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Abstract—Instant Messaging has gained popularity by users

for both private and business communication as low-cost

short message replacement on mobile devices. However, until

recently, most mobile messaging apps did not protect confi-

dentiality or integrity of the messages.

Press releases about mass surveillance performed by intelli-

gence services such as NSA and GCHQ motivated many people

to use alternative messaging solutions to preserve the security

and privacy of their communication on the Internet. Initially

fueled by Facebook’s acquisition of the hugely popular mobile

messaging app WHATSAPP, alternatives claiming to provide

secure communication experienced a significant increase of new

users.

A messaging app that claims to provide secure instant

messaging and has attracted a lot of attention is TEXTSECURE.

Besides numerous direct installations, its protocol is part of

Android’s most popular aftermarket firmware CYANOGEN-

MOD. TEXTSECURE’s successor Signal continues to use the

underlying protocol for text messaging. In this paper, we

present the first complete description of TEXTSECURE’s com-

plex cryptographic protocol, provide a security analysis of

its three main components (key exchange, key derivation and

authenticated encryption), and discuss the main security claims

of TEXTSECURE. Furthermore, we formally prove that—if key

registration is assumed to be secure—TEXTSECURE’s push

messaging can indeed achieve most of the claimed security

goals.

1. Introduction

Since more than a decade, Instant Messaging (IM) is
an alternative to classical e-mail communication, for both
private and business communication. IM has different fea-
tures; most importantly, messages are delivered in real-time,
but only if both parties are online. However, in contrast to
security mechanisms available for e-mail such as PGP [1]
and S/MIME [2], instant messages were sent unprotected:
In the early days, many popular IM solutions like MSN
MESSENGER and YAHOO MESSENGER did not provide any
security mechanisms at all. AOL only added a protection
mechanism similar to S/MIME to their IM service later
on and Trillian’s SECUREIM messenger encrypted the data

without providing any kind of authentication. Today, many
clients implement only client-to-server encryption via TLS,
although security mechanisms like Off the Record (OTR)
communication [3] or SCIMP [4] providing end-to-end con-
fidentiality and integrity are available.

With the advent of smartphones, low-cost short-message
alternatives that use the data channel to communicate,
gained popularity. However, in the context of mobile ap-
plications, the assumption of classical instant messaging,
for instance, that both parties are online at the time the
conversation takes place, is no longer necessarily valid.
Instead, the mobile context requires solutions that allow for
asynchronous communication, where a party may be offline
for a prolonged time. In this setting, existing solutions, such
as OTR, are only applicable in a limited fashion.

Secure Messaging and TextSecure. In the light of the
recent revelations of mass surveillance actions performed
by intelligence services such as NSA and GCHQ, several
secure text messaging (TM) solutions that claim not to be
prone to surveillance and to offer a certain level of security
have appeared on the market [5].

One of the most popular apps for secure TM is TEXT-
SECURE1, an app developed by Open WhisperSystems that
claims to support end-to-end security of text messages.
While previously focusing on encrypted short message ser-
vice (SMS) communication, Open WhisperSystems intro-
duced data channel-based push messaging in February 2014.
Thus, the app offers both an iMessage- and WhatsApp-like
communication mode, providing SMS+data channel or data
channel-only communications [6]. Following Facebook’s ac-
quisition of WHATSAPP, TEXTSECURE gained in popular-
ity among the group of privacy-conscious users and has cur-
rently more than 500,000 installations via Google Play. Its
encrypted messaging protocol has also been integrated into
the OS-level SMS-provider of CyanogenMod [7], a popular
open-source aftermarket Android firmware that has been
installed on about 10 million Android devices [8]. According
to media reports [9], TextSecure’s protocol has additionally
been implemented in WhatsApp’s Android client. While we
did not verify this claim, in consequence the protocol’s secu-

1. The name of the App has been changed to SIGNAL in November 2015
to be consistant with the iOS App.



rity would affect several hundred million users. Despite this
popularity, the messaging protocol behind TEXTSECURE

has not been rigorously reviewed so far. While the develop-
ers behind TEXTSECURE have a long history of research
in computer security, a security assessment is needed to
carefully review the approach.

Contribution. In summary, we make the following contri-
butions:

• We are the first to completely and precisely docu-
ment and analyze TEXTSECURE’s secure push mes-
saging protocol. Our description was confirmed by
the developers of TEXTSECURE.

• We show that the main protocol of TEXTSECURE

consists of three building blocks: A cached One-

Round Key Exchange (cORKE) protocol, a secure
key derivation function, and authenticated encryp-

tion. We give formal security definitions and security
proofs for these blocks.

• We found subtle, but avoidable flaws in the protocol
that allows for an Unknown Key-Share attack. We
have documented the issues and show how they
can be mitigated. They have been communicated to
the developers of TEXTSECURE. We show that our
proposed method of mitigation actually solves the
issues.

• We discuss how and to which extent deniability,
perfect forward secrecy (PFS) and future security
(FS) are realized. While TEXTSECURE meets PFS
and FS, deniability is only achieved partially in
practice.

2. High-level Overview of TextSecure and re-

lated protocols

TEXTSECURE was previously compared [10] to the Off-
the-Record Protocol (OTR) and the Silent Circle Instant
Messaging Protocol (SCIMP) [11]. In the following, we
discuss common elements and differences.
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Figure 1: The Off-the-Record protocol.

Off-the-Record Protocol. OTR was proposed by Borisov et
al. [3] as a method to secure conventional instant messaging.

OTR’s focus differed significantly from previous message
prKGotection mechanisms like OpenPGP and S/MIME by
introducing two novel properties: Perfect Forward Secrecy

and Deniability.

Figure 1 shows how the OTR protocol version 1 works:
After an initial signed Diffie-Hellman (DH) key exchange,
novel DH shares are exchanged with every message, and the
resulting DH key is constantly changed. OTR uses malleable
encryption [12] in combination with MACs (instead of digi-
tal signatures). The OTR protocol reveals the MAC keys one
round later to the public. This is essential for the deniability

property of the protocol: anyone can change the value of the
plaintext message, as inverting bits of the ciphertext will
result in an inversion of the same bits at the same positions
in the plaintext. Thus, the received messages are authentic
at the time of reception only (given a party verifies the first
signature and the following MACs). Since the MAC keys
are derived as hash values of the encryption keys, revealing
MAC keys does not compromise the security of the former,
and the exchanged messages remain confidential. Private
DH shares xi and yj are deleted as soon as the key kij
has been computed. This guarantees perfect forward secrecy

since without these private shares the encryption keys cannot
be recomputed from the public shares Xi, Yj later.

Di Raimondo et al. [13] showed that OTR v1 is vul-
nerable to an unknown key-share (UKS) attack (also called
identity misbinding attack) [14]. We will discuss this kind
of attack in Section 4.2. OTR version 2 did address this
issue by introducing a four message handshake that follows
the SIGMA protocol paradigm [15], effectively mitigating
the UKS attack. Moreover, the protocol achieves deniability:
public keys and signatures are exchanged within a con-
fidential channel, leaving no trace of participation for an
eavesdropper. However, these strong capabilities come at the
cost of a four-message handshake.

OTR and Mobile Messaging. Instant Messaging connec-
tions are typically short-lived and online, whereas text mes-
saging conversation may last for prolonged spans of time,
and parties may be offline temporarily. Additionally, text
messaging may be asynchronous, such that a sender sends
several messages before receiving an answer.

The first adaption needed to derive a secure text mes-
saging protocol from OTR is to make OTR work in offline
scenarios. The basic idea here is due to ElGamal [16]. Thus
OTR can be adapted to an offline scenario by storing many
ephemeral DH shares of each party on a server.

The second adaption concerns key bookkeeping: In
OTR, an ephemeral DH share must be protected by a MAC
computed with a previous key, and must be acknowledged
by the recipient B before being used by the sender A.
This secure chaining of keys through MACs needs a lot
of bookkeeping, as well as the acknowledgment. Here,
TEXTSECURE adapts to the scenario by replacing MAC
chaining by a secret value derived from long-lived (ga, gb)
and ephemeral (gxa , gxb) DH shares, which is fed into any
key generation step.



Silent Circle Instant Messaging protocol (SCIMP). In
SCIMP [11] the idea of using different generations of sym-
metric keys is essential: After sending a message, the sender
updates his own key by replacing it with its own hash value:
knew := hash(kold). In doing so, perfect forward secrecy
between two DH key exchanges can be achieved: Even if
the sender is forced to reveal all his keys, an adversary can
no longer decrypt the message sent, since this key has been
deleted.

TextSecure. Informally speaking, TEXTSECURE builds on
a (cached) one-round key exchange (ORKE) protocol [17]
executed between parties A and B to compute the long-
lived secret, a key derivation function (KDF) which takes
as input the long-lived secret and a fresh DH secret, and an
authenticated encryption scheme.

