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Abstract

A key hypothesis in sensory system neuroscience is that sensory representations are adapted to the statistical regularities in
sensory signals and thereby incorporate knowledge about the outside world. Supporting this hypothesis, several
probabilistic models of local natural image regularities have been proposed that reproduce neural response properties.
Although many such physiological links have been made, these models have not been linked directly to visual sensitivity.
Previous psychophysical studies of sensitivity to natural image regularities focus on global perception of large images, but
much less is known about sensitivity to local natural image regularities. We present a new paradigm for controlled
psychophysical studies of local natural image regularities and compare how well such models capture perceptually relevant
image content. To produce stimuli with precise statistics, we start with a set of patches cut from natural images and alter
their content to generate a matched set whose joint statistics are equally likely under a probabilistic natural image model.
The task is forced choice to discriminate natural patches from model patches. The results show that human observers can
learn to discriminate the higher-order regularities in natural images from those of model samples after very few exposures
and that no current model is perfect for patches as small as 5 by 5 pixels or larger. Discrimination performance was
accurately predicted by model likelihood, an information theoretic measure of model efficacy, indicating that the visual
system possesses a surprisingly detailed knowledge of natural image higher-order correlations, much more so than current
image models. We also perform three cue identification experiments to interpret how model features correspond to
perceptually relevant image features.
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Introduction

We operate in a world exhibiting statistical regularities. In a

very different universe where every point in space were

independent from all others, white noise images (Figure 1A)

would be common place. Of course, our world appears much

more structured (Figure 1B). It contains objects with smoothly and

slowly varying surface features, which make nearby parts of space

appear similar. If there is such structure in the world, visual

representations in the brain should take these correlations into

account, as stated by the efficient coding hypothesis [1,2]. One

way to test this idea is to build models that specify a probability

density function over the space of natural images and compare the

resulting model features with known physiological properties of the

visual system. Similarities between model features and neural

properties are frequently taken as evidence that the visual system

has similarly acquired knowledge of the natural image distribution:

bandpass filtering [3,4], orientation selectivity [5,6], divisive

normalization [7–10], and complex cell pooling [11]. These

findings are at least consistent with the idea that the visual system

is adapted to the statistical regularities in natural images. In the

present work, we take a different approach, which is to measure

the visual sensitivity of human observers to statistical regularities in

natural images.

Much of the previous psychophysical work using natural images

focuses on full size images and sensitivity to measures derived from

the Fourier transform. For example, natural images show a 1=f
fall-off in their amplitude spectra [12]. When amplitude spectra

are similar to those of natural images, human observers perform

better on a variety of discrimination tasks [13–17]. Other studies

have explored sensitivity to properties encoded in the Fourier

phase spectrum with varied approaches and results [18–25]. The

phase spectrum globally encodes shape information [26]. Fewer

psychophysical studies have focused on sensitivity to local natural

image regularities. Observers can predict extremely local image

values better in natural than in random images [27], indicating

that the visual system also makes use of local natural image

regularities. The texture modeling literature has also established

several local image statistics as perceptually important for

successful reproduction of natural textures [28–30].
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In this work, we measure human sensitivity to local regularities

in natural images using probabilistic models learned on patches of

natural images, which allows us to construct stimuli that pit the full

range of local natural image regularities against a limited range

controlled by a model. In so doing, we test the efficacy of different

kinds of natural image models in capturing perceptually prominent

image features. Depending on the nature of a model’s assump-

tions, it captures a particular degree of the statistical regularities

present in natural images, which can be estimated via model

likelihood. The five probabilistic models we utilize for stimulus

generation have been evaluated quantitatively using cross-validat-

ed model likelihood estimates (Table 1) and represent a range of

advances in capturing natural image regularities, e.g. [3–11,31–

33]. They can also be grouped into classes that differ in

characteristic features related to primate visual physiology

(Table 1).

In our paradigm, observers perform a discrimination task where

model generated samples are pitted against true natural image

patches. We tile the two sets of image patches into separate

textures, such as are shown in Figure 2, and ask the observer to

select the texture of true natural image patches. The model

samples are generated by redistributing the natural image content

under the specific model assumptions, which preserves the

patches’ joint probability under the model but destroys higher-

order regularities that the model assumptions fail to capture.

Following Julesz’s original conjecture [34], above chance perfor-

mance results only when the observer can make use of those

additional higher-order regularities present in the natural image

patches.

The benefits of our approach are two-fold. First, by comparing

the natural image models in a psychophysical framework, we

complement the model comparisons based on likelihoods by a

rigorous evaluation of how well the different models are able to

capture perceptually relevant features. Second, we learn about the

biases of the human visual system by examining whether

differences in difficulty between the models relate to their statistical

properties. Because our experiments are relatively short in

duration (each less than 90 minutes), and natural images contain

Author Summary

Several aspects of primate visual physiology have been
identified as adaptations to local regularities of natural
images. However, much less work has measured visual
sensitivity to local natural image regularities. Most previ-
ous work focuses on global perception of large images and
shows that observers are more sensitive to visual
information when image properties resemble those of
natural images. In this work we measure human sensitivity
to local natural image regularities using stimuli generated
by patch-based probabilistic natural image models that
have been related to primate visual physiology. We find
that human observers can learn to discriminate the
statistical regularities of natural image patches from those
represented by current natural image models after very
few exposures and that discriminability depends on the
degree of regularities captured by the model. The quick
learning we observed suggests that the human visual
system is biased for processing natural images, even at
very fine spatial scales, and that it has a surprisingly large
knowledge of the regularities in natural images, at least in
comparison to the state-of-the-art statistical models of
natural images.

Figure 1. Different kinds of images. A. A white noise image free of
spatial correlations between pixel gray values. B. A natural image. In the
present work, we study sensitivity to local regularities in natural images.
doi:10.1371/journal.pcbi.1002873.g001

Table 1. Natural image model features and likelihood
estimates.

BF OS DN CP Likelihood References

(bits/pixel)

RND/PCA/Whitening x 2.7 [8,43]

ICA x x 2.9 [8,43]

L2-spherical x x 3.05 [8–10]

Lp-spherical x x x 3.17 [62]

MEC with k~16 x x x x 3.3 [33]

The natural image models we tested along with the neural response properties
they mimic: ‘‘BF’’ is bandpass filtering, ‘‘OS’’ is orientation selectivity, ‘‘DN’’ is
divisive normalization, and ‘‘CP’’ is complex cell pooling. We also show cited
likelihood estimates. MEC is the mixture of elliptically contoured distributions
model [33]. All models are described in detail in the ‘‘Models Tested’’ section.
Higher likelihood indicates that a model captures more of the regularities
present in natural images than a model with lower likelihood.
doi:10.1371/journal.pcbi.1002873.t001

Figure 2. Example stimulus. The left texture contains model
samples, and the right texture contains only true natural image
samples. Each texture is a square tiling of 64 samples, where each
sample is 8|8 pixels in size. The observer’s task is to indicate the
texture made only of natural image samples. Feedback was given, and a
short training sequence was performed before every experiment.
doi:10.1371/journal.pcbi.1002873.g002

Sensitivity to Local Natural Image Statistics
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very complex regularities, fast learning results only if the human

visual system is biased to process natural images [35].

