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Abstract: The current novel Coronavirus Disease 2019 (COVID-19) is a multistage epidemic consisting
of multiple rounds of alternating outbreak and containment periods that cannot be modeled with a
conventional single-stage Suspected-Exposed-Infectious-Removed (SEIR) model. Seasonality and
control measures could be the two most important driving factors of the multistage epidemic. Our
goal is to formulate and incorporate the influences of seasonality and control measures into an
epidemic model and interpret how these two factors interact to shape the multistage epidemic curves.
New confirmed cases will be collected daily from seven Northern Hemisphere countries and five
Southern Hemisphere countries from March 2020 to March 2021 to fit and validate the modified
model. Results show that COVID-19 is a seasonal epidemic and that epidemic curves can be clearly
distinguished in the two hemispheres. Different levels of control measures between different countries
during different seasonal periods have different influences on epidemic transmission. Seasonality
alone cannot cause the baseline reproduction number R0 to fall below one and control measures must
be taken. A superposition of a high level of seasonality and a low level of control measures can lead
to a dramatically rapid increase in reported cases.

Keywords: COVID-19; multi-stage; control measures; seasonality; SEIR model

1. Introduction

The current novel Coronavirus Disease 2019 (COVID-19) is a multistage epidemic
consisting of multiple rounds of alternating outbreak and containment phases. In a conven-
tional single-stage epidemic, the number of daily new confirmed cases increases over time,
gradually decreases after reaching its maximum, and eventually declines to zero despite
sporadic relapses [1,2]. However, in a multistage epidemic, the number increases, reaches
the maximum, and declines but does not return to zero. Instead, a new round of outbreak
occurs, repeating the above steps [3]. By 20 March 2022, 470,1098,898 confirmed cases and
6,098,267 deaths have been reported, and the number continues to rise steadily [4]. So far,
most countries have experienced multiple rounds of large-scale outbreaks, but the driving
factors of the multistage epidemic and its specific influences remain to be elucidated.

Control measures may be an important factor of the multistage epidemic [5,6], which
interrupt transmission chains by reducing contact between people [7], and different levels
of control measures may have a different impact on the transmission of COVID-19 [8–10].
Mild control measures include wearing masks, maintaining social distance, and routine
temperature measurements, while strict control measures include closing public facilities
(e.g., schools and restaurants), border closures, and traffic restrictions [10]. In China’s most
severe case during the first round of the outbreak in 2020, the entire country was locked
down and people were told to stay home unless they went out for daily needs, which
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effectively prevented the transmission of COVID-19 [11–13]. In the case of the United
States, control measures could not be fully implemented during both the outbreak and
containment phases, resulting in a significantly higher number of new cases confirmed daily
compared with other countries. Therefore, the formulation and evaluation of the extent and
impact of control measures are important for the interpretation of the multistage patterns.

Despite the control measures, seasonality could be another important factor influenc-
ing the multistage epidemic. It is still controversial whether the transmission of COVID-19
follows the similar seasonal patterns as other seasonal epidemics [14–17]. Epidemic curves
show that outbreaks are concentrated in two hemispheres in different time periods [4].
In Northern Hemisphere countries, the number of new cases confirmed dramatic daily
increases between November and January, whereas in Southern Hemisphere countries,
a distinct outbreak period is observed between May and August. A number of studies
have attempted to establish the relationship between the occurrence of COVID-19 and
seasonally varying meteorological factors. Confirmed cases were found to be concentrated
in air temperatures of 5 to 15 ◦C and absolute humidity of 3 to 10 g/m3 [18]. Experimen-
tal data and regional analyses show that coronavirus has a lower survival rate in a high
temperature environment, suggesting that the virus may be less infectious in summer [19].
Lower wind speed significantly correlates with higher COVID-19 cases by affecting the
transmission of aerosols [20,21], which are considered important virus carriers [22]. Despite
the evidence for seasonality, there is debate that COVID-19 is not seasonal. Some studies
find no relationship between temperature and the occurrence of COVID-19 [23–25] or state
that the relationship exists only at the global level, but not at the regional level [26]. Given
the recent outbreak in the winter of 2022, there is growing evidence that COVID-19 is a
seasonal epidemic, but for policy decisions, the influences of seasonality have yet to be
formulated and verified in model simulations.

