm, a
statistical method using observations (the recorded eye
positions) to estimate the relative importance of each
feature in order to maximize the global likelihood of
the mixture model (Dempster, Laird, & Rubin, 1977).
The EM algorithm is widely used in statistics and
machine learning, and some recent studies have
successfully applied it to visual attention modeling in
static scenes (Gautier & Le Meur, 2012; Ho-Phuoc et
al., 2010; Vincent et al., 2009). To our knowledge, EM
has never been used on dynamic scenes. In order to
represent the dynamic turn-taking of conversations, we

computed the weights of the different features for each
frame of each video.

Let P(wjf, v) be the probability distribution of n eye
positions with coordinates (w¼ (xi, yi)i�[1..n], made by n
different observers on frame f of video v. To break this
probability distribution down into m different gaze
guiding features, a classical method is to express P as a
mixture of different causes U, each associated to a
weight a:

Pðwj f; vÞ ¼
Xm

k¼1

akðf; vÞUkðx; y; f; vÞ;with
Xm

k¼1

akðf; vÞ ¼ 1

P and U have the same dimensions as frames (720 ·
576). The EM algorithm converges toward the most
likely combination of weights, i.e., the one that
optimizes the maximum likelihood of the data, given
the eye position probability distribution P and the
features U. The first step (expectation) takes all the
visual features modeling the data (low-level static and
dynamic saliencies, center bias, uniform distribution,
and face masks) and converts them into two-dimen-
sional (2-D) spatial probability distributions. Assuming
that the current model (i.e., the weight combination) is
correct, the algorithm labels each eye position with the
corresponding probability of each 2-D spatial distri-
bution. The second step (maximization) assumes that
these probabilities are correct and sets the weights of
the different features to their maximum likelihood
values. These two steps are iterated, until a convergence
threshold is reached. Finally, the best weight combi-
nation is found for each frame of each video in each
auditory condition. This allows the frame-by-frame
evolution of the relative importance of each feature to
be followed. Below, we describe the features we chose
for the mixture model: static and dynamic low-level
saliencies, center bias, and faces (Figure 4).

Low-level saliency

To compute the saliency of video frames we used the
spatio-temporal saliency model proposed in (Marat et
al., 2009). This biologically inspired model, only based
on luminance information, is divided into two main
steps: a retina-like and a cortical-like stage. Before the
retina stage, camera motion compensation is performed
to extract only the moving areas relative to the
background. The retina-like stage does not model the
photoreceptor distribution. It extracts, on one hand,
low spatial frequencies further processed in the
dynamic pathway to extract moving areas in the video
frame, and on the other hand, high spatial frequencies
further processed in the static pathway to extract
luminance orientation and frequency contrast. Then,

Journal of Vision (2014) 14(8):5, 1–17 Coutrot & Guyader 8



the cortical-like stage processes these two pathways
with a bank of Gabor filters.
Static saliency: The Gabor filter outputs are normalized
to strengthen the filtered frames having spatially
distributed maxima. Then, they are added up, yielding
a static saliency map (Figure 4b). This map emphasizes
the high luminance contrast.
Dynamic saliency: Through the assumption of lumi-
nance constancy between two successive frames,
motion estimation is performed for each spatial
frequency of the bank of Gabor filters. Finally, a
temporal median filter is applied over five successive
frames to remove potential noise from the dynamic
saliency map (Figure 4c). This map emphasizes the
moving areas, returning the amplitude of the motion.

Center bias

Most eye-tracking studies reported that subjects tend
to gaze more often at the center of the image than at the
edges. Several hypotheses have been proposed to
explain this bias. Some are stimuli-related, like the
photographer bias (one often places regions of interest
at the center of the picture); others are inherent to the
oculomotor system (motor bias) or to the observers’
viewing strategy (Marat et al., 2013; Tatler, 2007; Tseng
et al., 2009). As in Gautier and Le Meur (2012), the
center bias is modeled by a time-independent bidi-
mensional Gaussian function, centered at the screen

center as N(0, R), with
P
¼ (

r2
x 0

0 r2
y
) the covariance

matrix and r2
x, r2

y the variance. We chose rx and ry
proportional to the frame size (288 · 22.58), and ran the
algorithm with several values ranging from rx¼28 to rx
¼ 3.58 and ry¼ 1.68 to ry¼ 2.88. Changing these values

did not significantly change the outputs. The results
presented in this study were obtained with rx¼ 2.38
and ry ¼ 1.98 (Figure 4d).