In the first experiment, we measure discrimination perfor-

mance for all models using grayscale patches that contain a

number of potential cues. We find that human observers achieve

above chance performance whenever image patches are at least 5

by 5 pixels in size and that performance depends on model

likelihood, suggesting the human visual system is optimized for

processing natural image regularities even at a small scale. We

cannot tell directly from a single experiment how the human

visual system is biased for this task. Previous psychophysical

studies using images with controlled regularities have identified

several image statistics to which the human visual system is

sensitive, including luminance histogram features [36], and

structural shape-related features [37–40]. Furthermore, pixel

histograms and other Fourier-based features are known to be

important in the representation of natural textures [30]. In three

cue identification experiments, we examine the extent to which

these kinds of features explain the discriminability of our models

from the natural image distribution.

Results

Measuring sensitivity to local natural image regularities
To create stimuli with controlled regularities, we start with a set

of natural image patches and generate a set of model patches equal

in joint probability under the model. The patches are therefore

matched in terms of the regularities captured by the model. The

generation process makes use of the model assumptions critical for

avoiding the curse of dimensionality: we shuffle the content of the

natural image patches by applying the symmetry or independence

assumptions of the model. The two sets of image patches then

comprise a single discrimination trial.

To illustrate the image generation process, we now step through

an example of applying the independence assumption to a set of

natural image patches, X, cut from random locations in various

photographs of a natural image database [41]. Figure 3A shows a

set of 64 such patches. Consider the independent components

analysis model (ICA) [6]. Learning the model on a very large

database of natural image samples, Xall , yields an ICA basis. To

apply the independence assumption to X and generate a new set

X� matched in joint-probability under ICA, we first transform X

into ICA coordinates and then shuffle the values of each

coordinate separately across the patches, which preserves the

marginal distributions of the coordinates. The resulting ICA-

matched patches X� are shown in Figure 3D. We plot the first two

non-DC components of X in Figure 3B and of X� in Figure 3E

with their marginal distributions. As shown, the marginal

distributions are preserved after applying the ICA independence

assumption. The radial distribution, however, has changed as

shown in Figure 3F versus Figure 3C, indicating that the

independence assumption of ICA is not fulfilled for natural

images.

The image patches in X and X� are then used as stimuli for a

discrimination task. In each trial, X and X� are presented

simultaneously on a black background, each shown as a texture

made by tightly tiling the 64 image patches (e.g. Figure 4). The

observer’s task is to indicate which texture is composed of true

natural image patches.

To measure the discriminability of a particular model from the

natural image distribution, we perform several trials with

different X. If the human visual system were sensitive only to

the regularities described by the model, discriminability should

be at chance. Above chance performance indicates sensitivity to

the natural image regularities not captured by the model. To

increase the sample size of natural images contributing to each

discriminability estimate, we will pool estimates over observers

and trials since each trial uses a unique set of natural image

patches, X, sampled uniformly across a very large database of

natural images.

In the following section, we provide detailed descriptions of the

models tested, their shuffling procedures, and proofs that joint

probability is matched after shuffling.

Models tested
All models were learned on log-luminance natural images from

the Van Hateren natural image database [41]. We used log-

luminance values because uniform changes in logarithmic

luminance are equally detectable following the Weber-Fechner

law. The log transform is also a standard procedure in natural

image modeling because it decreases the asymmetry of the natural

Figure 3. Generating model samples using ICA. A. A set of 64
8|8 pixel natural image patches, X. B. The coefficients of the first two
(non-DC) ICA components are plotted against each other for all 64
patches along with their marginal distributions. C. Histogram of the 64
patches’ norms in the ICA basis. D. To apply the ICA independence
assumption to X, we shuffle the ICA coefficients across samples
separately for each component. Shown are the resulting matched
model patches, X� . E. The coefficients of the first two (non-DC) ICA
components of X�. The marginal distributions are the same as those of
X shown in B. F. Histogram of the coefficient norms of the 64 patches
in X� . Applying the ICA assumption has changed the radial distribution
so that the variance is much lower than that of the original distribution
shown in C.
doi:10.1371/journal.pcbi.1002873.g003

Sensitivity to Local Natural Image Statistics
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image luminance distribution, making it easier to model the higher

order regularities.

From the model capturing the fewest regularities to the model

capturing the most, we test: 1) a random second-order model

capturing only second-order correlations (RND), 2) the indepen-

dent components analysis model (ICA), 3) the L2-spherical model

(L2), 4) the Lp-spherical model (LP), and 5) the mixture of

elliptically contoured distributions model with four levels of

mixtures (MEC with k~2,4,8,or16) [33]. Roughly speaking,

MEC is able to capture similar correlations like the Karklin &

Lewicki model [11], or the mixture of Gaussian scale mixtures

model [32], yet MEC uses hard clustering to partition the natural

image distribution which we make use of in the stimulus

generation process. Thus, each cluster is described exclusively by

a zero-mean elliptically contoured distribution with its own

covariance.

We first discuss RND and ICA, the two linear models of

natural images that we test. A linear model is defined to have

statistically independent components after a linear transformation

of the pixel values. The RND model consists of a set of un-

oriented ‘‘pink noise’’ filters that capture only the covariance of

natural image gray values, and ICA consists of a set of oriented

filters additionally optimized for higher-order correlations. In the

following, we will use vectorized image patch notation to describe

a set of natural image patches X, where X is a D|N matrix of N

patches containing D pixels each. We use lower case x to denote

a single image patch in X. A linear model is fully specified by its

filter matrix Vmodel . To obtain the coefficients of a single patch in

the representation space of that model, we compute

ymodel~Vmodelx. The joint probability of a set of N image

patches, X is given by

p(X)~P
k

pk(vk X), ð1Þ

where vk denotes the k-th row vector of the filter matrix V and

is one of many filters of the linear transformation. In general, it

holds that p(X)~P p(xj) since the patches are drawn

independently from the same distribution. Therefore, we

obtain

p(X)~P
N

j~1
p(xj)~P

N

j~1
P
D

k~1
pk(vk xj)

~P
D

k~1
P
N

j~1
pk(vk xj)~P

D

k~1
P
N

j~1
pk(vk xsk (j)),

ð2Þ

where sk(j) denotes an arbitrary permutation over the patches

in X. As this equation shows–-by the commutativity of

products—we can generate a new, equally probable set of

patches X� by shuffling the j-indicies.

The other three natural image models we test, L2, LP, and

MEC, do not assume independence after the linear transforma-

tion. Instead they assume that after some linear transformation,

the natural image distribution obeys certain symmetry assump-

tions and can be transformed into a factorial representation of

independent components only by non-linear transformations.

The L2-spherically symmetric model is a generalization of

Gaussian scale mixtures [31] which assumes spherical symmetry

after whitening and can be made factorial by radial Gaussianiza-

tion [9,10]. Due to the spherical symmetry, the model is only

sensitive to the power spectrum of the filters but insensitive to their

detailed shape–-i.e., the model is sensitive to changes in VV and

thus ignores changes in V that result from an orthogonal mapping.

Thus, like for RND, we chose random filter shapes for L2 akin to

pink noise that capture the second-order correlations but have no

specific shape otherwise.