Many studies have been conducted to examine the influences of control measures or
seasonality separately, but few studies have been conducted to examine the joint influences
of these two factors. In addition, most modeling studies for COVID-19 epidemic simula-
tion focus on the first round of the outbreak and are not able to simulate the multistage
epidemic. In this paper, we attempt to formulate the influences of seasonality and control
measures on the transmission of the COVID-19 epidemic. We modify the most commonly
used Suspected-Exposed-Infectious-Removed (SEIR) epidemic model by incorporating
the influences of these two factors. We simulate the epidemic curves of twelve countries
from two hemispheres from March 2020 to March 2021 using our modified model and
interpret how these two factors interact and ultimately influence the transmission of the
COVID-19 epidemic.

2. Materials and Methods

Seven Northern Hemisphere countries (United States, United Kingdom, Italy, France,
Germany, Spain, and Turkey) and five Southern Hemisphere countries (Brazil, Chile,
Australia, South Africa, Argentina) were selected and daily new confirmed cases from these
countries are collected daily [4]. The selected countries, where considerable confirmed cases
have been reported and where obvious multistage patterns are observed, are representative
cases for the study of seasonality between two hemispheres. Countries near the equator,
whose climates do not vary as much with the seasons, are not included [27]. The study
period for each country begins when the number of new daily confirmed cases exceeds
100, to avoid the high uncertainty in reported data due to limited testing capabilities in
the very early phase of the epidemic, and includes a full year for an entire seasonal cycle
(approximately from March 2020 to March 2021). The influences of new variants and
vaccination are excluded from the study period, and only seasonality and control measures
are formulated.

The exact timing of implementation and mitigation of each round of control measures
are gathered from official news reports or announcements (Table 1) to formulate the influ-
ences of control measures. An outbreak period is defined as the period from the request
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for control measures to the mitigation of control measures, while a containment period is
inversely defined as the period from the mitigation of control measures to the request for a
new round of control measures. In the selected countries, at least two rounds of outbreaks
and weakening are observed.

Table 1. Start dates of outbreak and containment periods for the selected countries in this study.

Countries Outbreak
Period 1

Containment
Period 1

Outbreak
Period 2

Containment
Period 2

Outbreak
Period 3

Containment
Period 3

United States 21 March 2020 1 May 2020 NA NA 7 February 2021 NA
France 16 March 2020 11 May 2020 3 October 2020 11 November 2020 3 April 2020 NA
Brazil 25 March 2020 1 June 2020 24 November 2020 NA NA NA

United Kingdom 23 March 2020 11 May 2020 5 November 2020 2 December 2020 4 January 2021 17 May 2021
Italy 9 March 2020 4 May 2020 25 October 2020 10 January 2021 3 April 2021 2 June 2021

Germany 16 March 2020 20 April 2020 12 December 2020 NA NA NA
Turkey 1 April 2020 12 May 2020 8 November 2020 25 January 2021 29 April 2021 17 May 2021

Australia 2 March 2020 27 April 2020 2 August 2020 13 September 2020 1 January 2021 29 January 2021
Spain 13 March 2020 13 April 2020 25 October 2020 23 November 2020 8 January 2021 9 May 2021

Argentina 20 March 2020 16 May 2020 1 July 2020 18 July 2020 26 October 2020 1 December 2020
South-Africa 26 March 2020 1 June 2020 12 July 2020 17 August 2020 29 December 2020 NA

Chile 18 March 2020 7 August 2020 3 January 2021 23 March 2021 NA NA

The SEIR model divides the population into four subpopulations, the suspect popula-
tion (S), the exposed population (E), the infectious population (I), and removed population
(R), whose relationship can be formulated by the following differential equations:

dS(t)
dt

= −γR0(t)
N

S(t)I(t), (1)

dE(t)
dt

=
γR0(t)

N
S(t)I(t)− αE(t), (2)

dI(t)
dt

= αE(t)− γI(t), (3)

where R0 is the baseline reproduction number (defined as the average number of secondary
infections caused by a single infected individual in a fully susceptible population [28]), N is
the total population, γ is the removal rate (fixed at 0.34), and α is the infection rate (fixed at
0.19). The model is fitted with daily data of new confirmed cases and therefore the equation
of the removed population is not presented here.

In a conventional single-stage SEIR model, R0 is usually fixed as a fixed value. How-
ever, in our multistage model, we replace R0 in Equations (1) and (2) with an adjusted,
time-varying R′0(t), which is defined as follows:

R′0(t) = R0(t)q(t), (4)

where t denotes the days since the study period, q(t) is a time-varying quarantine index, and
R0(t) is a time-varying and periodic parameter defined by the following periodic function
to formulate the seasonality of COVID-19:

R0(t) = A0cos
(

2π

365
t + ω

)
+ A1, (5)

with A0 being the amplitude of seasonal fluctuation, A1 the constant term, ω the initial
phase, and the length of the periodic cycle is set as 365 days.