Uniform distribution

Fixations occur at all positions with equal proba-
bility (Figure 4e). This feature is a catch-all hypothesis
that stands for any fixations that are not explained by
other features. The lower the weight of this feature is,
the better the other features will explain the data.

Faces

For a given frame, we created as many face maps as
faces present in the frame. Face maps were made up of
the corresponding face binary masks described in the
Method section (Figure 4f, g). In Figure 5a, the All
Faces weight corresponds to the sum of the weights of
the different face maps in the frame.

For each video, the weight of each feature was
averaged over time. We compared the weights of the
different features for each video, regardless of the
auditory condition, as well as the weights of each
feature in the different auditory conditions (Figure 5a).
Faces were by far the most important features
explaining gaze behavior, regardless of the auditory
condition (weights � 0.6). This result matches the
fixation ratios reported in Table 2: The fixation ratio in
all faces (i.e., mute þ talking) is around 60%.

We performed repeated measures ANOVA with
Feature Weights (Static Saliency, Dynamic Saliency,
Center Bias, Uniform, and Faces) and Auditory
Conditions (Original, Unrelated Speech, Continuous

Figure 4. Features chosen to model the probability distribution of eye positions on each frame.
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Sound, and Abrupt Sounds) as within-subject factors.
The main effect of Feature Weights yielded an F ratio
of F(4, 56) ¼ 145.95, p , 0.001. Bonferroni pairwise
comparisons revealed that the weight of Faces was
significantly higher than the others (all ps , 0.001).
There was no significant difference between Static
Saliency, Dynamic Saliency, and Center Bias (Static
vs. Dynamic: p ¼ 1; Static vs. Center Bias: p ¼ 0.67;
Dynamic vs. Center Bias: p¼ 1). Uniform distribution
was lower than Static and Dynamic Saliencies
(Uniform vs. Static: p , 0.001; Uniform vs. Dynamic:
p ¼ 0.06), but was not significantly different from
Center Bias (Uniform vs. Center Bias: p ¼ 0.18). The
main effect of Auditory conditions yielded an F ratio
of F(3, 42) ¼ 74.39, p , 0.001. The interaction effect
was also significant, with an F ratio of F(12, 168) ¼
6.43, p , 0.001. Bonferroni pairwise comparisons
between each auditory condition for each feature were
calculated.

Static Saliency, Dynamic Saliency, Center Bias and
Uniform features: No significant difference between
auditory conditions (all ps¼ 1).

All Faces: We found that All Faces weight is higher
in the Original auditory condition than in other
conditions (Original vs. Unrelated Speech: p¼ 0.019;
Original vs. Abrupt Sounds: p , 0.001; Original vs.
Continuous Sound: p , 0.001). We found no significant
difference between Unrelated Speech, Abrupt Sounds,
and Continuous Sound (Abrupt Sounds vs. Unrelated
Speech: p¼ 0.32; Continuous Sound vs. Abrupt
Sounds: p¼ 1; Unrelated Speech vs. Continuous
Sound: p ¼ 1).

Talking and mute faces

We tagged manually the periods of time during
which each face was speaking or mute (in the Original
auditory condition), as it was done to calculate the
fixation ratios. By averaging the weights of face maps
over these periods of time, we were able to separate the
contribution of talking faces from mute faces. The
weights shown in Figure 5b nicely match the fixation
ratios reported in Table 2 around 20% for mute faces
regardless of the auditory condition, around 50% for
talking faces in the Original condition, and 40% in the
Nonoriginal condition.

We conducted repeated measures ANOVA with the
face category (mute and talking) and the auditory
condition (Original, Unrelated Speech, Continuous
Sound, and Abrupt Sounds) as within-subject factors.
The main effect of the face category yielded an F ratio
of F(1, 14) ¼ 106.75, p , 0.001. The maps containing
the talking faces had a mean weight of 0.45 and the
maps containing the mute faces had a mean weight of
0.2. The main effect of auditory conditions yielded an F
ratio of F(3, 42)¼ 5.16, p¼ 0.004. The interaction effect
was also significant, with an F ratio of F(3, 42)¼ 20.14,
p , 0.001.