The Lp-spherical model is a generalization of the L2-spherical

model which allows one to optimize the detailed filter shapes for

additional higher-order correlations. While the density,

p(x)~p(DDVxDD2), of the L2-model is a function of the 2-norm

and thus invariant under arbitrary rotations of Vx, the density of

the Lp-model, p(x)~p(DDVxDDp), is a function of the p-norm,

DDVxDDp : ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PD
k~1 Dvk xDp

p

q

, which is invariant only under permu-

tations of the coordinates. Optimizing the Lp-model for the van

Hateren dataset [41], which we used to test the models, yields

Figure 4. Image patch examples from Experiment 1. In Experiment 1, we tested six models in one session (RND, ICA, L2, LP, IPS, GPS) and the
four mixture models in a separate session (MEC2, MEC4, MEC8, MEC16). Shown are example textures for each model. The 64 samples comprising each
model texture are matched to the 64 natural image samples shown on the left. Patch size here is 5|5 pixels. On any single trial, observers viewed
only one set of natural image samples and one set of model samples (e.g. as shown in Figure 2).
doi:10.1371/journal.pcbi.1002873.g004

Sensitivity to Local Natural Image Statistics
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p&1:3 and the same oriented filter shapes as in the ICA model

[10]. Also, the Lp-spherical distribution can be made factorial by

using radial factorization instead of radial Gaussianization [10].

The joint probability of a set of natural image patches X under

either the L2- or Lp-model can be written as

p(X)~P
N

j~1
p(xj)~P

N

j~1
f (DDVmodelxj DDp), ð3Þ

where in the case of L2, the filter matrix V is the same as that for

RND, and in the case of LP, V is the same as that for ICA.

We now show why permutation of the model’s representation

coordinates, y~Vx, within a patch preserves the patch’s norm. If

p~2, then DDQyj DD2~DDyDD V Q : QQ ~Q Q~I because

DDQyj DD
2
2~y Q Qy~y y~DDyDD22. If p=2, then Q~dis(k) where

s(k) is a random permutation of the coordinate indices and d is

the Kronecker delta, which equals 1 when i~s(k) and zero

otherwise. After permuting the coefficients within an image patch,

we denote the new image patch as ~yy~Qy. The p-norm of y is

DDyDDp~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PD
k~1 Dyk Dp

p

q

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PD
k~1 Dys(k)D

pp

q

~DD~yyDDp. Therefore, permut-

ing the coordinates of a patch obtained from y~Vx preserves the

norm in the model’s representation space, and the set of generated

image patches X� is equally probable to X following Equation 3.

Because MEC uses hard clustering to obtain non-overlapping

clusters, we model each cluster by its own L2-model each using a

different whitening transform. Thus, we can simply apply the L2-

norm symmetry to each patch once it has been transformed into

the appropriate representation of its cluster.

The models vary in complexity which is also reflected by the

transforms necessary to obtain a factorial representation. The

properties of these redundancy reduction transforms can be

related to primate visual physiology (Table 1). Linear models are

linked to linear response properties that can be further divided into

power and phase spectral information. RND captures the power

spectral properties that are common to center-surround models of

retina and LGN [3,4] and the PCA and ICA models [42], but it

does not reproduce the more special filter shape properties

determined by the differences between the models in the phase

spectra. RND is therefore useful as a baseline model to disentangle

the contribution of matching the second-order statistics from more

specific receptive field properties. At the other extreme, ICA

optimizes the more specific filter shape properties determined by

the phase spectra with respect to higher-order correlations [6],

making ICA the best possible linear model. (The center-surround

model or PCA model constitute intermediate cases because their

filter shape properties are better matched to natural image

statistics than RND but less matched than ICA [43].) The

difference in performance between RND and ICA thus reflects the

maximal effect among linear models that the phase spectral

properties of filter shapes can have.

L2 and LP are nonlinear models from the class of Lp-spherical

models, which are related to contrast gain control [7–10]. Because

L2 and LP use the same filters as RND and ICA respectively,

again the difference in performance between L2 and LP represents

the maximal effect that the filter shapes can have beyond matching

the power spectra.

The mixture model also captures oriented features and

represents different classes of images separately, and it is related

to the model of Karklin and Lewicki, another mixture model

learned on the natural image distribution which showed complex

cell-like pooling properties [11].

Another important reason why we selected this set of models to

test is because cross-validated likelihood estimates have already

been reported in the literature for each of them, which we list with

citations in Table 1. All of these likelihoods were estimated in the

most conservative way, where test sets and training sets of the same

size were used, and the difference in likelihood between the

training and test sets was tiny.

We also test two Fourier ‘‘models’’ of natural image patches.

Although we do not have their likelihood estimates, these models

are intended as comparisons where patch-based Fourier statistics

are isolated. Both preserve the amplitude spectra of the patchwise

Fourier transforms of each patch in X, which carries most of the

image appearance information for small patches [44]. We test

independent phase scrambling (IPS), in which we preserve the

patchwise power spectra and randomize the patchwise phase

spectra, and we test global phase scrambling (GPS), which

preserves all correlations between phases and between amplitudes

yet destroys dependencies between the two.

Scale of local regularities
Natural image patches were sampled from a database of

grayscale photographs of outdoor scenes where 1 pixel equals

approximately 2 minutes of arc [41]. Discriminability was

measured for different model generated stimuli at the following

patch sizes: 3|3, 4|4, 5|5, and 8|8 pixels, corresponding to a

range of 0:10

{0:2670 in the original photographs. We therefore

examined regularities occurring at a very fine scale in natural

images, one above yet nearing the human resolution limit. We

always magnified the patches on the screen because we were

interested in whether observers can discriminate the regularities

present in natural images at this fine scale and not in whether

acuity was good enough for the task at this scale.

Experiment 1: Grayscale stimuli with many potential cues
In Experiment 1, observers discriminated grayscale natural

image samples from model samples, and the stimuli included all

potential cues. A pair of example stimulus textures is shown in

Figure 4. In one session, 16 observers performed the task for RND,

ICA, L2, LP, IPS, and GPS at patch sizes 3|3, 4|4, and

5|5 pixels. In a second session, 12 observers performed the task

for the four versions of MEC with k~2,4,8,or16. Because MEC is

among the best in terms of likelihood (Table 1), we additionally

included 8|8 pixel patches. Each observer completed 30 trials for

each model at each patch size for a total of 30|6|3~540 trials

in session one and 30|4|4~480 trials in session two.

Average discrimination performance is plotted in Figure 5 as a

function of patch size with 95% binomial confidence intervals.

Discriminability estimates are also printed in Table 2 with stars to

indicate p{values. MEC k~16 was the most difficult model to

discriminate, and only the MEC models brought performance to

chance (with 3|3 pixel patches). Observers were near ceiling with

the linear models, RND and ICA, achieving respectively 96% and

94% correct on average. The spherical models, L2 and LP, were

more difficult, with average discriminability dropping to 71% and

67% correct respectively. IPS and GPS were roughly between the

linear and spherical models in terms of difficulty, with average

discriminability at 84% and 73% correct respectively. Overall, the

large proportion of data points above chance indicates that the

human visual system is highly sensitive to the local features of

natural images, even to the higher-order regularities the best

models fail to capture. Discriminability estimates were always

significantly above chance for 5|5 pixel patches and larger,

indicating that no model sufficiently captured all the prominent

features for patches larger than 4|4 pixels in size.