We construct a time-varying quarantine index q(t), which falls between (0, 1], to
formulate the influences of control measures. The quarantine index is a parameter to give a
rough but quantitative estimation about the strict levels of control measures implemented
in the whole country. In other words, to what extend can R0(t) be brought down by
control measures. In a mathematical sense, when q(t) is equal to zero, R′0(t) is zero and the
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epidemic is cut off completely. When q(t) is equal to one, R′0(t) is equal to R0(t) and the
epidemic spreads without any restrictions. In reality, q(t) cannot be one except the period
without any control measures in the very early epidemic stage. In addition, q(t) cannot
be zero because so far the transmission of COVID-19 cannot be cut off completely in any
country. Thus, a lower bound qo and an upper bound qm, with 0 < qo < qm ≤ 1, are set to
constrain the values of q(t), and the variations of q(t) during outbreak and containment
periods are shown in Equations (6) and (7):

outbreak period q(t) = (qm − qo)e(εo(t−to)) + qo, (6)

containment period q(t) = (qo − qm)e(εm(t−tm)) + qm, (7)

with subscripts o and m denoting the outbreak period and containment period, respectively,
to and tm being the start dates of outbreak period and containment period. Parameters
εo and εm are applied to controlling the the ascending and descending speed of exponent
functions in Equations (6) and (7). In other words, higher values of εo mean that the
epidemic curves climb rapidly during outbreak periods, while lower values of εm mean
that the epidemic curves decline slowly during containment periods. For brevity, the values
of qo, qm, εo and εm are assumed to share the same value in each epidemic stage. It should
be noted that qm is set as one in the earliest stage as there were no control measures. In
the modified SEIR model, in total seven parameters (qo, qm, ω, A0, A1, εo, and εm) should
be fitted. Genetic algorithm is applied in this study to approximating the best parameters
combination [29]. To accelerate the solution, coarse lower and upper bounds of these seven
parameters are explored upfront, as shown in Table 2.

Table 2. Upper and lower bounds of fitted parameters for the model.

Parameters Upper and Lower Bounds

qo (0, 0.5]
qm [0.1, 0.9]
ω [1, 365]
A0 [0.1, 0.9]
A1 [0.8, 2.0]
εo (0, 3]
εm (0, 3]

3. Results

Our modified SEIR model performs well in fitting the multistage COVID-19 epidemic
curves with R2 ranging from 0.781 to 0.969 (Figure 1). The best fitting performance, with R2

greater than 0.94, is obtained in Germany, the United Kingdom, Italy, and Australia, where
two or three rounds of alternating outbreak and downturn periods can be simulated. Our
model manages to capture the main trend of the epidemic curves during each period and
neglect the smaller noise (e.g., Brazil). In some cases, despite high fitness, some outbreaks
cannot be captured. For example, the second round of the outbreak period in the United
States and Argentina is ignored.

The results of the seven parameters with best fitting performance are listed in Table 3.
According to the definition of the periodic function (Equation (5)), R0(t) reaches the max-
imum value at A0 + A1 (t = 365-ω) and the minimum value at A1−A0 (t = 182-ω). The
maximum value ranges from 3.53 (Brazil) to 6.42 (Germany) while the minimum value
ranges from 1.02 (Turkey) to 4.76 (United States). The lowest minimum value of 1.02 in
Turkey indicates that R0(t) cannot fall below one with only seasonal fluctuation and control
measures must be implemented. The maximum values of seasonally fluctuating R0(t) of
selected countries are projected in Figure 2. Countries from two hemispheres can be clearly
distinguished, with R0(t) reaching maximum values in November and January in the
Northern Hemisphere and March and June in the Southern Hemisphere. The value of qo
ranges from 0.09 (Australia) to 0.32 (Brazil), indicating that control measures can reduce the
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capability to transmit during the outbreak period to at least one-third. The value of qm falls
between 0.21 (United States) and 0.79 (Turkey), implying that the transmission capability
can increase to at most four-fifths during the containment period. The major turning points
of the epidemic curves are near the initial dates of the outbreak or containment periods
when control measures are implemented or contained. In most countries, implementation
of control measures can result in a significant decrease in new daily confirmed cases.