Bonferroni pairwise posthoc comparisons revealed
that talking face weights were higher in the Original
auditory condition than in the other conditions (all ps
, 0.001). For the weights of the mute face map, we
found no difference between the auditory conditions
(Original vs. Unrelated Speech: p¼ 0.70; Original vs.
Abrupt Sounds: p¼ 1; Original vs. Continuous Sound:
p¼ 1; Unrelated Speech vs. Continuous Sound: p ¼ 1;

Figure 5. (a) Weights of the features chosen to model the probability distribution of eye positions (the sum of the five features equals

one). (b) Contributions of talking and mute faces to the all faces weight (the sum of the two equals the all faces weight). For each

video, weights are averaged over all frames. Results are then averaged over all videos and error bars correspond to the standard

errors. *Marks a significant difference between auditory conditions for the corresponding feature (Bonferroni pairwise posthoc

comparisons, see below for further details).
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Abrupt Sounds vs. Unrelated Speech: p¼ 1; Contin-
uous Sound vs. Abrupt Sounds: p ¼ 1).

Interim summary

We show that in dynamic conversation scenes, low-
level saliencies (both static and dynamic) and center
bias are poor gaze-guiding features compared to faces,
and especially to talking faces. Even if the related
speech enhances talking face weight by 10%, gaze is
mostly driven toward talking faces by visual informa-
tion. Indeed, even with unrelated auditory information,
the weight of talking faces is still twice the weight of
mute faces. We found no difference between unrelated
auditory conditions.

Discussion

Gaze attraction toward faces is widely agreed upon.
However, when trying to model visual attention,
authors rarely take faces into account and never
consider the auditory information that is usually part
of dynamic scenes. In this paper, we quantify how
auditory information influences gaze when viewing a
conversation. For this purpose we eye-tracked partic-
ipants viewing conversation scenes in different auditory
conditions (original speech, unrelated speech, noises of
moving objects, and continuous landscape sound), and
we compared their gaze behaviors. First, we comment
on our results with reference to previous studies on
faces and visual attention. Then we discuss how speech
and other sounds modulate gaze behavior when
viewing conversations. Finally, we propose ground-
work for an audiovisual saliency model.

Faces: Strong gaze attractors

We found that in every auditory condition, faces
attract the most fixations (.60%). This central role of
faces in visual exploration is reflected by saccade
amplitude distribution. Classically, saccades made
during the free exploration of natural scenes follow a
positively skewed, long-tailed distribution (Bahill,
Adler, & Stark, 1975; Coutrot et al., 2012; Tatler,
Baddeley, & Vincent, 2006). In contrast, here we found
a bimodal distribution, with modes around 18 and 78.
An interpretation is that when viewing scenes including
faces, participants make at least two kinds of saccades:
intraface (from eyes to mouth to nose, etc.) and
interface (from one conversation partner to another)
saccades. We tested this hypothesis by comparing the
proportion of intraface and interface saccades and their

amplitudes. We found that almost all intraface saccades
were concentrated within the first mode, while all
interface saccades were concentrated within the second
one. This result is confirmed by the mean face area
(around 38 · 58, matching the first mode) and the mean
distance between conversation partners (around 108,
matching the second mode) present in our stimuli.
Moreover, fixation durations were longer (around 420
ms) than usually reported in the literature (250–350
ms), which supports the idea of long explorations of a
few regions of interest, like faces (Pannasch, Helmert,
Herbold, Roth, & Henrik, 2008; Smith & Mital, 2013).

Studies have long established the specificity of faces
in visual perception (Yarbus, 1967), but the use of static
images made the generalization of their results to the
real world problematic. Recently, some social gaze
studies used dynamic stimuli to get as close as possible
to ecological situations and confirmed that observers
spend most of the time looking at faces (Foulsham et
al., 2010; Frank, Vul, & Johnson, 2009; Hirvenkari et
al., 2013; Võ et al., 2012). This exploration strategy
leads eye positions to cluster on faces (Mital et al.,
2010), and more generally induces a decrease in eye
position dispersion, as compared to natural scenes
without semantically rich regions (e.g., landscapes;
Coutrot & Guyader, 2013). Our results are consistent
with a very strong impact of faces on gaze behavior
when exploring natural dynamic scenes. They extend
previous findings by highlighting that the presence of
faces in natural scenes leads to a bimodal saccade
amplitude distribution corresponding to the saccades
made within a same face and between two different
faces. This strong impact of faces occurred even though
the stimuli we chose featured conversation partners
who were embedded in complex natural environments
(cafe, office, street, corridor) and many objects that
could also attract observers’ gaze.