For the first message, a cached ephemeral key of the
receiver (called prekey)2 is fetched from the TEXTSECURE

server, together with its long-lived public key. Later, new
ephemeral public DH shares are included in each (first)
response to a message. The process of changing ephemeral
DH shares is called ratcheting in OTR and TEXTSECURE

terminology. If a party sends several messages before receiv-
ing an answer, it updates the symmetric key used for each
message in a one-way fashion by applying a key derivation
function on an intermediate value (called chaining key), from
which all cryptographic keys are computed. The structure of
the TEXTSECURE communication is depicted in Figure 2.
A complete representation of the protocol can be found
online3.
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Figure 2: High-Level view on the Axolotl-ratchet protocol
in TEXTSECURE.

3. TextSecure Protocol

We analyzed the source code of the Android app to
recover the individual building blocks of the protocol.
TEXTSECURE builds upon a set of cryptographic primi-
tives. For ECDH operations, Curve25519 [18] is used as it
is implemented in Google’s Android native cryptographic
library. Symmetric encryption in TEXTSECURE relies on

2. We refer to prekeys as cached ephemeral keys to distinguish them
from ephemeral keys which are chosen at the time of protocol execution,
whereas prekeys are chosen in advance and then stored on the server.

3. http://bit.ly/1IPIJ3Y

AES [19] in both, counter mode without padding and cipher
block chaining mode with PKCS7 [20] padding. HMAC-
SHA256 [21], [22] is used for message integrity. Security
considerations of the cryptographic primitives are not within
the scope of this paper.

For push messaging via data channel, TEXTSECURE

relies on a central server4 (T S) to relay messages to the
intended recipient. Parties communicate with T S via a
REST-API using HTTPS. T S’s certificate is self-signed; the
certificate of the signing CA is hard-coded in the TEXT-
SECURE app. Actual message delivery is performed via
Google Cloud Messaging.

From TEXTSECURE’s description in Google’s Play
store, the authors’ blog and github we can identify some
security goals of TEXTSECURE56. These are end-to-end

security, deniability, forward secrecy, and future secrecy. We
formalize and prove the first of these goals in Section 5, and
discuss the remaining goals in Section 6.

TEXTSECURE’s protocol consists of several phases as
shown in Figure 3. We distinguish (1) registration, (2)
key comparison, (3) sending/receiving a first message, (4)
sending a follow-up message, and (5) sending a reply.
We provide a complete overview of the protocol in the
Appendix.
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Figure 3: High-Level view on the different phases in TEXT-
SECURE.

Notation

In the protocol description, we use the following nota-
tion: Each protocol participant Pa is associated with a set of
parameters, which all share the same index: e.g. phone#a

is the phone number associated with Pa. We denote the
private, long-lived key of this party with a, and its public
counterpart with ga. Prekeys (recall that prekeys actually are
ephemerals keys stored on the server) belonging to Pa are
named gxa,z with z ∈ {0, 99}, their private counterparts are
xa,z . The t-th ephemeral public Diffie-Hellman (DH) share
chosen by Pa is denoted as gx̄a,t , with its private counterpart
x̄a,t. (Please note the overline symbol.)

4. textsecure-service.whispersystems.org

5. https://play.google.com/store/apps/details?id=org.thoughtcrime.
securesms

6. https://github.com/trevp/axolotl/wiki



Phase 1: TEXTSECURE Registration

The registration process is depicted in detail in Figure 4.
To register with the TEXTSECURE server T S , a party
Pa requests a verification token by transmitting its phone
number (phone#a) and its preferred form of transport to
T S (Step 1), which T S confirms with a HTTP status 204
(Step 2). Depending on the transport Pa chose, T S then
dispatches either a short message or a voice call containing
a random token (Step 3) to the number transmitted in Step
1. Pa performs the actual registration in Step 4, where
it shows ownership of phone#a by including the token,
registers its credentials with the server via HTTP basic
authentication [23], and sets its signaling keys kmac,T S,A

and kenc,T S,A
7. In this step, the client also states whether it

wishes to communicate only via data channel push message
or also accepts short messages. The server accepts if the
token corresponds to the one supplied in Step 3 and the
phone number has not been registered yet.
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(7) 204 OK

(8) Registration GCM

(9) regID
gcm
a

(10) regID
gcm
a , authenticationa

(11) 204 OK

Figure 4: TEXTSECURE registration.

In Step 6, Pa supplies its 100 prekeys (or one-time keys)
and klr to T S . Prekeys are not transmitted individually, but
within a JSON structure consisting of a keyID z, a prekey

gxa,i , and the long-term key ga. The last resort key klr
(the meaning of which will be clear at the end of this
section) is transmitted in the same way and identified by
keyID 0xFFFFFF. The server accepts, if the message is
well-formed and HTTP basic authentication is successful.
Pa then registers with Google Cloud Messaging (GCM) in
Step 8 and receives its regIDgcm

a (Step 9), which it transmits
to T S in Step 10 after authenticating again.

Taking a look ahead, a prekey for Pa is needed whenever
a new session is to start in which Pa plays the role of
the responder. Thus, the number of prekeys on the server
decreases. If there are only a few prekeys left on the server,
Pa may store new prekeys on the server. In the case that no
more prekeys are available, the last resort key is used. This
key, however, will not be erased from the server.

7. These keys are later used by T S to encrypt messages that are
transmitted via GCM so that GCM cannot see any metadata, e.g. regID

a

Phase 2: Key Comparison

In an attempt to establish that a given public key in-
deed belongs to a certain party, TEXTSECURE offers the
possibility to display the fingerprint of a user’s long-term
public key. Two parties can then compare fingerprints using
an out-of-band channel, for example, a phone call or an in-
person meeting. If two parties meet in person, TEXTSECURE

also offers to conveniently render the fingerprint of one’s
own long-term public key as a QR code, using a third-
party application on Android, which the other party can
then scan using the same application on its mobile device.
TEXTSECURE then compares the fingerprint it just received
to the party’s fingerprint it received as part of a conversation.

Phase 3.1: Sending an Initial Message

Before a first message can be sent from Pa to Pb,
three main steps have to be completed (see left side of
Figure 5): (a) a (cached) ORKE-type key exchange protocol
(cf. Section 5.1) to establish a shared, long-lived symmetric
secret rkBA (also called root key), (b) a key derivation and
update protocol (the so-called Axolotl-ratchet [24]), which
updates the root key, and generates a chaining key from
which the encryption and MAC keys are derived, and (c) an
authenticated encryption scheme. The process is depicted in
detail in Figure 5.

(a) Establishment of shared secret. In the first step, Pa re-
quests a prekey for Pb and receives a JSON structure consist-
ing of prekey-ID z, a prekey gxb,z , and Pb’s long-term key
gb. Pa also receives regIDb from T S and then chooses a new
ephemeral key x̄a,0 to calculate an intermediate secret secint
as the concatenation of three DH operations, combining Pb’s
prekey, Pa’s long-term key, Pb’s long-term key, and Pa’s
freshly chosen ephemeral key, secint =

(

gxb,z·a, gb·x̄a,0 ,
gxb,z·x̄a,0). From this value, the first root key is derived via
the HKDF key derivation function.

(b) Key Management (Axolotl-ratchet). After Pa has com-
puted the shared secret, a fresh secret kshared is derived
from the received prekey and a freshly generated private
Diffie-Hellman share x̄a,2: kshared := (gxb,z )x̄a,2 .8 From
kshared and rkBA, a new root key rkAB and a chaining
key ckAB are derived, again via HKDF.

The chaining key ckAB is finally used to derive (again
via HKDF) the encryption and MAC keys (KEnc,KMAC)
to encrypt and protect the integrity of the first message.

(c) Authenticated Encryption. A message m ∈ M is
encrypted using AES in counter mode without padding.
That is, c = ENCk

Enc
(m). Pa then forms message (3.)

and thus calculates tag = MACk
MAC

(χ), where χ =
(v, gx̄a,2 , ctra, pctra, c). v represents the protocol version and
is set to 0x02. For ordering messages within a conversation
ctr and pctr are used. Both are initially set to 0. ctr is
incremented with every message a party sends, while pctr is

8. Please note that the DH share (x̄a,1, g
x̄a,1 ) is only generated because

of code reuse, but never used.



set to the value ctr carried in the message a party is replying
to. Message (3.) is sent to T S .

Forwarding the message to GCM. Upon receiving mes-
sage (3.), T S checks if regIDb corresponds to phone#b. It
then encrypts the parts of message (3.) intended for Pb with
Pb’s signaling key (kenc,T S,B), using AES in CBC mode
with PKCS5 padding. T S additionally calculates a MAC
over the result, which we denote as macsignal. T S sends both,
encrypted message data csignal and macsignal, to the GCM
server, together with regID

gcm
b as the recipient. The result

of this additional encryption layer is that Google’s Cloud
Messaging servers will only be able to see the recipient but
not the sender of the message.

Phase 3.2: Receiving a message

The receiving process is depicted in Figure 6. Pb re-
ceives the message in Step (5.). First, Pb verifies macsignal

and, if successful, decrypts csignal. It looks up its long-lived
private key and the one-time private key that corresponds
to prekey-ID z and calculates secint and the first root key
rkBA. From now on, all computations are identical to those
done by the sender, until the message keys (kEnc, kMAC)
are derived. Pb now verifies the MAC and, if successful,
decrypts the message.