Sensitivity to Local Natural Image Statistics
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To examine how performance was related to model likelihood,

we plotted model discriminability in order of increasing model

likelihood, based on the likelihood estimates in Table 1 where

RND is equivalent to PCA, and MEC’s likelihood increases with

more mixtures. (We do not include the Fourier models here as they

are not probabilistic models and hence do not have likelihoods.)

Each bar in Figure 6A is one model’s discriminability with 95%

binomial confidence intervals for data pooled over subjects and

patch sizes 3|3, 4|4, and 5|5 pixels. RND, ICA, L2, and LP

estimates are based on 1,440 trials each, and MEC models on

1,080 trials each. Discriminability decreases as model likelihood

increases.

We analogously examined the data of a single subject, plotted in

Figure 6B. The subject performed 4,032 trials of a more sensitive

version of the experiment (chance = 25%) in 4 sessions with RND,

ICA, L2, LP, IPS, and GPS and one session with the MEC

models. In Figure 6B, estimates for RND, ICA, L2, and LP are

based on 576 trials each, and MEC estimates on 144 trials each.

Within the range of the 95% binomial confidence intervals, which

overlap for L2, LP, and MEC k~2, theses data show the same

pattern of decreased discriminability with increased model

likelihood.

In Figure 6C, we plot the model ranks in terms of discrimina-

bility against the model ranks in terms of likelihood for all the data

points in Figure 6A and B. The pattern shows that discriminability

decreases as model likelihood increases.

Feedback was provided throughout the experiment, so we

analyzed the data for learning by splitting the data in half over

time and comparing discriminability estimates across the two

halves. If the 95% binomial confidence intervals of the two

estimates do not overlap, there may have been learning (or anti-

learning). Binomial confidence intervals assume trial indepen-

dence and therefore underestimate confidence interval width in

the case that subjects’ behavior was non-stationary [45], so the

test we report is biased away from false negatives and thus rather

over sensitive to learning. We applied this test for each model

separately with data pooled over subjects and patch sizes. In the

2AFC version of the experiment with 16 subjects, the only

significant effect was for the ICA model: discriminability

increased by 4% from 91% to 95% correct. In the 4AFC version

of the experiment with 1 subject, discriminability with ICA also

improved from 87% to 96% correct and with IPS from 70% to

82% correct.

Experiment 2: Luminance histogram cues only
Human observers can discriminate textures on the basis of three

mechanisms sensitive to luminance histogram features [36]. We

therefore hypothesized that luminance histogram differences

between natural samples and model samples were a prominent

cue. We tested this hypothesis in Experiment 2, where we

compared two new manipulations to performance in Experiment

1, whose stimuli contained several potential cues, including both

shape and luminance features. We will refer to them as the

‘‘unperturbed’’ stimuli. The two new manipulations used pixel-

scrambling, which was applied to the unperturbed stimuli as a final

post-processing step before presenting the textures. In one

condition we permuted the pixels globally within each texture to

produce ‘‘global scrambles’’ (Figure 7A). In the second condition,

we permuted pixels within each unperturbed image patch

separately to produce ‘‘sample scrambles’’ (Figure 7B).

We tested all models from Experiment 1 except that we tested

only the best MEC model, MEC with k~16, for which we

excluded 3|3 pixel patches since observers were at chance in

Experiment 1 at that size. All other aspects of Experiment 2 were

identical to Experiment 1. Three observers participated. Each

completed 30 trials per patch size per model per condition for a

total of 30|3|7|2~1,260 trials.

The results are shown in Figure 8A as percent corrects pooled

over the 3 observers with 95% binomial confidence intervals. Solid

lines are these observers’ discriminability estimates for the

unperturbed stimuli (from Experiment 1). Dotted lines are for

the global scrambles, and long dashed lines are for the sample

scrambles. Discriminability of the linear models, RND and ICA,

was unaffected by both types of pixel scrambling and remained

near ceiling. This indicates that luminance histogram cues were

sufficient for observers to discriminate the unperturbed RND and

Figure 5. Experiment 1 results. Discriminability estimates with 95%
binomial confidence intervals are shown by model as a function of
patch size, where data are pooled over subjects. Sixteen subjects
participated in session one with RND, ICA, L2, LP, IPS, and GPS, and 12
participated in session two with the MEC models. Each subject
performed 30 test trials per data point in the plot. Therefore, each
data point for session one is based on 16|30~480 trials, and each for
session two is based on 12|30~360 trials.
doi:10.1371/journal.pcbi.1002873.g005

Table 2. Experiment 1 average discriminability for all models.

Patch size (pixels)

3|3 4|4 5|5 8|8

RND 92.1��� 98.3��� 98.3��� -

ICA 92.7��� 94.6��� 94.4��� -

IPS 71.3��� 88.1��� 92.7��� -

GPS 59.7��� 73.8��� 84.4��� -

L2 62.6��� 72.8��� 77.9��� -

LP 55.2� 69.2��� 77.5��� -

MEC, k~2 52.8 65.0��� 75.8��� 90.3���

MEC, k~4 53.3 60.8��� 72.8��� 88.1���

MEC, k~8 50.0 63.3��� 63.6��� 81.1���

MEC, k~16 49.4 55.8* 61.7��� 73.6���

Average percent corrects are listed for each model at each patch size tested.
N~16 subjects for the first six models, and N~12 subjects for the MEC
models. In starred conditions the null hypothesis that performance was at
chance (50%) can be rejected at the a~0:05 level (*), the a~0:01 level (��), or
the a~0:001 level (���). 8|8 pixel patches were tested only for the MEC
models.
doi:10.1371/journal.pcbi.1002873.t002
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ICA samples from natural samples. Furthermore, ceiling perfor-

mance indicates the luminance histogram cues were highly

prominent for RND and ICA. With L2 and LP, discriminability

dropped close to chance with global scrambles, but there was very

little difference between discriminability of sample scrambles and

of unperturbed stimuli, which indicates that the L2 and LP models

failed to reproduce luminance histogram variations across natural

samples. Observers were at chance with both types of scrambles

for IPS, GPS, and for MEC k~16.

We also plot discriminability estimates averaged over all patch

sizes in order of model likelihood in Figure 8B for each condition

separately: colored bars are for the Experiment 1 data, translucent

bars with dashed edges for the global scrambles, and transparent

bars with solid edges for the sample scrambles. The same ordering

in terms of discriminability was found in all conditions and

followed the likelihood ordering as in Experiment 1.

The overall results indicate that contrast fluctuations are a highly

prominent feature of natural images that is completely lost by linear

models and poorly captured by the spherically symmetric models.

Of the probabilistic models we tested, only MEC k~16 captured

the contrast fluctuations so well as to fool the human observer.

Using the learning test reported in Experiment 1, we also

analyzed the data for each model separately for the two conditions

with data pooled over subjects and patch sizes. There were no

significant effects of learning, but discriminability significantly

decreased for LP in the global scrambling condition by 10% from

66% to 56% correct.

Experiment 3: Grayscale shape cues highlighted
In Experiment 3, we measured sensitivity to the shape content

of natural images separately from the effects of the highly

prominent contrast fluctuations found in Experiment 2. To this

end, we developed a procedure for removing the contrast

fluctuation cue by matching the contrast fluctuations across model

samples to those in the natural samples on a trial-by-trial basis. An

example stimulus is shown in Figure 9. Figure 4 contains the

unperturbed version of the same samples.