We also quantified and compared the strength of
different gaze guiding features such as static and
dynamic low-level visual saliencies, faces, and center
bias. Our results show that after a short predominance
of the center bias (during the first five frames), faces are
by far the most pertinent features to explain gaze
allocation. This five-frame delay is classically reported
for reflexive saccades toward peripheral target (latency
around 150–250 ms; Carpenter, 1988; Yang, Bucci, &
Kapoula, 2002). Then, we found that although the
weights are globally high for every face, they are even
higher for talking faces, regardless of the auditory
condition. This indicates that visual cues are sufficient
to efficiently drive gaze toward speakers. Yet, the quite
low weights we found for both static and dynamic low-
level dynamic saliencies suggest that their contribution
to gaze guiding is slight. This result reinforces previous
studies claiming that classical visual attention models
do not account for human eye fixations when looking
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at static images involving complex social scenes
(Birmingham & Kingstone, 2009). Thus, to explain the
attractiveness of speakers even without their related
speech, higher level visual cues might be invoked, such
as expressions or body language (Richardson, Dale, &
Shockley, 2008). However, these are more difficult to
model.

Influence of related speech

We found that if the fixation ratio is globally high
for every face, it is even higher for talking faces,
regardless of the auditory condition. As stated in the
previous paragraph, this result suggests that since
observers are able to follow speech turn-taking without
the related speech soundtrack, visual and auditory
information are in part redundant in guiding the
viewers’ gaze (as was also reported in Hirvenkari et al.,
2013). So, what is the added value of sound? A body of
consistent evidence shows that with the related speech,
observers follow the speech turn-taking even more
closely. First, the dispersion between eye positions
made with the related speech was found to be smaller
than without it (as was also reported in Foulsham &
Sanderson, 2013). Second, when we modeled the gaze-
attracting power of different visual features, the
weights of talking faces were found to be significantly
higher with than without the related speech. Third, the
first mode of saccade amplitude distribution (corre-
sponding to the intraface type of saccade) was found to
be much greater with than without the related speech.
These results show that without the related speech
soundtrack, observers were less clustered on talking
faces, making fewer little saccades (from eyes to mouth
to nose), usually made to better understand speakers
momentary emotional state, or to support speech
perception by sampling mouth movements and other
facial nonverbal cues (Buchan, Paré, & Munhall, 2007;
Vatikiotis-Bateson et al., 1998; Võ et al., 2012).
Finally, we compared the scanpaths between subjects
in each auditory condition to a ground truth sequence
representing speech turn-taking. We found a greater
similarity between subjects’ scanpaths and the ground
truth sequence in the original auditory condition. This
result is coherent with the recent studies of Hirvenkari
et al. (2013) and Foulsham and Sanderson (2013),
which noted the temporal relationship between speech
onsets and the deployment of visual attention. Both
studies reported that with the related speech sound-
track, fixations on the speaker increased right after
speech onset, peaking about 800 ms to 1 s later.
Removing the sound did not affect the general gaze
pattern, but it did change the speed at which fixations
moved to the speaker. It may be consistent with
considering speech as an alerting signal telling that

another conversation partner has taken the floor.
Without related speech, observers have to realize that
the speakership has shifted and seek the new speaker,
which could explain the lower similarity between their
scanpaths and the speech turn-taking. In this section,
we discussed gaze behavior between Original and
Nonoriginal conditions, but what about the differences
between Nonoriginal conditions?