Phase 4: Sending a Follow-up Message

If Pa wants to send a message before Pb

replies, Pa first derives a new chaining key
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Figure 5: Sending an initial TEXTSECURE message.

GCM Pb

(5) c
signal, macsignal macsignal

′

= MACkmac,T S,B

(

csignal
)

if macsignal
′

= macsignal then:
DECkenc,T S,B

(

csignal
)

get prekey: xb,z

secint =
(

ga·xb,z , gx̄a,0·b, gx̄a,0·xb,z
)

(rkBA, ckBA) = HKDF (secint, const0, constR)
kshared = gx̄a,2·xb,z

(rkAB , ckAB) = HKDF (kshared, rkBA, constR)
(k

Enc
, k

MAC
) = HKDF (MACckAB

(const1) , const0, constK)
tag′′ = MACk

MAC
(χ) ∗

if tag′′ = tag then:
m = DECk

Enc
(c)

ckAB = MACckAB
(const2)

Legend:

const0 = 0x0032

const1 = 0x01
const2 = 0x02
constR = ”WhisperRatchet”
constK = ”WhisperMessageKeys”

Figure 6: Receiving an initial TEXTSECURE message.



ckAB := MACckAB
old (const2), and derives a new

pair (kEnc, kMAC) = HKDF (MACckAB
(const1) ,

const0, constK).

Phase 5: Sending a Reply

If Pb wants to reply to a message within an existing
session with Pa, it first chooses a new ephemeral keypair
(x̄b,0, g

x̄b,0) and calculates a new kshared as the output of
a DH operation that takes Pa’s latest ephemeral public
key gx̄a,2 and its own freshly chosen ephemeral private
key x̄b,0 as input: kshared = gx̄a,2·x̄b,0 . Pb then updates
the root key and derives a new chaining key by seeding
HKDF with the new kshared and rkAB : (rkBA, ckBA) =
HKDF (kshared, rkAB , constR). From the chaining key, a
new encryption and MAC key pair is derived, the message
is protected with these keys, and the encrypted message is
sent together with gx̄b,= back to Pa.

4. Issues with TextSecure

During our analysis, we found several issues that we
discuss in the following.

4.1. Password-based Key Registration

In TEXTSECURE, the password pw is both required to
register prekeys with the server and to send messages on
behalf of a party. The password is stored in the application-
specific storage on an Android device. When we first
analyzed TEXTSECURE, the easiest way to recover the
password of another party was to trigger TEXTSECURE’s
encrypted export function, which exported an encrypted
representation of the user’s messages and an XML file
containing the unencrypted pw. The export function placed
the data on the device’s SD card, thus easily accessible.
This is a very limited level of protection for a token that is
rather attractive for an attacker. Having access to pw does
not only facilitate one way of conducting the Unknown Key
Share attack we describe below, but allows for much more
severe scenarios, where an attacker can register arbitrary
key material on behalf of a party, as well as, send arbitrary
messages. The encrypted export function has been silently
removed in more recent versions of TEXTSECURE.

In more recent versions of the TEXTSECURE proto-
col, digital signatures have been added for the ephemeral
public shares. In particular, a conversion of the long-lived
key (a, ga) ∈ Zp × Curve25519 is used to sign prekeys
before sending them to the TEXTSECURE server T S . The
signature scheme used here is Ed25519, a variant of the
Schnorr-Signature scheme which is known to be a non-
interactive proof of knowledge of the secret key a. However,
prekeys are still not bound to an identity, as it is the case
with PGP keys. Also, as the proof is non-interactive, it can
be forwarded.

4.2. Unknown Key-Share Attack

An Unknown Key-Share Attack (UKS) is an attack vector
first described by Diffie et al. [14]. Informally speaking, if
such an attack is mounted against Pa, then Pa believes to
share a key with Pb, whereas in fact Pa shares a key with
Pe 6= Pb.

For a better understanding how this can be related
to TEXTSECURE, suppose the following example (jealous

spouse attack): Bart (Pb) wants to trick his friend Milhouse
(Pa). Bart knows that Milhouse will invite him to his birth-
day party using TEXTSECURE (e.g., because Lisa already
told him). He starts the UKS attack by replacing his own
public key with Nelsons (Pe) public key and lets Milhouse
verify the fingerprint of his new public key. This can be
justified, for instance, by claiming to have a new device and
having simply re-registered, as that requires less effort than
restoring an encrypted backup of the existing key material.
Now, as explained in more detail below, if Milhouse invites
Bart to his birthday party, then Bart may just forward this
message to Nelson who will believe that this message was
actually sent from Milhouse. Thus, Milhouse (Pa) believes
that he invited Bart (Pb) to his birthday party, where in fact,
he invited Nelson (Pe).

In detail, the attacker (Bart, Pb) has to perform the
steps shown in Figure 7 for this attack (only the important
protocol parameters and steps are mentioned):

(1-2) Pb requests gxe,z0 , . . . , gxe,zi from T S using
phone#e.

(3-4) Pb commits gxe,z0 , . . . , gxe,zi to T S as his own
prekeys plus ge as its own long-term public key.

(5) Pb lets Pa verify the fingerprint of its new public
key ge. Note that this step uses QR-codes, therefore
it is offline.

(6-7) Once Pa wants to send the message to Pb, Pa

requests a prekey for Pb by using phone#b. T S re-
turns gxb,zj = gxe,zj and the long-term key gb = ge.

(8-9) Pa computes the secint using gxb,zj and gb from

which
(

kEnc,AB , kMAC,AB

)

are going to be derived.

For computing those keys, he uses in fact Pe’s
prekey and identity key although he believes to
use Pb’s ones. He then encrypts message m ∈ M,
computes the respective MAC tag, and sends it to
Pb (GCM is omitted for simplicity).

(10-11) Pb is neither able to verify the tag nor to decrypt
the message c. He sends the ciphertext and message
tag to Pe.

(12) Pe processes the incoming message as usual. He
computes the same secint as Pa, because gxb,zj =
gxe,zj and gb = ge. The secint is then used to com-

pute
(

kEnc,AE = kEnc,AB , kMAC,AE = kMAC,AB

)

so

that Pe is able to read and verify the message.

In Step 10, Pb has to forward the message to Pe, such
that it appears to be sent by Pa. Therefore, he needs to
include authenticationa for T S and phone#a in Step 11, so
that Pe will receive phone#a with the forwarded message.
This can be achieved in several ways:



Pa Pb T S Pe

(1) get prekey: phone#e, authenticationb (repeat it i times)

(2) gxe,z0 , z0, . . . , g
xe,zi , zi, g

e

(3) ge, gx̄e,z0 , . . . , g
x̄e,zi , authenticationb

(4) 204 OK
(5) Verify new public key fingerprint

(6) get prekey: phone#b, authenticationa

(7) g
xb,zj = g

xe,zj , zj , g
b = ge

secint =
(

g
xb,zj

a·,
g
b·x̄a,0 , g

xb,zj
·x̄a,0

)

...
(

kEnc,AB , kMAC,AB

)

= · · ·

c = ENCk
Enc

(m ∈ M)
tag = MACk

MAC
(c, . . .)

...
(8) . . . , c, tag, zj , phone#b, authenticationa

(9) . . . , c, tag, zj , phone#a

(10) . . . , c, tag, zj , phone#e, authenticationa

(11) . . . , c, tag, zj , phone#a

(12)

Figure 7: UKS attack on TEXTSECURE: Pa believes to share a key with Pb but shares one with Pe.

• T S is corrupted. In this case, it is a trivial task to
get or circumvent authenticationa.

• If T S is benign, an attacker might be able to eaves-
drop authenticationa. Although TLS is used for all
connections between clients and server, future or
existing issues with TLS implementations [25]–[29]
can not be ruled out and would allow for a com-
promise of authenticationa. Another way to obtain
authenticationa could be a governmental agency
(legally) enforcing access to the TLS keys.

• In contrast to a party’s other key material, the pass-
word is stored unencrypted and is not protected by
TEXTSECURE’s master password. Thus, the easiest
possibility to realize this attack might be for an
attacker to recover the password for authenticationa
from TEXTSECURE’s preferences9.

Remark 1. The signing of prekeys, as it is implemented

in current versions of TEXTSECURE, does not prevent the

attack. As the keys are still not cryptographically bound to

the parties’ identities, an attacker can still download keys

of an arbitrary party and pass them off as their own. Thus

the UKS attack described in this section was not mitigated.

4.3. Mitigation of Unknown Key-Share Attack

Let us consider the message that is sent in Step 8 of Figure 7:

χ, tag, gx̄a,0 , ga, regIDa, regIDe,

phone#e, authenticationa,

where χ = (v, gx̄a,2 , ctra, pctra, c) and tag = MACk
MAC

(χ).
Intuitively, if both Pa’s and Pe’s identity were protected
by the tag, then the attacks above do not longer work. As
identities we propose to use the respective parties’ phone
numbers, as they represent a unique identifier within the
system. χ would thus be formed as

(v, gx̄a,2 , ctra, pctra, phone#a, phone#e, c).