The relations of R0(t), R′0(t), and q(t) are shown in Figure 3. At the earliest stage of the
epidemic, when no control measures are implemented and COVID-19 spreads unimpeded,
q(t) is equal to one and R′0(t) is equal to R0(t). During the outbreak periods, control
measures are implemented and q(t) falls exponentially from maximum to minimum (from
qm to qo) while R′0(t) also decreases, and the outbreak is prevented. An outbreak period
is followed by a containment period, in which control measures are mitigated, with q
resuming to qm and R′0(t) rebounding as well. Outbreak and containment periods increase
alternately, with q(t) varying between qm and qo and R′0(t) goes up and down around one.
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Table 3. Results of fitted parameters for the selected countries of this study.

Countries ω A0 A1
Maximum Value

(A1 + A0)
Minimum Value

(A1 − A0) qo qm εo εm

United States 86 0.56 5.32 5.88 4.76 0.17 0.21 0.25 3.00
France 121 1.07 3.58 4.65 2.51 0.13 0.47 0.05 0.02
Brazil 14 0.84 2.69 3.53 1.85 0.32 0.50 0.07 0.70

United Kingdom 98 0.50 4.14 4.64 3.64 0.17 0.31 1.02 3.00
Italy 108 1.24 4.02 5.26 2.78 0.16 0.31 0.12 0.22

Germany 110 1.25 5.17 6.42 3.92 0.16 0.23 0.48 0.96
Turkey 71 1.82 2.85 4.67 1.02 0.14 0.79 0.08 0.02

Australia 274 1.10 4.88 5.99 3.78 0.09 0.23 0.47 0.11
Spain 66 0.63 3.27 3.90 2.64 0.23 0.40 0.54 0.05

Argentina 339 0.74 4.60 5.34 3.86 0.23 0.27 0.23 3.00
South-Africa 347 1.80 4.31 6.11 2.51 0.15 0.40 0.30 0.19

Chile 339 1.27 2.60 3.87 1.33 0.31 0.69 0.09 3.00
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4. Discussion

The dates when the periodic R0(t) reach maximum values in two hemispheres are con-
centrated in two distinct periods, demonstrating that the transmission ability of COVID-19
indeed fluctuates seasonally. The amplitudes of R0(t) vary among countries, which may be
attributed to the atmospheric pollution [30,31], demographic structure [20,32], healthcare
condition, and other environmental or social factors [33]. In general, our model performs
better in the northern hemisphere cases than the southern hemisphere cases. In some
southern hemisphere cases (i.e., Argentina, Chile), the anti-seasonal outbreaks in January,
2021 could not be explained by seasonality and further efforts should be put on.

The formulation of the influences of control measures is significant for explaining the
different forms of epidemic curves among selected countries. We define a time-varying
quarantine index q(t) and assume that q rises or falls in an exponential form after the
implementation or mitigation of control measures, and stays stable when it reaches maxi-
mum or minimum values. Our early attempts show that an exponential function has better
performance in formulating the variation processes of quarantine index compared with a
polynomial function or sinusoidal function. The upper bound qm is assumed to be greater
than the lower bound qo in simulation, representing a lower level of control measures in
the containment period than that of the outbreak period. The values εo and εm control the
speed at which the quarantine index reaches its maximum or minimum values, in other
words, how fast the restriction or mitigation policies take effect. In practice, the upper
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bound of εo and εm is set to three, which means that q reaches its maximum or minimum
values within one day; thus, a value greater than three is meaningless. The quarantine
index relies on the exact dates when the policies are claimed, and it does not perform well
if these dates cannot be collected. For instance, control measures in the United States are
claimed state-to-state rather than nationwide, and thus the second round of outbreak is
not caught by this model. In addition, the quarantine index may be greater than one in
some extreme cases with the contact rate of the populations far beyond the usual (i.e., the
large-scale concerts or sports events), which are not considered in this study.

Seasonality and control measures are the two most significant driving factors that
influence the transmission ability of COVID-19, and a single factor itself is not able to
interpret the different multi-stage epidemic curves. The epidemic curve of the United
Kingdom is an ideal case to reveal the combined effects of these two factors (Figure 4).
At the earliest stage, the epidemic spread without any restrictions and R′0(t) was equal
to R0(t). The first round of control measures was implemented on 23 March 2020, after
which q(t) dropped from one to qo and R′0(t) dropped as well. The control measures
were mitigated on 11 May 2020, and the daily confirmed cases maintained a low level
during May and August. With the seasonality force strengthening, the curve started to
rise up in September, 2020 and the second round of outbreak occurred in October, 2020.
With control measures being tightened again on 5 November 2020, R′0(t) fell down to less
than one and a short-term decline was recorded. However, when the cases were still at
a high level, control measures were mitigated immediately on 2 December 2020. Under
the superposition of high values of q(t) and R0(t) during November and January, the
cases rebound rapidly and soon the third round of outbreak occurred. It’s an interesting
phenomenon that the first round of mitigation resulted in a period with cases at a low level,
while the second round of mitigation resulted in a rapid rebound, and this phenomenon
can be observed in most northern hemisphere countries (i.e., United Kingdom; France;
Italy; Spain). The major difference between these two rounds of mitigation demonstrates
the existence of seasonality.
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epidemic in the case of the United Kingdom.