Influence of other soundtracks

Our results show an effect of the related speech on
eye movements while watching conversations. But what
about unrelated sounds? Studies showed that present-
ing natural images and lateralized natural sounds
biased observers’ gazes towards the part of the image
corresponding to the sound source (Onat et al., 2007;
Quigley, Onat, Harding, Cooke, & König, 2008).
Moreover, this spatial bias is dependent on the image
saliency presented without any sound, meaning that
gaze behavior is the result of an audiovisual integration
process. Yet, our study is quite different from these,
since we used unspatialized soundtracks and dynamic
stimuli. Other studies investigated the perception of
audiovisual synchrony for complex events by present-
ing speech versus object-action video clips at a range of
stimulus onset asynchronies (Vatakis & Spence, 2006).
Participants were significantly better at judging the
temporal order of streams (auditory or visual) for the
object actions than for the speech video clips, meaning
that cross-modal temporal discrimination performance
is better for audiovisual stimuli of lower complexity,
compared to stimuli having continuously varying
properties. Indeed, authors argued that since speech
presents a fine temporal correlation between sound and
vision (phoneme and viseme), judging temporal order
in audiovisual speech may be more difficult than for
abrupt noises like moving object sounds (Vroomen &
Stekelenburg, 2011). Thus, audiovisual integration
seems to be linked to the abrupt or slowly changing
nature of audiovisual component signals, and to their
correlation. That is why we chose to investigate how
visual exploration is influenced by unrelated speech
soundtracks (is speech special?), sound of moving
objects (abrupt sound onsets), and landscape sounds
(slowly varying components).

Surprisingly, we found no difference between the
three Nonoriginal auditory conditions, whether in
terms of dispersion between eye positions, saccade
amplitudes, fixation durations, scanpath comparisons,
fixation ratios in faces (mute or talking), or weights of
any features computed by the EM algorithm. A reason
for this absence of effect might be found in the notion
of audiovisual binding.
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A classical view of audiovisual integration is that
audio and visual streams are separately processed
before interaction automatically occurs, leading to an
integrated percept (Calvert, Spence, & Stein, 2004).
Other studies suggested that audiovisual fusion could
be conceived as a two-stage process, beginning by
binding together pieces of audio and video that present
a certain amount of spatio-temporal correlation, before
the actual integration (Berthommier, 2004). A recent
study reinforced this idea by showing that it is possible
to unbind visual and auditory streams (Nahorna,
Berthommier, & Schwartz, 2012). To do so, the authors
used the McGurk effect as a marker of audiovisual
integration: The more it occurs, the more visual and
auditory information the participants integrate. Results
showed that if a given McGurk stimulus (visual /ga/
dubbed onto an acoustic /ba/) is preceded by an
incoherent audiovisual context, the amount of McGurk
effect (perception of /da/; McGurk & MacDonald,
1976), and thus the audiovisual integration, is largely
reduced. The authors showed that even a very short
incoherent audiovisual context (one syllable) is enough
to cause unbinding.

In our study, there might be no difference in gaze
behavior between Nonoriginal auditory conditions
simply because unrelated speech, object noise, and
landscape sound soundtracks are not temporally
correlated enough with the visual information to pass
through the binding stage, preventing any further
integration. In the three Nonoriginal auditory condi-
tions, observers might just filter out the unbound audio
information and focus on the sole visual stream. Thus,
any unrelated soundtracks or no soundtrack at all
might result to the same gaze behavior, only driven by
visual information. This interpretation is confirmed by
the results of two recent papers that compared the gaze
behavior of participants watching videos with or
without their original soundtrack (Coutrot et al., 2012;
Foulsham & Sanderson, 2013). Foulsham et al. (2010)
used dynamic conversations as stimuli and found
higher dispersion between eye positions and larger
saccade amplitudes in the visual condition than in the
audiovisual condition, which is coherent with our
previous results (Coutrot et al., 2012). In fact, we also
found higher dispersion in the visual condition than in
audio-visual conditions, but without larger saccade
amplitudes. Since we used various videos as stimuli (not
specifically involving faces), these results corroborate
the idea developed at the beginning of this Discussion:
that the presence of faces induces an intraface and
interface type of saccade. As explained, removing the
original soundtrack increases the inter/intraface sac-
cade ratio, resulting in an increase in saccade ampli-
tude. On the contrary, when the visual scenes do not
involve faces, removing the original soundtrack yields

smaller saccades: Observers might become less active
and make less goal-directed saccades.