If kMAC is secret (i.e., only shared among Pa and Pe) and
if MAC is secure, the inclusion of both identities in the
tag provides a proof of Pa towards Pe that Pa is aware

9. File: shared-prefs/org.thoughtcrime.securesms preferences.xml

of Pe as its peer, i.e., that the message is indeed intended
for Pe. Moreover, Pe is convinced that Pa actually sent
the message. Thus, Pb will not be able to mount the above
attacks.

4.4. Mitigation of Authentication Issue

While the Unknown Key-Share Attack is mitigated if
the message in Step 8 is modified as we propose in Sec-
tion 4.3, the underlying problem is not resolved. It results
from a party’s erroneous assumption that a communication
partner’s long-term identity key is authentic, if they have
compared key fingerprints, and these fingerprints matched
their assumptions. However, this is not necessarily the case.
Given the attack scenario described in Section 4.2, a mali-
cious party would always be able to present a third party’s
long-term public key as their own, as only fingerprints are
compared – a party is not required to show their knowledge
of the corresponding secret key.

To resolve this issue and to enforce that only a party
in possession of the valid long-term identity key for this
respective party may register new key shares with the server,
we propose to use an interactive zero-knowledge proof of
knowledge. Instead of presenting pw before uploading new
prekeys, a party could present a proof that it knows the
private key that corresponds to the identity key already
registered with the server and used for signing previous
prekeys. Thus, the authentication required for registering
keys would now depend on a strongly protected secret: a
party’s identity key.

The Schnorr identification protocol [30] works ideally
in this case. Let (ska, pka) = (a, ga) ∈ Zp × Ed25519 be
the key pair of Party Pa. Then the Schnorr protocol can be
used to prove possession of a to Pb (the verifier) as follows:

1) Pa chooses r
$

← Zp and sends G = gr (the commit-
ment) to Pb.

2) Pb samples e
$

← Zp and sends e (the challenge) to Pa.
3) Pa computes s = a · e + r mod p and sends s (the

response) to Pb. Pb accepts if gs = pkea ·G.

The protocol could easily be carried out between a
TEXTSECURE client and the server T S to proof possession
of the corresponding secret key, each time a party attempts
to upload keys.



It is well known that the Schnorr protocol is an honest

verifier zero knowledge proof of knowledge [31]. That is, it
holds that:

1) Computing a proof requires knowledge of the secret
key, and

2) An honest verifier, i.e., a verifier that follows the pro-
tocol honestly, learns nothing about a.

In the sequel we assume public keys to be authentic.

Remark 2. If we do not want to trust the server T S , the

Schnorr protocol can also be carried out when to parties

meet face to face via exchange of QR-codes.

This would mitigate the UKS attack, because in addition
to being authenticated with his real identity at the TEXT-
SECURE server, the attacker would have to prove knowledge
of the private long-lived key of the victim, which he does
not know.

5. Security Proofs

In the following, we provide security proofs for the
building blocks of TEXTSECURE. Namely, we give a se-
curity proof for the cached ORKE protocol and prove the
key derivation function and authenticated encryption to be
secure.

We note that we do only prove security of the building
blocks of TEXTSECURE here, not of their composition. We
see this as a first step to provide a thorough security analysis
of TEXTSECURE and encourage further research in this
direction. This approach was succesful, for example when
proving the security of TLS where Jager et al. [32] built on
provable security results of the building blocks (e.g., [33]).

5.1. The computation of the long-lived symmetric

secret is a secure ORKE protocol

One of the main design criteria as described by Marlin-
spike in his blog entry on “Axolotl-ratchet” [10] is the re-
placement of the three-message ratchet (“key refreshment”)
used by OTR by a two-message ratchet. This, however,
disables the MAC-based “chain of trust” for successive
ephemeral DH shares. As a solution, TEXTSECURE first
establishes a shared, long-lived, symmetric secret rkBA

between sender A and receiver B. This secret is then used,
together with a fresh DH secret, in the TEXTSECURE key
derivation function.

In this section we describe the establishment of this
secret as a cached one-round key establishment protocol

(cORKE, cf. Figure 8), where the first message has been
cached on the TEXTSECURE server. In the TEXTSECURE

cORKE protocol, each party B generates one long-lived key
pair (b, gb) and several one-time DH key pairs (xb, g

xb).
The public shares of these key pairs are then registered.
Before party A can send the first message to B, he has to
request the long-lived and one one-time public DH share
from the TEXTSECURE server. Party A then chooses a
fresh ephemeral DH key pair (xa, g

xa), and sends the public

share gxa and his long-lived public share ga together with
the encrypted message and additional data to B. A and B
then both derive an intermediate secret secint by computing
3 of the 4 possible combinations of their public shares:
secint := (DH(ga, gxb), DH(gb, gxa), DH(gxa , gxb)).
The long-lived secret rkBA shared between A and B
is then derived by applying the key derivation function
HKDF to this intermediate secret and two constant values:
(rkBA, ckBA) = HKDF (secint, const0, constR).

Security models for ORKE protocols mostly follow
Canetti and Krawczyk [34], and the many different variants
of these models are often summarized under the term “ex-
tended Canetti-Krawczyk” (eCK) model. All these models
differ slightly in the definition of a “protocol session”, and
in the adversarial capabilities.

Computational model. We model each instance of TEXT-
SECURE installed on a mobile device as a party Pi, i ∈
{1, ..., n}. Each party keeps track of the long-lived and
medium-lived variables (i.e., for party PA the long-lived
private key a, the corresponding public key ga, the identity
A, and all the registered one-time key pairs).

For each communication started with another party, Pi

forks off a (medium-lived) process πs
i , s ∈ {1, ..., ℓ}, to

maintain the different session key variables. For cORKE (cf.
Figure 8) and πs

A, these variables include the identity B of
the communication partner PB as requested in message (2),
the long-lived key gb and the one-time key gxb as received in
message (3), the ephemeral secret key xa, the value secint,
and the pair (rkBA, ckBA).

Each child process may request a registered private key
from the party by presenting a reference to the correspond-
ing public key.

Remark: This computational model seems over-
idealized, since the different sessions are most likely im-
plemented as threads, not as separate processes. However,
in order to allow Reveal queries targeting only session-
specific variables, some kind of memory separation should
be in place, to avoid fatal effects like reading the com-
plete OpenSSL memory with a HeartBleed attack. So this
computational model should be seen as without memory
separation, the proof may not hold. Or to put it the other
way round: Without memory separation, we must remove
Reveal queries from the adversarial model to be able to
prove security.

The TEXTSECURE server is modelled as an additional
party, since this server does not compute any session-specific
values.

Adversarial model. Adversarial capabilities are formalized
as queries, where the fact that an active adversary controls
the whole communication network is modeled as a Send
query, together with various variants of queries which reveal
secret data from all but the Test session. The multiplicity of
different secret values established during the TEXTSECURE

protocol (cf. Section 6.2) makes it difficult to correctly
define queries revealing any long-, medium- or short-lived
values to the adversary. However, this is not the goal of this
section: we only want to prove security of the cORKE build-



Pa T S Pb

(a, ga)
(

b, gb
)

(1) register
(

B, gb, gxb

) choose xb

compute gxb

(2) request(B)

(3) B, gb, gxb

choose xa

compute = gxa

secint := ((gxb)a, (gb)xa , (gxb)xa)
(rkBA, ckBA) = HKDF (secint, const0, constR)

(4) A, ga, gxa , z
secint := ((ga)xb , (gxa)b, (gxa)xb)
(rkBA, ckBA) = HKDF (secint, const0, constR)

Figure 8: The cached ORKE protocol in TEXTSECURE to compute a shared secret secret between parties A and B. Please
note that z is a pointer to gxb .

ing block. Therefore we formalize adversarial capabilities as
the following queries:

• Send(πs
i ,m). With this query, the adversary A can

send message m to process oracle πs
i . The oracle

will process this input according to the protocol
specifications, and return any output it produces
to A. The Send query may also be used to send
messages to the TEXTSECURE server. This query
models that an active attacker may control the com-
plete communication between different process ora-
cles and the TEXTSECURE server, and may delete,
modify, delay or inject arbitrary messages.

• Reveal(πs
i ). This query will reveal the values

(rkBA, ckBA) if they have already been computed
by the process oracle. If this computation is not
finished yet, the query will return ⊥.

• Corrupt(Pi). This query will return the long-lived
secrets of party Pi to A, which consist of the long-
lived private key and the password. After this A is
able to completely impersonate Pi, including regis-
tering one-time keys at the TEXTSECURE server.

• Test(πs
i ). This query can only be asked once, and

is answered by the oracle in the following way: The
oracle flips a fair coin b, and returns kb, where k0 =
(rkBA, ckBA) and k1 = (r1, r2) for two random
values r1, r2 chosen from the same distribution.

Please note that the TEXTSECURE server may be ad-
dressed with Send queries, but not with (a) Reveal or (b)
Corrupt queries, because (a) he does not compute any
session secrets, and (b) corruption of the TEXTSECURE

server would also reveal long-lived passwords, and thus the
registration phase would become insecure by definition.