This manipulation makes the task more difficult, so we modified

the task to allow observers to inspect the images as long as they

needed while also encouraging them to reply as quickly as possible

without sacrificing accuracy. We compare discriminability esti-

mates for the unperturbed version and the contrast fluctuation

matched version both run under the same experiment parameters.

The experiment was therefore two conditions, which we randomly

interleaved in one session. We tested only RND, ICA, L2, and LP.

In Experiment 2 we found that MEC, IPS, and GPS perfectly

model the contrast fluctuations for observers, indicating that the

results of Experiment 1 had already revealed how well these

models capture shape information when luminance histograms are

well matched. To avoid redundancy and make good use of our

observers’ time, we therefore excluded them here. We measured

performance at patch sizes 3|3, 4|4, 5|5, and 8|8 pixels.

Nine observers participated. Each observer completed 36 test trials

per model per condition per patch size for a total of

36|4|2|4~1,152 trials. All other experiment details were

the same as in Experiment 1. We use * after model names for the

condition where contrast fluctuations were artificially matched to

the natural samples since the manipulation alters the probabilistic

models.

Results are shown in Figure 10A for the unperturbed stimuli

and in Figure 10B for the contrast fluctuation matched stimuli. We

plot the average discriminability over all patch sizes for each

model in order of increasing likelihood in Figure 10C, where

unfilled bars are for unperturbed stimuli and filled are for matched

stimuli. The unperturbed results are similar to the Experiment 1

results. In particular, the discriminability rankings of the models

were the same. Surprisingly, the rankings followed a different

pattern with contrast fluctuation matched stimuli: estimates were

very similar for RND�, L2�, and LP�, on average 74% correct,

and ICA� was more difficult than the other models. In fact, the

average discriminability of ICA�, 62% correct averaged over

patch sizes, was on par with that of MEC k~16 in Experiment 1,

60% correct. ICA� also brought performance to chance for 3|3

pixel patches, a great improvement over the unperturbed version.

Using the learning test reported in Experiment 1, we also

analyzed the data for each model separately for the two conditions

with data pooled over subjects and patch sizes. There were no

significant effects of learning.

Figure 6. Model discriminability and likelihood. A. Discriminability estimates with 95% binomial confidence intervals plotted in order of
increasing model likelihood. Data is pooled over subjects and patch sizes 3|3, 4|4, and 5|5 pixels. Each data point for RND, ICA, L2, and LP
contains 1,440 trials, and 1,080 trials for the MEC models. MEC models are identified by the number of mixtures. Chance performance was 50%. B.
Discriminability estimates with 95% binomial confidence intervals for one subject who performed 5 sessions of a four alternative choice version of the
experiment. Each data point for RND, ICA, L2, and LP contains 576 trials, and 144 for the MEC models. Chance was 25%. C. Discriminability ranks of
the models from most difficult to easiest are plotted against likelihood ranks from lowest likelihood to highest. Diamonds show group average data
from A, and circles show the individual subject’s data from B. The group data contain more trials and show a clear decrease in discriminability with
increased likelihood. The same order is shown in the individual subject data within the range of the 95% confidence intervals, which overlap for L2,
LP, and MEC k~2.
doi:10.1371/journal.pcbi.1002873.g006
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Experiment 4: Binary images
In Experiment 3, where we highlighted the shape content of

natural images, we found a surprising result that the discrimina-

bility ranking of the models changed dramatically when the

contrast fluctuation cue was removed. To examine the robustness

of this effect, we performed a second manipulation focusing on

shape content. This time we preserved the statistical properties of

the models by using binary images as stimuli, where we

thresholded gray values as a final post-processing step before

presenting the stimuli. This procedure preserves luminance

contours and hence some basic shape content.

To avoid homogeneous patches lacking shape content, we

limited our natural samples to high contrast image patches. In a

pilot binary experiment where we considered all possible natural

image patches, we found that the number of homogeneous patches

is a highly prominent cue, so we wanted to remove it from this

experiment and focus instead on shape information located in the

heterogenous regions of natural images. However, it turned out

that using only high contrast patches increases the difficulty of the

task greatly, so we again used unlimited presentation times as in

Experiment 3. To account for the increased difficulty of the high

contrast stimulus set, we measured performance for grayscale

(unperturbed) stimuli in addition to the binary version. A set of

high contrast grayscale stimuli is shown in Figure 11A with the

binary version in Figure 11B.

All experimental parameters and models were the same as in

Experiment 3, except that we tested all four MEC models with

k~2,4,8,or16 mixtures. MEC models were blocked into two

sessions, one for the grayscale high contrast patches, the other for

the binary version. The other models were analogously blocked.

Seven subjects participated. Each completed 36 test trials per

model per patch size per session for a total of

36|8|4|2~2,304 trials.

Results are shown in Figure 12, where we plot discriminability

estimates with 95% binomial confidence intervals for each model in

order of increasing likelihood, with trials pooled over patch sizes.

Unfilled bars show estimates for grayscale stimuli and filled bars for

binary stimuli. Grayscale stimuli led to the same discriminability

ranking of the models as in Experiment 1. In the binary condition,

on the other hand, the model ordering disappeared. The above

chance performance indicates that all models failed to capture the

binary shape cues perfectly for the observers.

Again, using the learning test reported in Experiment 1, we

analyzed the data for each model separately for the two conditions

Figure 7. Experiment 2 texture scrambles. Here we show example textures for each model tested in Experiment 2: RND, ICA, L2, LP, IPS, GPS,
and MEC16. Both A and B are scrambled versions of the corresponding model stimuli shown in Figure 4. On any single trial the observer viewed only
one texture based on natural image samples and one texture based on samples from a single model. A. Global scrambles, where the pixels of each
texture were scrambled as a final post-processing step. B. Sample scrambles, where the pixels of each image patch were scrambled individually to
preserve variations in luminance histograms across samples.
doi:10.1371/journal.pcbi.1002873.g007
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with data pooled over subjects and patch sizes. There were no

significant effects of learning.

Discussion

Several psychophysical studies have measured texture discrim-

ination in terms of statistical constraints used to generate artificial

stimuli [36–40,46–49] and have established an extensive descrip-

tion of local image statistics to which the human visual system is

sensitive. One study [50] has linked sensitivity to synthetic textures

with the informativeness of natural image regularities as well. In

the current study we use probability density function models of

natural images to directly measure sensitivity to statistical

regularities present in natural images. Previous work with such

models largely focuses on the link between natural image statistics

and neurophysiology [3–11,31–33] although one study evaluates

the perceptual redundancy of the independent components

analysis model [51]. In this work we evaluated the link between

perceptual sensitivity and a variety of probability density function

models of natural images.