It is interesting to notice that this binding phenom-
enon has been understood and used by filmmakers for a
long time. For instance, the French composer and film
theorist Michel Chion (1994, p. 40) denies the very
notion of soundtrack as a coherent unity:

By stating that there is no soundtrack I mean first
of all that the sounds of a film, taken separately
from the image, do not form an internally coherent
entity on equal footing with the image track.
Second, I mean that each audio element enters into
simultaneous vertical relationship with narrative
elements contained in the image (characters,
actions) and visual elements of texture and setting.
These relationships are much more direct and
salient than any relations the audio element could
have with other sounds. It’s like a recipe: Even if
you mix the audio ingredients separately before
pouring them into the image, a chemical reaction
will occur to separate out the sounds andmake each
react on its own with the field of vision.

Chion (1994), Nahorna et al. (2012), and this study
agree on the necessity for sound to ‘‘enter into
simultaneous vertical relationship’’ (i.e., to be corre-
lated) with visual information so as to be bound and
integrated with it, or using Chion’s words, to ‘‘react’’
with it.

Toward an audiovisual saliency model

In many situations, low-level visual saliency models
fail to predict fixation locations (Tatler et al., 2011). For
scenes involving semantically interesting regions
(Nyström & Holmqvist, 2008; Rudoy, Goldman,
Shechtman, & Zelnik-Manor, 2013) and faces (Bir-
mingham & Kingstone, 2009), it has been shown that
high-level factors override low-level factors to guide
gaze. In this paper, we modeled the probability
distribution of eye positions across each video with the
EM algorithm, a statistical method allowing the
contribution of different gaze guiding features such as
faces, low-level visual saliency and center bias to be
separated and quantified. Regardless of the auditory
condition, the weight associated to faces exceeded by far
the weight associated to any other features. We found
that the weight of low-level saliency is at the same level
as center bias or chance. This supports the idea that low-
level factors are not pertinent to explain gaze behavior
when faces are present and extends it to dynamic scenes.
We also found that even if the related speech enhances
talking faces’ weight by 10%, gaze is mostly driven
toward talking faces by visual information. Indeed, even
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with unrelated auditory information, the talking face
weight is still twice the mute faces’ weight.

Thus, in addition to already existing face detectors
(Cerf et al., 2008; Marat et al., 2013), future audiovisual
saliency models should include visual or audiovisual
speaker diarization algorithms. Distinguishing silence
from speech situations, and identifying the location of
the active speaker in the latter case, remains a
challenge, particularly in ecological—and thus noisy—
environments. Yet many recent studies try to address
this issue, for instance by exploiting the coherence
between the speech acoustic signal and the speaker’s lip
movements (Blauth, Minotto, Jung, Lee, & Kalker,
2012; Noulas, Englebienne, & Kröse, 2012; see Anguera
et al., 2012, for a review).

To sum up, to predict eye positions made while
viewing conversation scenes, we think that future
saliency models should detect talking and silent faces. If
the scene comes with its related speech soundtrack, 50%
of the total saliency should be attributed to talking
faces, 20% to mute faces. The remaining should be
shared between center bias (mainly during the five first
frames) and low-level saliency. If the scene comes with
unrelated soundtrack, the weight of talking faces
should be slightly lowered to the benefit of the other
features. Nevertheless, talking faces should remain the
most attractive feature.

Conclusion

We find that when viewing ecological conversations
in complex natural environment, participants look
more at faces in general and at talking faces in
particular, regardless of the auditory information. This
result suggests that if auditory information does
influence viewers’ gaze, visual information is still the
leading factor. We do not find any difference between
the different types of unrelated soundtracks (unrelated
speech, moving object abrupt noises, and continuous
landscape sound). We hypothesize that unrelated
soundtracks are not correlated enough with the visual
information to be bound to it, preventing any further
integration. However, hearing the original speech
soundtrack makes participants follow the speech turn-
taking more closely. This behavior increases the
number of small intraface saccades and reduces the
variability between eye positions. Using a statistical
method, we quantify the propensity of several classical
visual features to drive gazes (faces, center bias, static
and dynamic low-level saliencies). We find that classical
low-level saliency globally fails to predict eye positions,
whereas faces (and especially talking faces) are good
predictors. Therefore, we suggest the joint use of face
detector and speaker diarization algorithms to distin-

guish talking from mute faces and label them with
appropriate weights.

Keywords: faces, speech, gaze, scanpath, saliency,
audiovisual integration, expectation-maximization, da-
tabase
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