Security model. To define security, first we have to exclude
trivial attacks which result from a combination of the above
queries, but which do not correspond to any real attacks.
The simplest example is asking Reveal and Test to the same
oracle, which does not make sense. More subtly, we must
not allow this combination of queries against pairs of oracles
which should compute the same key, i.e., we must define
what a protocol session is. For protocol sessions, recently

Cremers [35] and Bergsma et al. [36] independently came
up with a satisfactory definition, which we use.

Definition 1 (Origin session). Consider two parties A and

B with processes πs
A and πt

B , and let M in(π) and Mout(π)
be the sequences of messages received and sent by process

π, resp. We say πs
A has origin session πt

B , if M in(πs
A) =

Mout(πt
B), and denote this by πs

A ← πt
B .

In Figure 8 we assume that the one-time key retrieved
by Pa in message (2) is unique, and that the TEXTSECURE

server does not issue the same key twice. (We do not
consider the last ressort key here.) The adversary A may
forward message (4) to different process oracles at party
Pb, which consequently would all compute the same key.
We consider this (trivial) attack by restricting the security
game with the help of the concept of origin sessions.

Definition 2 (Freshness). We say that an oracle πs
i is fresh

if neither party Pi nor the intended partner Pj of this oracle

is corrupted, and

• if the oracle is an initiator oracle (i.e., if it retrieves

a one-time key from the TEXTSECURE server), then

no Reveal query has been asked against any oracle

πt
j with πt

j ← πs
i , or

• if the oracle is a responder oracle, the no Reveal
query has been asked against the unique initiator

oracle πt
j with πs

i ← πt
j

Definition 3 (cORKE Security Game). Let E be a poly-

nomial time adversary, and let C be a challenger who

simulates the TEXTSECURE communication network. Af-

ter observing and manipulating several instances of the

cached ORKE protocol from Figure 8 by using the Send,

Reveal and Corrupt queries, A may choose one fresh or-

acle which just has successfully completed this protocol,

and send a TEST query to this oracle. In our security

game, this oracle will now set s0 := (rkBA, ckBA) and

s1
$

← {0, 1}length(HKDFout). Then the party throws a fair

coin and uses the result b to return sb to the adversary. The

adversary may now perform some additional computations



involving Send, Reveal and Corrupt, and eventually issue a

bit b′. He wins the game if b′ = b.

Since an attacker may always win this game with prob-
ability 1

2 by just guessing b, we cannot use this winning
probability directly in our security definition. A protocol
should only be considered broken if an attacker can do
significantly better that just guessing.

Definition 4 (cORKE security). Let PrE(b
′ = b) be the

probability that attacker E wins the game described in

Definition 3. We say that an attacker breaks the cORKE

protocol if AdvE := |PrE(b
′ = b) − 1

2 | is non-negligible.

The cORKE protocol is secure if no such attacker exists.

Theorem 1. If the Gap-DH assumption holds10 in

Curve25519 and we model HKDF as a non-programmable

random oracle, then cORKE is a secure cached ORKE

protocol and we have

AdvA ≤
(nℓ)2

2q
+ (nℓ)ǫgDH .

Proof. The proof is organized as a sequence of games.
Let A be an arbitrary adversary, and let C be the cORKE
challenger. Let q be the order of Curve25519.

Game 0: This is the original cORKE security game.

Game 1: In this game we exclude collisions in the DH
shares for the cORKE subprotocol. (For the full TEXT-
SECURE protocol we would need a different, but still neg-
ligible bound, because of the ephemeral shares used for
the ratcheting.) Since there are n parties, and each party
may fork off at most ℓ process oracles, at most nℓ DH
shares (both one-time and ephemeral) are used in the dif-
ferent cORKE protocols. The challenger will now abort the
game if any of these shares have the same value. We get

Pr0A(b
′ = b) ≤ Pr1A + (nℓ)2

2q , and therefore also

Adv0A ≤ Adv1A +
(nℓ)2

2q
.

Game 2: In this game we guess which of the nℓ oracles
will be asked the Test query. Note that according to our
security definition, neither the party of this oracle, nor its
intended partner may be corrupted. If our guess is wrong,
the simulation is aborted and the bit b′ is chosen randomly.
This gives us

Adv1A = Adv2A · (nℓ).

Game 3: We now want to embed our CDH challenge
(g, gc, gd), where g is the generator of Curve25519 used in
our computations, into the simulation. To do this, we have
to distinguish two cases:

1) The test oracle is a initiator oracle πi
A. In this case we

know that xa is chosen by the test oracle itself, so that
the adversary cannot influence this value. Additionally,
we assume that the public key gb of the intended partner
has been authenticated offline. On the other hand, A

10. For instance, the CDH assumption holds but we have an oracle to
simulate the DDH assumption [37, p. 278f].

may choose xb by herself. Thus we set (gb, gxa) =
(gc, gd).

2) The test oracle is a responder oracle πt
B . In this case, A

may choose xa, and thus we have to embed the CDH
challenge as (ga, gxb) = (gc, gd).

Since HKDF is modeled as a random oracle, we may
replace HKDF by a programmable random oracle RO sim-
ulated by the challenger C. The adversary may now follow
two strategies: either he tries to compute b′ by querying RO,
or he doesn’t. If he doesn’t, then his advantage in this game
is 0, since s0 and s1 are both random.

If he does query RO, then he has to provide the full input
(gxb·a, gb·xa , gxa·xb , const0, constR). In case 1, the second
value is the solution to the CDH challenge, and in case 2
it is the first value. Since C simulates RO, he sees these
values. With the help of the DDH oracle C can check if
these values are the solution to the CDH problem.

For all other simulation steps, C only has to check if
the input provided by either A or by one of the simulated
oracles has already been asked to RO, and either return
a freshly chosen random value, or the value stored in the
database. To be able to do so, we need the DDH oracle from
the gap-DH assumption. For example, if we use gb to embed
one value from the CDH assumption, and the adversary
sends message (4) where xa is chosen by the adversary,
then C cannot compute (gxa)b; however, with the help of
the DDH oracle, C can check if CDH(gxa , gb) equals any
value queried before, and thus adapt the answer.

Thus we have

Adv2A = Adv3A + ǫgDH .

5.2. Key derivation

Definition 5 (Key derivation function [38]). A key derivation

function KDF is a function KDF that takes as input 1) a

value SKM sampled from a source of keying material, 2)

a length value l, 3) a salt value XTS , and 4) a context

variable CTXInfo (the last two inputs being optional) and

outputs a string of l bits.

Let us elaborate on this definition. First of all, one may
wonder, why we cannot simply use a secure pseudo-random
function for key derivation. The reason is that PRFs require
a key of a certain length, e.g., a key of 512 bits in HMAC
SHA-256 and with sufficient high min-entropy, say, at least
160 random bits. However, it may occur that though the
key SKM that is input to KDF provides enough entropy, it
is not of the correct size to be used with the considered
PRF. This may occur, if e.g., SKM is the result of Diffie-
Hellman key exchange in a group of prime order. Here, it is
usually the case that the Diffie-Hellman protocol is carried
out in a group of order roughly 160 bits. Since by the Diffie-
Hellman assumption the secret (gab) is indistinguishable
from a random value in that particular group, it provides
us with 160 uniform bits. However, to thwart attacks that
deploy the structure of the field, the group is actually a



Algorithm 1 HKDF(key, salt, contextInfo)

kpr ← HMAC(salt, key)
k0 ← HMAC(kpr, contextInfo||0x00)
k1 ← HMAC(kpr, k0||contextInfo||0x01)
return (k0, k1)

subgroup of a group of order roughly 2048 bit. Thus, though
the secret provides us with 160 uniform bits, the element that
represents the secret is actually of size 2048 bits.

Thus, the goal of a key derivation is actually twofold:
On the one hand, the random bits from SKM need to be
extracted (for reasons described above) and on the other
hand they need to be expanded, that is an output of the
desired length l is to be produced (we often omit l where
the output length is clear from the context). The value
XTS (extractor salt) in Definition 5 may contain additional
public information on the extraction step (see below). It may,
however, also be empty. The context-variable is used to use
SKM for different purposes.

Let us in the following assume that there is an algorithm

(SKM, α)
$

← Σ(1k) that inputs the security parameter and
outputs a key SKM and additional information α that is
available to the adversary about SKM. We will also refer
to Σ as the distribution of (SKM, α) and we will denote
by ΣSKM and Σα the corresponding marginal distributions
on SKM and α. Moreover, let us denote by µSKM the Min-
Entropy of ΣSKM.

In our scenario, Σ will be the cORKE protocol from
above, where SKM is the key and α is the transcript that is
available to the attacker. In case cORKE is secure it holds
that 2−ΣSKM ≤ negl.

Next, we define the security of a KDF with respect to
Σ. To this end, consider the following security game that
is played between a challenger and an adversary A and
that is parametrized by Σ, and q the number of queries the
adversary may issue. We slightly deviate from the definition
in [38] in that we do not allow A side information on SKM.
This suffices in our case since the key exchange phase is
secure (see above). On the other hand, we allow A to choose
XTS adaptively for each evaluation of KDF.