After testing a series of natural image models from one

capturing only second-order correlations (RND) to one among

the current state-of-the-art in capturing higher-order correlations

(MEC, [33]), we found that human observers achieved above

chance performance in most cases (Figure 5) and that discrimi-

nability was worse for models with higher likelihood, i.e., models

that captured more natural image regularities. However, even for

the model with the highest likelihood, observers were well above

Figure 8. Experiment 2 results. A. Discriminability estimates with 95% binomial confidence intervals are shown by model as a function of patch
size. Three subjects participated, and each performed 30 test trials per model per patch size per condition, so each data point is based on 3|30~90
trials. We did not measure discriminability for MEC k~16 with 3|3 pixel patches as observers were at chance with them in Experiment 1. The solid
line shows these observers’ data in Experiment 1, i.e. with unperturbed stimuli, the dotted line shows performance for global scrambles, and the
dashed line for sample scrambles. B. Discriminability estimates averaged over patch size for each model are plotted in order of increasing likelihood.
The colored bars are the data from Experiment 1, the translucent bars with dashed edges are for the global scrambles, and the bars with solid edges
are for the sample scrambles. In all three conditions, the ordering is the same: higher likelihood is linked with lower discriminability.
doi:10.1371/journal.pcbi.1002873.g008

Figure 9. Experiment 3 contrast fluctuation matched model
samples. The contrast fluctuations of each model sample set have
been artificially matched to the contrast fluctuations across the natural
samples by matching the distribution of grayscale pixel norms to that of
the natural samples. Each texture is the fluctuation matched version of
the corresponding stimulus in Figure 4.
doi:10.1371/journal.pcbi.1002873.g009
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Figure 10. Experiment 3 results. Discriminability estimates are plotted with 95% binomial confidence intervals. Nine subjects participated, and
each performed 36 test trials per model per condition per patch size, so each data point in A and B is based on 36|9~324 trials. MEC, IPS, and GPS
were not included in the experiment because they perfectly captured the contrast fluctuation cue in Experiment 2. A. Results from the unperturbed
stimulus condition. B. Results from the contrast fluctuation matched stimulus condition. C. Discriminability estimates pooled over patch sizes and
plotted in order of increasing model likelihood. The unfilled bars are for the unperturbed stimulus data in A, the filled bars for the data in B. As
expected the model ordering for the data in A are the same as in Experiment 1, but the model ordering changed for the contrast fluctuation matched
data, showing that ICA� brought performance closest to chance out of all models whereas ICA was near ceiling with the unperturbed stimuli.
doi:10.1371/journal.pcbi.1002873.g010

Figure 11. Experiment 4 high contrast stimuli. To focus on regions of natural images containing shape information, we automatically selected
high contrast natural image patches for use as stimuli. A. Grayscale stimuli for the 8 models we tested: RND, ICA, L2, LP, MEC2, MEC4, MEC8, MEC16.
B. The binary version of A where the number of on and off pixels are held equal. On any only trial, the observer viewed only one set of natural image
samples and one set of samples from a single model.
doi:10.1371/journal.pcbi.1002873.g011
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chance to discriminate natural image regularities from model

regularities for patches 5|5 pixels (approximately 0:170 during

natural viewing) in size or larger, which suggests that the human

visual system possesses a surprisingly detailed knowledge of the

natural image distribution, at least in comparison to the models

currently studied in the machine learning community.

There were a number of reasons we might not have found such

high levels of performance. The stimulus patches corresponded to

very local image regions, and the pixel quantization was clearly

visible, which could have masked some of the low spatial

frequency content of the stimuli. Furthermore, the natural image

dataset [41] is likely to include some images with significant blur

whenever there was a limitation in the depth of field. To the extent

that these kinds of issues affected our data, they could only

underestimate human potential on the task, so the impressive

levels of above chance performance we report are only lower

bounds.

The second important conclusion relates to the model ordering

in terms of discriminability. To explain the significance of this

result in terms of understanding the human visual system, we need

to return to the idea of the natural image distribution, which we

alluded to in the Introduction with Figure 1. The distribution of all

possible natural images has a particular density that differs greatly

from uniform because natural images have a high degree of

correlations. Model likelihood describes how well a model captures

the true density. A separate question is how sensitive human

observers are to the natural image distribution. The human visual

system need not be sensitive to all information in images and thus

may be optimized only for a subset of regularities that are

perceptually relevant. In this case, if higher likelihood merely

indicates that a model captures more regularities regardless of

perceptual relevance, models with high likelihood need not lead to

more natural looking samples than low likelihood models.

However, for all models tested here, human performance was

worse with increased model likelihood. We found this ordering

relationship in all experiments where luminance values were

unperturbed (Figures 6A, 6B, 8B, 10C, and 12 unfilled bars). We

regard this ordering as evidence that the visual system is biased for

processing natural images.

Our discrimination task constitutes a high dimensional classi-

fication problem. Each experiment was run in a single session less

than 90 minutes in duration, and in all cases we found very little or

no evidence of learning during the test trials. The fact that

observers could learn this task so quickly during the few training

trials indicates a bias of the system for processing natural images.

In machine learning, the ‘‘no free lunch’’ theorem [35] states that

all classification algorithms perform the same on average over all

tasks. Put another way, the performance of a classification

algorithm–-including those of human observers–-on our task

reflects how biased it is for this particular task. While the pattern of

performance provides evidence for the existence of a bias, it does

not provide specific feedback about how the bias is implemented

by the visual system. In the three cue identification experiments,

we examined which natural image features were prominent cues to

the discrimination task.

We can draw two clear conclusions about the perceptual

importance of some of the model features.

The first conclusion relates to the importance of filter shapes.

We tested two pairs of models that differed only in filter shape: a

random second-order model and the independent components

analysis model (RND vs. ICA) and the L2-spherically symmetric

model using random filter shapes and the Lp-spherical model

using the ICA filters (L2 vs. LP). Even though a general

proportionality between discriminability and model likelihood

does not exist (only an ordering relationship), the previously

reported small effect of filter shape on likelihood [8,43] was

mirrored by very small differences in discriminability here. As

shown in Figures 6A and 6B, the differences from RND to ICA

and from L2 to LP are very small, indicating that using a linear

transformation with oriented filters translates into a very small

perceptual benefit. This result implies that the oriented filters of

the independent components analysis model make only a small

improvement over a pink-noise like representation in capturing

perceptually prominent natural image features.

The second conclusion is that spherical models do not fully

reproduce local luminance histogram variations sufficiently

(Figure 8A long dashed lines) even though they are meant to

capture contrast fluctuations [7–10]. Overall, the most difficult

model to discriminate from natural images was the mixture of

elliptically contoured distributions model, which apparently

reproduced the luminance histograms sufficiently but failed to

capture the structural patterns in natural images sufficiently at the

largest sizes we tested.

Local structure information
Our results indicated that luminance histogram features are

highly informative about model versus natural image identity for

most of the models we tested. In Experiments 3 and 4, we aimed to

‘‘partial out’’ these cues and evaluate model efficacy with respect

to structural information instead. Previous studies of human

sensitivity to local shape structure show that particular fourth-

order correlations in binary images are perceptually salient

[39,40,49] and correspond to informative features of natural

images [50]. We wanted to examine the extent to which the

models we tested capture any kind of perceptually prominent

structural information at the patch sizes presented.