It is well known that the epidemic enters an expansion stage when the initial base-
line reproduction number R0 is greater than one, and that a large-scale outbreak may
subsequently occur. However, few studies have provided a reasonable and quantitative
interpretation for the increase in R0. We replace the original R0 with our time-varying
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adjusted R′0(t) in the modified model, and our study suggests that the increase in R′0(t)
is due to the strengthening of seasonality or to the weakening of control measures. The
former is a gradual and periodic process, while the latter is a policy-decided and abrupt
process, and a superposition of these two factors will lead to a large-scale outbreak.

In previous studies, a quarantine rate is often used to separate the quarantine popula-
tion from the infectious population and to formulate the influences of control measures [34].
However, the quarantine rate is usually assigned manually and discretely [35]. A study
on the Ebola epidemic formulated the influences of human intervention by an exponential
function, but was only suitable for a single-stage epidemic [36]. Our model succeeds in
establishing the continuous variation functions of the quarantine index during each period,
and we multiply the periodic R0(t) by q(t) and keep the rest of the model unchanged
instead of adding an additional subpopulation to the SEIR model. In the simulation, the
fitted values of the parameters can vary widely and form different combinations but achieve
similarly high R2 values, so all further interpretations for these parameters should be taken
with caution. For example, qo is 0.17 in both the United Kingdom and the United States, but
this does not mean that the control measures of these two countries are at the same level.

Many previous studies have indicated that the asymptomatic group and the unde-
tected group play an important role in the transmission of the COVID-19 epidemic [37,38].
For simplicity, these two groups are not included in our model, but satisfactory adjustment
performance can still be achieved. Moreover, new variants of COVID-19 (i.e., Beta; Delta;
Omicron) are spreading throughout the world and dramatically changing the epidemic
evolution patterns [39–41], and more data should be collected to verify the seasonality and
intensity of their transmission ability. So far, the basic reproductive number of the newest
variant Omicron has not been clearly elucidated, and it should be treated separately from
other strains in the model simulation. Vaccination can effectively prevent transmission by
reducing the suspected population. However, due to production limitation and validity of
vaccination in new variants, herd immunity is difficult to achieve and control measures are
still needed. In this paper, the influences of new variants and vaccination are excluded by
shortening the study period before March 2021. If the study period is extended, our model
does not perform well mainly because of these two factors.

It has been more than two years since COVID-19 appeared and swept across the world.
Since there is no indication that the epidemic will disappear in a short period of time, it is
of great importance to uncover the driving factors of the multistage COVID-19 epidemic,
which will help policy makers to control the epidemic and avoid a large-scale outbreak.
Some countries scaled down control measures only when daily confirmed cases increased
to unacceptable levels, resulting in a significant number of deaths. Therefore, in terms
of public health, we propose real-time calculation and monitoring of the R′0(t) proposed
in this paper. Once R′0(t) breaks through an upward value and remains at a fairly high
level for several days, control measures should be restricted in advance regardless of the
strengthening of seasonality or the weakening of control measures to avoid a superposition
of these two factors, since we cannot change the fluctuation of seasonality.

5. Conclusions

The aim of this study is to interpret how seasonality and control measures jointly
determine the multistage waves of the COVID-19 epidemic. We formulate and integrate
these two factors into our modified SEIR model and test our model with data from twelve
countries in two hemispheres. Our model achieves high fitness and captures the multi-
stage patterns well, and the influences of seasonality and control measures can be well
formulated and interpreted. The multilevel epidemic is shaped by the joint influence of
control measures and seasonality. If only seasonality plays a role, the basic reproductive
number R0 cannot fall below one and control measures must be taken. An overlay of strong
seasonality and a low level of control measures can lead to a dramatically rapid increase in
reported cases.
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Our study also has some limitations. First, some anti-seasonal outbreaks cannot be
captured by our model. Second, the use of the quarantine index relies on the exact time
of the measures, and does not work well if these time points cannot be collected. Finally,
other long-term factors such as new variants, vaccination, reinfection and demographics
are not accounted for in our study.
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