1) First, C runs (SKM, α)
$

← Σ(1k) and passes α to A.
2) A may now adaptively query C on arbitrary values

(XTSi, ci, li), for i = 1, . . . , q′ ≤ q. When A issues
query (ci, li), C returns KDF(SKM, li,XTS, ci).

3) At some point A chooses values XTS∗, c∗, l∗ such that

XTS∗ /∈ {XTS1, . . . ,XTSq′}. C flips a bit b
$

← {0, 1}.
If b = 1, then C returns KDF(SKM, l∗,XTS, c∗), other-
wise, it provides A with a uniformly random bit string
of length l.

4) A may continue to adaptively query C on
(XTSi, ci, li), i = q′ + 1, . . . , q such that
XTSi 6= XTS∗.

Definition 6 (Security of KDF). We say that a KDF KDF
is secure with respect to Σ if it is computationally hard to

determine the value of b significantly better than by guessing

in the above game.

Key Derivation in TextSecure. The core of the key deriva-
tion in TEXTSECURE is the HMAC based key derivation
function HKDF due to Krawczyk [38] that is depicted
in Algorithm 1. Krawczyk showed that under reasonable
assumptions, HKDF is a secure key derivation function.

Let us denote by rkBA the secret established in the
cORKE phase and by gxb,z the one-time key of B. After

sampling (xa,2, g
xa,2)

$

← Zp × Curve25519 and computing
kshared = gxb,z·xa,2 , key derivation in TEXTSECURE pro-
ceeds as depicted in Algorithm 2.

Algorithm 2 KDFTS(rkBA, kshared, aux)

1: (constR, const2, const1, const0, constK)← aux
2: (krAB , k

c
AB)← HKDF(kshared, rkBA, constR|| const2)

3: kshared
new ← HMAC (kcAB , const1).

4: (keyEnc, keyMAC)← HKDF(kshared
new, const0, constK).

Here, variable aux contains the strings constR, const2,
const1, const0 and constK and is parsed as these in the first
step. The length variable l is set to l = 2 for KDFTS.

We note that though the source of keying material SKM
is (close to) uniformly distributed over Curve25519, it con-
tains only ephemeral and non-authenticated values. rkBA,
the only value that is uniformly and authenticated, acts as
salt, when HKDF is first called (and not as source of keying
material). Thus, the key to KDFTS is rkBA the secret from
the cORKE protocol and not kshared which is the key when
HKDF is called first. Therefore we can not apply [38,
Theorem 4] on the KDF-security of HKDF directly. Rather
we show the following:

Theorem 2. KDFTS is a secure KDF with respect to cORKE

if HKDF is modelled as a non-programmable random oracle

and HMAC is a secure PRF.

Proof. Again, the proof follows the sequence of games
approach. Let χi denote the event that the adversary breaks
security of KDFTS in game i.

GAME 0. This is the real security game as per Definition 5.
Note that here, we have SKM = rkAB ,XTS = kshared and
CTXInfo = aux. In particular, CTXInfo and l are fixed.

GAME 1. In Game 1, we proceed similar to Game 0, except

for the following. Instead of sampling (SKM, α)
$

← Σ(1k)
(i.e., running Σ(1k)) we sample SKM and α independently

from the marginal distributions ΣSKM and Σα. Stated oth-

erwise, we run (SKM′, α)
$

← Σ(1k) and afterwards replace
SKM′ with a uniformly random value SKM. By the security
of the cORKE protocol (Theorem 1) we have

Pr[χ0]− Pr[χ1] ≤ negl

GAME 2. Game 2 proceeds similar to Game 1, except that
A loses whenever A issues a query (·, SKM, ·) to the HKDF-



oracle. Since SKM is sampled indpendent of α from a source
with Min-Entropy µSKM such that 2−µSKM ≤ negl, we have

Pr[χ1]− Pr[χ2] ≤ negl

GAME 3. Game 3 proceeds similar to Game
2, except for the following. When A issues
XTS∗ to the challenger, it samples (krAB , k

c
,AB)

uniformly at random, instead of computing
(krAB , k

c
,AB) ← HKDF(kshared, rkBA, constR||const2).

Due to Game 2, A will never issue such query to the
HKDF-oracle (recall that SKM = rkBA) and thus, the
change in Game 3 is purely conceptual. It follows:

Pr[χ2] = Pr[χ3]

GAME 4. In Game 4, we proceed similar to Game 3, for
the following. When A issues XTS∗, the challenger does
not compute knewshared ← HMAC(kcAB , const1) but samples
knewshared uniformly at random. By the PRF-properties of
HMAC we have

Pr[3]− Pr[4] ≤ negl

GAME 5. Game 5 proceeds similar to Game 4, except thatA
loses whenever A issues a query (knewshared, ·, ·) to the HKDF-
oracle. By Game 4 it follows

Pr[χ4]− Pr[χ5] ≤ negl

Claim 1. Pr[χ5] ≤ negl.

Due to Game 5, A never issues a query (knewshared, ·, ·)
to the HKDF-oracle. By Game 4, we have that (knewshared)
is the key that is input to this last evaluation of HKDF
when A issues XTS∗. It follows that the output of HKDF is
uniformly random from the adversaries point of view. The
claim follows.

5.3. Encryption of Messages is Authenticated En-

cryption

The goals of authenticated encryption are indistinguisha-
bility of plaintext even in the presence of a decryp-

tion oracle (IND-CCA-security) and integrity of ciphertexts
(INT-CTXT-security) [39] (which also guarantees plaintext-
integrity).

Algorithm 3 TS.Enc(k, hd,m)

c← Enck
Enc
(m)

χ← (v, gx̄a,2 , ctra, pctra, c)
tag← MACk

MAC
(χ)

return C← (χ, tag)

IND-CCA-security guarantees security of encrypted mes-
sages, even if the adversary is provided with encryption and
decryption oracles. The practical motivation stems from the
discovery of padding oracle attacks (e.g., [40]). INT-CTXT-
security guarantees that an adversary can not create well-
formed ciphertexts, even when having access to an encryp-
tion oracle.

Algorithm 4 TS.Dec(k, hd,C)

parse C as C = (χ′, tag′)
parse χ′ as χ′ = (v′, (gx̄a,2)

′
, ctr′a, pctr

′
a, c

′)
tag′′ ← MACk

MAC
(χ′)

if tag′′ 6= tag′ return (⊥,⊥)
m← Deck

Enc
(c)

if m = ⊥ return (⊥,⊥)
return m

The ENCRYPT-then-MAC (EtM) construction produces
a ciphertext by encrypting the plaintext with a symmetric
encryption scheme (SE) and protecting the output with a
message authentication code (MAC). Bellare and Namprem-
pre have shown [39] that the EtM construction achieves
these goals under the assumptions that 1) MAC is strongly

unforgeable and 2) SE is IND-CPA-secure. As depicted in
Algorithms 3 and 4, TEXTSECURE also follows this EtM-
approach.

Thus, we obtain the following:

Theorem 3. (TS.Enc,TS.Dec) provides IND-CCA-security

and INT-CTXT-security if AES in counter mode is

IND-CPA-secure and HMAC is a strongly unforgeable mes-

sage authentication code.

It thus suffices to show that the underlying primitives
satisfy the respective security notions. We recall these prop-
erties here:

• IND-CPA-security, i.e., security of encrypted mes-
sages, even if the adversary is provided with an
encryption oracle, holds for AES in counter-mode
if AES itself is a pseudo-random permutation.

• A message authentication code is strongly unforge-

able if it is computationally hard for an adversary
that has access to an oracle that computes tags for
messages of the adversary’s choice, to output a pair
(m∗, tag∗) such that tag∗ is a valid tag for m that
has not been previously output by the oracle. In
particular, we require that it is hard for the adversary
to compute a tag tag′ for a message m, even if it is
given pairs (m, tag) for the same message such that
tag 6= tag′. For any message m and key k there is
only one tag such that tag = HMAC(k,m) and thus
there is a unique tag that will be accepted by the
verification-algorithm of HMAC for any message. It
is well known [41] that any unique MAC is strongly
unforgeable if and only if it is a secure MAC (i.e.,
if an existential forgery is computationally hard).
Thus, by the results of [42], we may assume that
this property is satisfied for HMAC.

6. Claimed Additional Security

Features

We now briefly discuss how the TEXTSECURE protocol
achieves forward secrecy and also a security notion called
future secrecy. Furthermore, we show that TEXTSECURE



does not achieve deniability in the sense of the definition
given for the OTR protocol.

6.1. Future Secrecy

The authors of TEXTSECURE formulated the security
goal of future secrecy [43]. Future secrecy guarantees that
if, in a conversation between A and B, at some point in
time kEnc, kMAC or ephemeral DH exponents were leaked,
the protocol will recover and from a certain point in time
on future messages will be secured again.

Please note that future secrecy does not hold if the whole
key material of one of the parties is leaked: for example, if
rkBA (rkAB , resp.) and one private exponent is leaked, the
attacker may act as a man-in-the-middle and read and alter
all future messages. So one precondition for future secrecy
is that long-lived keys remain secret.