In Experiment 3, where we removed the contrast fluctuation

cue, the ordering of the models in terms of discriminability

Figure 12. Experiment 4 results. Discriminability estimates with
95% binomial confidence intervals are shown by model in order of
increasing likelihood where data are pooled over subjects and patch
sizes (3|3, 4|4, 5|5, and 8|8). Seven subjects participated, and each
performed 36 test trials per model per patch size per condition, so each
data point is based on 7|36|4~1,008 trials. Unfilled bars are for the
grayscale high contrast stimuli, and filled bars the binary version. Within
the range of the error bars, the estimates for the grayscale stimuli
followed the same ordering as in Experiment 1, yet the data for the
binary stimuli show no ordering.
doi:10.1371/journal.pcbi.1002873.g012
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dramatically changed. The originally large difference from our

second-order model (RND) to the spherical models capturing

higher-order correlations (L2, LP) disappeared, and all three

models were the same in terms of difficulty (Figures 10B). This

suggests that the main advantage of the spherical models has little

to do with capturing the structural or shape content of natural

images. Rather, when this result is taken together with the results

of Experiment 2, where L2 and LP were more difficult than RND

with luminance histograms as the only cue (Figure 8), it is clear

that the main advantage of spherical models is due to better

preservation of contrast fluctuations. What was more surprising

was that the ICA model became the most difficult model to

discriminate from natural images (Figures 10B), suggesting that the

shape of the ICA filters offers some advantage over random filters

although they are not perfect, as indicated by above chance

performance.

In Experiment 4, we removed all luminance histogram cues by

using binary image patches as stimuli (where patches were

automatically selected to contain spatial variations). Thresholding

the luminance values preserves the shape of the luminance

contours. When this kind of shape information is the only cue, all

models were equally difficult although observers were still above

chance (Figure 12 filled bars), meaning that they can make use of

such shape cues. Even though the percent correct for ICA was

again lower than the other models, this difference is not significant

here. Discriminability was not affected by binarization for LP and

all higher likelihood models (overlap of filled and unfilled bars in

Figure 12), which suggests that the luminance contour shapes are

likely to be one of the main cues used to discriminate these models

from natural images. We take these results as an indication that the

shapes of the luminance contours preserved after binarization are

an important perceptual feature of natural images. Elder has

demonstrated their perceptual informativeness using a different

technique in which he reproduced the appearance of photographic

images very well from only such contours and local contrast values

[52]. Our results suggest that none of the common grayscale

natural image models captures these contour statistics sufficiently

and that higher likelihood models are no better with it than a

random second-order model.

Studying visual sensitivity to natural image regularities
Studying sensitivity to natural image regularities is a challenging

pursuit for several reasons, not least of which is their high-

dimensional complexity. One approach is to focus on a particular

aspect of natural images, measure its distribution, and examine

whether the visual system is biased for the empirical distribution.

Girschick and colleagues [53] have taken such an approach to

study the visual system’s knowledge of local orientation statistics in

natural images. Other approaches rely on generating stimuli with

controlled natural image features. The more classical technique

has been to use the Fourier transform to examine sensitivity to

higher-order natural image correlations via phase quantization or

scrambling in large images, e.g. [19–25], and a more recent

technique is to use a texture synthesis model, such as the Portilla-

Simoncelli model [29], which can represent a wide range of

natural textures very convincingly and whose parameters can be

interpreted in terms of neural responses. Psychophysical studies

using the Portilla-Simoncelli model have advanced our under-

standing of peripheral visual processing [54,55], and have

uncovered physiological properties of early visual cortex [56].

We used a new technique to generate stimulus images. Our

approach is to selectively randomize the content of true natural

images within the assumptions of a probabilistic natural image

model. The primary difference between our approach and

previous ones is that our stimuli are explicitly constructed to be

equally probable for a given probabilistic image model, so it allows

us to test the model assumptions. Furthermore, by using models

whose likelihoods have been computed, we can directly relate

performance to the degree of regularities captured by the model.

Natural image model evaluation
It is an open question how best to evaluate probabilistic models

of natural images, and a variety of quantitative analyses have been

used previously, including reconstruction error, multi-information

and likelihood evaluation (e.g. in [8]). Likelihood is proportional to

the amount of regularities a model captures, yet the total amount

of regularities present in the natural image distribution is not

known, nor was it known whether likelihood relates to perceptual

measures of model efficacy. The results of our experiments show,

however, that likelihood seems to have good predictive power

about perceptual relevance.

While many machine learning studies have based their model

comparisons on ad hoc judgments about the perceptual resem-

blance to natural images, our paradigm provides a rigorous tool

for model evaluation and comparison: psychophysical discrimina-

bility measures, which vary from chance (perfect model) to ceiling

(significant model failure). Furthermore, the paradigm can be used

to measure model performance at capturing particular natural

image features (e.g. our cue identification experiments).

Methods

Ethic statement
The experiments were approved by the Ethics Commission of

the Medical Faculties of the Eberhard Karls University and the

University Clinics of Tübingen. All subjects gave informed consent

prior to the experiment.

Subjects
Subjects were adults with normal or corrected-to-normal vision.

All subjects were naive except author HEG who participated in

Experiment 1 session 1, and Experiments 2–4.

Apparatus
Stimuli were displayed on a linearized Siemens SMM 21106 LS

21-inch CRT monochrome display, which had a maximum

luminance of 423 cd/m2, in a dim room. A forehead bar and

chinrest were used to fix the viewing distance at 90 cm.

Experiments 1 and 2 used a Cambridge Research Systems Visage

graphics controller with a 14-bit grayscale resolution, Cedrus RB-

530 response box, and were programmed using the Cambridge

Research Systems VSG toolbox for MATLAB. Experiments 3 and

4 used a custom DATAPixx controller with 16-bit grayscale

resolution, the 5 button RESPONSEPixx response box, and were

programmed using the Psychophysics Toolbox for MATLAB

[57,58].

Natural image samples
All natural image sampling and modeling was performed using

the Natural Image Statistics Density Estimation Toolbox (nisdet)

[59]. For each patch size (3|3, 4|4, 5|5, and 8|8 pixels), a set

of 64,000 natural image patches, Xall , were sampled uniformly

both across and within the images of the van Hateren natural

image database [41]. Xall is an N|64,000 matrix where N is the

number of pixels in the patch. We stored the natural logarithm of

the individual pixel values in Xall . We centered Xall by removing

the row mean from each entry in each row and the column mean

from each entry in each column and then scaled the result such
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that the det(cov(MXall))~1, where M is a matrix that projects

out the DC component using a QR decomposition, which makes

whitening a volume conserving transform [8].

We preprocessed the data with filter matrices V of the form

V~QWM, where M is the aforementioned matrix that projects

out the DC component, W is a whitening matrix, and Q is an

orthogonal matrix (i.e. QQ ~I). While we kept W and M fixed,

we varied Q to determine the actual filter shapes. Note that

QWMXall is white for any orthogonal matrix Q. Each filter

matrix can be inverted to define a complimentary synthesis matrix

A~V{1 such that AV~I.

We used two types of orthogonal matrices: QRND, a random

orthogonal matrix, and QICA, the independent components

analysis model basis. QICA was learned using the fastICA [60]

algorithm to initialize the filter shapes. We then optimized them

via a gradient ascent on the log-likelihood of a factorial model with

exponential power distributed marginals [8]. Below, the subindex

of V denotes which Q was used.