If the long-lived keys remain secret, future secrecy will
be enforced with each new ratchet: Since rkAB (rkBA,
resp.) is one input to the key derivation function, no attacker
will be able to control the new keys from this point on.

However, the question whether TEXTSECURE does
achieve future secrecy depends on the amount of information
that may leak to an attacker. We discuss this issue in more
depth below for the classic notion of perfect forward secrecy.

6.2. Perfect Forward Secrecy

Perfect forward secrecy (PFS) [44]–[46] is a desirable
goal in cryptographic systems since its guarantees that if one
of the communicating parties is forced to reveal its private
and secret keys, nevertheless all messages remain secure (i.e.
they cannot be decrypted with the revealed keys) that were
sent prior to this event. All major key exchange protocols
support PFS (e.g. TLS-DHE, SSH and IPSec IKE), and a
formalization has been proposed by Jager et al. [32]. PFS
does not prevent messages sent after this event from being
read, since an attacker may now impersonate one of the
communicating parties by using the revealed keys.

When claiming PFS for TEXTSECURE, we first have
to define which keys could be revealed. Since the TEXT-
SECURE server does not store any private or secret end-to-
end communication keys, those keys can only be revealed
from a TEXTSECURE app. Here the following types of keys
are stored:

• Long-lived keys. The TEXTSECURE app used by
party Pa has to store the private DH key a for the
lifetime of the app, or until the user changes this
value. Additionally, it has to store the long-lived
shared secrets secAB for any communication partner
Pb.

• Medium-lived prekeys. Here party Pa must store the
private prekeys xa,z for all public prekeys stored
at the TEXTSECURE server. These keys should be
erased once they have been used in a communica-
tion, and a chaining key has been derived. The only
exception from this deletion rule is the last resort

key, which can only be erased if new prekeys have
been generated and uploaded to the server.

• Short-lived keys. For each new ratchet in the com-
munication flow, Pa must generate and store the
ephemeral private DH key xa until it is used a
second time to derive master and chaining keys.

The revealing of long-lived keys alone does not compro-
mise the security of any message in TEXTSECURE, since
they only influence one parameter of the key derivation,
namely the shared secret secAB .

If however in addition some medium or short-lived keys
are revealed (which are stored on the same device), the
situation becomes more complex: If a key xa,z has already
been used for sending messages to A, but A has not received
these messages at the time of the key reveal, then somehow
“previous” messages can be decrypted. The same holds for
keys xa who must be kept stored until an answer from the
other party B has been received.

So strictly speaking, TEXTSECURE again only fulfills a
weaker variant of PFS, but of course the large majority of
“previous” messages is protected by PFS.

6.3. Deniability

Deniability, which was one of the primary design goals
in the OTR protocol, can be described as follows: Both

sender and receiver of a message should be able to deny
that they have sent or generated a message, by showing
that any other party may also have sent and generated a
particular message. OTR achieves this property by using
a malleable encryption scheme and periodically publishing
the MAC key after the receiver has verified a message’s
authenticity. Thus, anyone could have modified the messages
plaintext and produced a valid MAC.

TEXTSECURE encrypts and authenticates all messages
with symmetric primitives. Assuming the key-exchange pro-
vides authenticated keys, either of the two communication
parties knows that the received messages come from the
communication partner. However, since both parties com-
pute the same keys for encryption and MAC, neither of them
can cryptographically attribute authorship. This is the nature
of symmetric cryptography.

Looking at the protocol, we see that parties are able
to simulate the whole key exchange themselves, since di-
rect interaction of a second party is unnecessary thanks to
prekeys cached by the server. The same can be done during
any real conversation: at time t, a party Pa, communicating
with Pb begins to derive new ephemeral DH shares for
Pb to simulate an ongoing conversation. As long as there
is no proof that Pb was able to re-enter the session at a
time t + n, Pb can deny any involvement. To conclude
the discussion, the design of the TEXTSECURE protocol
achieves deniability on a protocol level.

However, in practice the following happens: when a
party sends a message, it needs to do so via the TEXT-
SECURE server. The message itself is encrypted, but in order
to guarantee correct delivery, the identities of the sender



(regIDa) and recipient (regIDb) have to be transmitted to
the server. The sending request is authenticated with the
sender’s phone number and password.

The server is not able to read the content of any message
and handles only the delivery. Therefore no one can prove—
even if the server collaborates—which content was sent.
However, one major goal regarding deniability is the ability
to plausibly disclaim any involvement in a conversation or
to deny having a conversation to some party at all. Looking
at the delivery procedure of TEXTSECURE , this goal is not
achieved if the server logs all delivery requests.

In conclusion, TEXTSECURE only achieves deniability
theoretically. Content deniability is provided due to our
security proof but we can not prove that no delivery request
will be recorded at the TEXTSECURE server.

7. Related Work

At the 2004 Workshop on Privacy in the Electronic Soci-
ety (WPES), Borisov et. al. [3] presented a protocol for “Off
the Record” (OTR) communication. The OTR protocol was
designed to provide authenticated and confidential instant
messaging communication with strong perfect forward se-
crecy and deniability: no party can cryptographically prove
the authorship of a message. The deniability property of
OTR has been discussed by Kopf and Brehm [47]. The
work of Di Raimondo et. al. [13], who analyzed the security
of OTR, is in its nature closely related to our paper. The
authors point out several issues with OTR’s authentication
mechanism and also describe a UKS attack on OTR, as well
as, a replay attack along with fixes. We note, however, that
the authentication mechanisms of OTR and TEXTSECURE

have little in common: Though it aims to provide deniabil-
ity, OTR explicitly uses signatures for authentication while
TEXTSECURE does not. The UKS attack on OTR described
by Raimondo et al. [13] directly targets the key exchange
mechanism of the protocol, whereas the attacks presented in
this paper are rather subtle and exploit the protocol structure
and key derivation of TEXTSECURE .

Besides OTR, which has been widely adopted, there
exist protocols for secure instant messaging like IMKE [48],
which aim at being verifiable in a BAN-like logic, but has
never found a wider adoption. SILC [49] also has received
a certain adoption and some discussion, but is rarely used
today, as is FiSH [50], a once popular plugin for IRC
clients that used Blowfish with pre-shared keys to encrypt
messages.

Thomas [51] analyzed the browser-based instant mes-
saging client Cryptocat and found that, due to an imple-
mentation error, Cryptocat used private keys of insufficient
length when establishing a group chat session. Green [52]
recently discussed Cryptocat’s group chat approach from a
protocol perspective and points out several issues.

Further protocols exist that aim at securing instant mes-
saging communication but have, to the best of our knowl-
edge, not received public scrutiny. Among these are Silent

Circle’s SCIMP, THREEMA11 and SURESPOT12. Addition-
ally, the security of GCM in Android has been analyzed
at CCS’14 [53]. The work revealed serious security issues
allowing to intercept user messages, for example, Skype
messages, or even command Android service apps, like
(un-)installing any apps stealthily. However, our work con-
centrates on the cryptographic protocol analysis and treats
TEXTSECURE ’s GCM usage transparently.

8. Conclusion and Future Work

Mobile messaging apps with security guarantees are
becoming more and more popular. Prominent mobile ap-
plications for secure IM are THREEMA, SURESPOT, and
TEXTSECURE. In this paper, we have provided a detailed
security analysis of TEXTSECURE. First, we precisely de-
scribed the protocol and then performed a security analysis
of the individual steps of the protocol. This led to the dis-
covery of several peculiarities, most notably the protocol’s
susceptibility for a UKS attack. We proposed a mitigation
and showed that, if our mitigation is applied, TEXTSECURE

actually provides authenticated encryption. To the best of
our knowledge, this is the first formal verification of the
security guarantees offered by the app.

While TEXTSECURE’s implementation is open source,
little is known about the competing messaging applications.
While THREEMA makes use of the open source library
NaCl [54] for cryptographic operations, its protocol is kept
confidential.

SURESPOT is an open source project with its own crypto-
graphic protocol; an analysis of its protocol has (as far as we
know) not been done yet. A comparison of TEXTSECURE

and SURESPOT will be an interesting project for future work.

On October 18th 2014, Open Whispersystems and sev-
eral news outlets reported that WHATSAPP, a mobile mes-
saging application with more than 500M installations via
Google Play, now uses TEXTSECURE’s protocol to provide
end-to-end encryption for its users [55], multiplying the
protocol’s user base. Besides its Android app, WHATSAPP

does also offer an app for Apple’s iOS platform, and a
web-based client. TEXTSECURE’s protocol can only be used
with WHATSAPP, if the two communicating parties are both
using Android and one of the latest version of WHATSAPP.
In the context of the protocol’s role-out to WhatsApp, this
results in WHATSAPP’s server deciding whether two users
can communicate encrypted [56]. However, there is no
indication to users, whether they are communicating end-
to-end encrypted or not. While it is not unexpected that
WHATSAPP does not offer a way for users to authenticate
each other’s key – naturally, WHATSAPP suffers from the
same shortcomings, as TEXTSECURE– WHATSAPP does
not even offer a way for users to compare key fingerprints.
Altogether the existing differences warrant the conclusion
that one should not deduce WHATSAPP’s security proper-

11. https://threema.ch/

12. https://surespot.me/



ties from TEXTSECURE’s. Instead, a thorough analysis of
WHATSAPP can be subject of future research.
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[32] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk, “On the security of
TLS-DHE in the standard model,” in CRYPTO 2012, 2012.

[33] K. G. Paterson, T. Ristenpart, and T. Shrimpton, “Tag size does
matter: Attacks and proofs for the TLS record protocol,” in ASI-

ACRYPT 2011, ser. LNCS, D. H. Lee and X. Wang, Eds., vol. 7073.
Springer, Dec. 2011, pp. 372–389.

[34] R. Canetti and H. Krawczyk, “Analysis of key-exchange protocols and
their use for building secure channels,” Cryptology ePrint Archive,
Report 2001/040, 2001, http://eprint.iacr.org/2001/040.

[35] C. J. F. Cremers and M. Feltz, “Beyond eCK: Perfect forward
secrecy under actor compromise and ephemeral-key reveal,” in ES-

ORICS 2012, 2012.

[36] F. Bergsma, T. Jager, and J. Schwenk, “One-round key exchange with
strong security: An efficient and generic construction in the standard
model,” in PKC 2015, 2015.

[37] J. Katz and Y. Lindell, Introduction to modern cryptography. CRC
Press, 2014.

[38] H. Krawczyk, “Cryptographic extraction and key derivation: The
HKDF scheme,” in CRYPTO 2010, 2010.

[39] M. Bellare and C. Namprempre, “Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm,”
Journal of Cryptology, vol. 21, no. 4, pp. 469–491, Oct. 2008.

[40] S. Vaudenay, “Security flaws induced by CBC padding - applications
to SSL, IPSEC, WTLS ...” in EUROCRYPT 2002, 2002.



[41] M. Bellare, O. Goldreich, and A. Mityagin, “The power of verifica-
tion queries in message authentication and authenticated encryption,”
Cryptology ePrint Archive, Report 2004/309, 2004, http://eprint.iacr.
org/.

[42] M. Bellare, “New proofs for NMAC and HMAC: Security without
collision-resistance,” in CRYPTO 2006, 2006.

[43] Open WhisperSystems, “The new TextSecure: Privacy beyond
SMS,” Feb. 2013. [Online]. Available: https://whispersystems.org/
blog/advanced-ratcheting/

[44] C. G. Günther, “An identity-based key-exchange protocol,” in EURO-

CRYPT’89, 1989.

[45] M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key
exchange secure against dictionary attacks,” in EUROCRYPT 2000,
2000.

[46] H. Krawczyk, “HMQV: A high-performance secure Diffie-Hellman
protocol,” in CRYPTO 2005, 2005.

[47] G. Kopf and B. Brehm, “Phrack magazine: Secure function
evaluation vs. deniability in OTR and similar protocols,” Apr. 2012.
[Online]. Available: http://phrack.org/issues/68/14.html

[48] M. Mannan and P. C. van Oorschot, “A protocol for secure public
instant messaging,” in Financial Cryptography and Data Security,
2006.

[49] P. Riikonen, “Secure internet live conferencing pro-
tocol specification DRAFT,” 2007. [Online]. Available:
http://tools.ietf.org/id/draft-riikonen-silc-spec-09.txt

[50] Unkown, “FiSH – secure communications with internet relay chat,”
2007. [Online]. Available: http://ultrx.net/doc/fish/

[51] S. Thomas, “DecryptoCat,” 2013. [Online]. Available: http://tobtu.
com/decryptocat-old.php

[52] M. Green, “Noodling about IM protocols,” Jul. 2014.
[Online]. Available: http://blog.cryptographyengineering.com/2014/
07/noodling-about-im-protocols.html

[53] T. Li, X. Zhou, L. Xing, Y. Lee, M. Naveed, X. Wang, and X. Han,
“Mayhem in the push clouds: Understanding and mitigating security
hazards in mobile push-messaging services,” 2014.

[54] D. J. Bernstein, T. Lange, and P. Schwabe, “The security impact of
a new cryptographic library,” in LATINCRYPT 2012, 2012.

[55] M. Marlinspike, 2014. [Online]. Available: https://
openwhispersystems.org/

[56] ——, “Second thoughts on whatsapp encryption,” 2014. [Online].
Available: https://www.mail-archive.com/messaging@moderncrypto.
org/msg01138.html

Appendix

The complete message flow in the TEXTSECURE proto-
col is depicted in Figure 9.



Pa T S GCM Pb

(1) phone#a

g ∈ Curve25519

(a, ga) ∈R Zp × Curve25519

pw ∈R SHA1PRNG[128]
authenticationa =

(

phone#, pw
)

regIDa ∈R SHA1PRNG[128]
kenc,T S,A ∈R SHA1PRNG[128]
kmac,T S,A ∈R SHA1PRNG[128]
Generate 100 prekeys

+ last resort key (klr)
(xa,i, g

xa,i) ∈R Zp × Curve25519

(2) 204 OK

(3) token ∈R {100000, . . . , 999999}

(4) token, kenc,T S,A, kmac,T S,A, regIDa,

supportSms (bool), authenticationa

(5) 204 OK

(6) ga, gx̄a,0 , . . . , gx̄a,99 , gx̄a,100 = klr, authenticationa

(7) 204 OK

(8) Registration GCM

(9) regID
gcm
a

(10) regID
gcm
a , authenticationa

(11) 204 OK

(12) get prekey: phone#b, authenticationa

Choose prekey with
prekey ID z

delete gxa,z

(13) gxb,z , z, gb, regIDb

(x̄a,0, g
x̄a,0) ∈R Zp × Curve25519

secint =
(

gxb,z·a, gb·x̄a,0 , gxb,z·x̄a,0
)

(rkBA, ckBA) = HKDF (secint, const0, constR)
(x̄a,1, g

x̄a,1) ∈R Zp × Curve25519

(x̄a,2, g
x̄a,2) ∈R Zp × Curve25519

kshared = gxb,z·x̄a,2

(rkAB , ckAB) = HKDF (kshared, rkBA, constR)
(kEnc, kMAC) = HKDF (MACckAB

(const1) , const0, constK)
ckAB = MACckAB

(const2)
m ∈ M

c = ENCk
Enc

(m)
ctra = 0
pctra = 0
χ = (v, gx̄a,2 , ctra, pctra, c)
tag = MACk

MAC
(χ)

∗

a
)

b
)

c)

(14) χ, tag, z, gx̄a,0 , ga, regIDa, regIDb,
phone#b, authenticationa

check: regIDb belongs to phone#b

csignal = ENCkenc,T S,B
(χ, tag, z, gx̄a,0 , ga, phone#a)

macsignal = MACkmac,T S,B

(

csignal
)

(15) csignal, macsignal, regIDgcm

b (16) csignal, macsignal macsignal
′
= MACkmac,T S,B

(

csignal
)

if macsignal
′
= macsignal then:

DECkenc,T S,B

(

csignal
)

get prekey: xb,z

secint =
(

ga·xb,z , gx̄a,0·b, gx̄a,0·xb,z
)

(rkBA, ckBA) = HKDF (secint, const0, constR)
kshared = gx̄a,2·xb,z

(rkAB , ckAB) = HKDF (kshared, rkBA, constR)
(kEnc, kMAC) = HKDF (MACckAB

(const1) , const0, constK)
tag′′ = MACk

MAC
(χ) ∗

if tag′′ = tag then:
m = DECk

Enc
(c)

ckAB = MACckAB
(const2)

Answer:
(x̄b,0, g

x̄b,0) ∈R Zp × Curve25519

kshared = gx̄a,2·x̄b,0

(rkBA, ckBA) = HKDF (kshared, rkAB , constR)
(kEnc, kMAC) = HKDF (MACckBA

(const1) , const0, constK)
m ∈ M

c = ENCk
Enc

(m)
ckBA = MACckBA

(const2)
ctrb = 0
pctrb = ctra = 0
χ = (v, gx̄b,0 , ctrb, pctrb, c)
tag = MACk

MAC
(χ)

∗

(17) csignal = ENCkenc,T S,A

(

χ, tag, gx̄b,0 , gb, phone#a

)

,macsignal = MACkmac,T S,A

(

csignal
)

[GCM, T Sommited]

Follow up message:
(kEnc, kMAC) = HKDF (MACckBA

(const1) , const0, constK)
m ∈ M

c = ENCk
Enc

(m)
ckBA = MACckBA

(const2)
ctrb = ctrb + 1 = 1
pctrb = ctra = 0
χ = (v, gx̄b,0 , ctrb, pctrb, c)
tag = MACk

MAC
(χ)

∗

(18) csignal = ENCkenc,T S,A

(

χ, tag, gx̄b,0 , gb, phone#a

)

,macsignal = MACkmac,T S,A

(

csignal
)

[GCM, T Sommited]

Legend:

const0 = 0x0032

const1 = 0x01
const2 = 0x02
constR = ”WhisperRatchet”
constK = ”WhisperMessageKeys”
v = 2

Figure 9: The complete TEXTSECURE protocol.