For each mixture of elliptically contoured distributions model,

we first clustered the natural image data into k clusters using k-

means. Then we calculated the inverse square root covariance

matrix of each cluster, W
(j)
MEC, where j indexes the cluster number

from 1 to k~2,4,8or16 depending on the number of mixtures in

the model.

Model samples
To generate model samples, X�, we start with 64 image patches,

X, randomly sampled from Xall . (In a single experimental session,

different X are sampled on every trial for each model patch size

combination, but the same superset of all X used to test one model

patch size combination are used to test all other models at that

patch size.) We use the following general formula: 1) transform X

to the coordinate system of the model using the appropriate filter

matrix V: Y~VX, 2) apply the model assumptions to Y to obtain

a new ~YY, 3) transform back to pixel space using the appropriate

synthesis matrix A: X�
~A~YY.

The kind of shuffling applied in step 2 is determined by the

model assumptions. We use two types of such shuffling. The first

type applies an independence assumption to the data and shuffles

the non-DC coefficients within each coordinate separately across

all samples in Y. The second type applies a symmetry assumption

to the data and permutes the non-DC coefficients separately

within each patch in Y. Because the norm of a patch is

permutation invariant, this permutation preserves the norms of

the patches in the whitened space.

To create RND samples and ICA samples, we apply the

independence assumption shuffling procedure, using VRND and

VICA respectively.

To create L2, LP, and MEC samples, we apply the symmetry

assumption shuffling procedure. For L2 samples, we use VRND, the

second order basis. To create LP samples, we use VICA since ICA

is the optimal basis for LP [10]. For MEC samples under an MEC

model with k mixtures, we first assign each patch in x to one of the

k clusters of the model by evaluating the patch’s maximum

likelihood cluster membership. Then for all patches in the j-th

cluster we use the corresponding V
(j)
MEC analysis matrix of the

maximum likelihood cluster.

The Fourier phase scrambled samples were created using a

different approach. IPS samples were created by storing the

amplitude spectra of the patches in X and combining them with

random phases before inverse Fourier transforming back to image

pixel space. GPS samples were created by storing both the

amplitude and phase spectra of the patches in X and then

reassigning the individual phase spectra randomly to different

patches in X before inverse Fourier transforming back to image

pixel space.

The resulting matched samples, X�, where then tiled tightly into

a square texture as were the samples of X. For grayscale

conditions, the gray values of the two textures taken together

were normalized from the range ({?,z?) to ½0,1� to utilize the

full gamut of the CRT monitor. For the binary textures of

Experiment 4, the gray values of each patch in X and X� were

thresholded such that the resulting binary patch had equal

numbers of white and black pixels (4 white pixels for 3|3 and 12

white pixels for 5|5 pixel patches). Binary textures did not utilize

the full gamut of the monitor as this level of contrast was

uncomfortable to view for extended periods. Instead, luminance

was lowered such that white was approximately 124cd=m2.

Experiment 1
In Experiment 1 we used a two-alternative forced choice task to

measure the discriminability of textures of natural image samples

from textures of model samples. In the first session with 16

subjects, RND, ICA, L2, LP, IPS, and GPS were used to generate

stimuli at patch sizes 3|3, 4|4, and 5|5 pixels. In session two

with 12 subjects, MEC k~2, MEC k~4, MEC k~8, and MEC

k~16 were used to generate stimuli at patch sizes 3|3, 4|4,

5|5, and 8|8 pixels. In both experiments, observers first

completed 20 training trials with 8|8 pixel patches for each

model before starting the experimental session with 30 test trials

per model per patch size. Trials were grouped in small runs by

model in order of decreasing image patch size. The ordering of the

models across runs was randomized.

Texture sizes were 3:30

|3:30 for 3|3 pixel patches,

4:40

|4:40 for 4|4 pixel patches, 5:50

|5:50 for 5|5 pixel

patches, and 8:80

|8:80 for 8|8 pixel patches. The textures

were presented side by side for 3000 msec with additional

200 msec sinusoidal ramps on and off. There was a 1:10 blank

space between the two textures. The true natural samples

appeared on the right and left sides with equal probability. After

stimulus extinction, the subject reported which side contained the

true natural image samples and was provided immediate

feedback by an auditory tone. If the incorrect texture was

chosen, the stimulus was shown again for 3900 msec with the

correct texture highlighted by a white frame.

One subject completed 4,032 trials of a four-alternative forced

choice version of the experiment, where each stimulus included

four textures: one contained the true natural image samples, X,

and the other three contained model generated samples, X�, each

matched statistically to X but different in exact appearance. The

four textures were arranged in an invisible 2|2 grid on the

screen with 0:140 blank space separating them. As in the main

experiment, the task was to select the one texture made of natural

samples, which appeared at each location in the grid with equal

probability. We used this design as it is the preferred method for

naive observers [61]. The subject completed four sessions with

RND, ICA, L2, LP, IPS, and GPS, and one session with the

MEC models. Each session contained 36 test trials per model per

patch size tested, which were 3|3, 4|4, 5|5, and 8|8.

Because this version of the experiment contains much more visual

information to inspect on each trial, we allowed the subject to

view the stimuli for as long as needed but instructed that the

response should be made as quickly as possible without sacrificing

accuracy. Feedback screens were shown for 5400 msec. We

adjusted the texture sizes so that four could be presented

simultaneously and so that the texture sizes would be approxi-

mately the same to facilitate faster responses. The texture sizes
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were 4:40

|4:40 for 3|3, 4|4, and 8|8 pixel patches and

4:60

|4:60 for 5|5 pixel patches.

Experiment 2
Experiment 2 measured sensitivity to luminance histogram cues

in natural image samples. It was identical in design to the two

alternative forced choice version of Experiment 1 except that we

scrambled the pixels of the textures as a final post-processing step

before painting them to the screen. We excluded MEC k~2,

MEC k~4, and MEC k~8, and the experiment was run in two

one-hour sessions separated by condition. In the first condition we

permuted the pixels globally within each texture to produce

‘‘global scrambles.’’ In the second condition, we permuted pixels

within each sample separately to produce ‘‘sample scrambles.’’

Three subjects participated.

Experiment 3
In Experiment 3, we used a two alternative forced choice task to

measure sensitivity to the grayscale shape information in natural

image samples separately from the contrast fluctuation cue.

Because MEC, IPS, and GPS perfectly captured the contrast

fluctuation cue in Experiment 2, we excluded them and measured

discriminability only for RND, ICA, L2, and LP at patch sizes

3|3, 4|4, 5|5, and 8|8 pixels. Nine observers participated,

each contributing 36 test trials per model per patch size.

We matched the distribution of gray value norms in the model

samples, X�, to the distribution of gray value norms in the natural

image samples, X, on a trial-by-trial basis, where the gray value

norm of a patch is the Euclidean length of the vector of pixel

values. Because the norms are measured on patches with zero

mean, they are related to r.m.s. contrast. Patches whose pixel

values vary greatly across the patch (high contrast) have large

norms, and homogeneous patches have much lower norms

independent of the mean gray value. Our procedure was the

following: 1) compute the gray value norms of all patches in X and

in X� 2) sort the norms of X in increasing order, 3) sort the patches

of X� in increasing order of their norms, 4) scale the i-th patch in

X� to have the value of the i-th entry in the sorted norms of X, 3)

shuffle the patch positions within X�. For RND and ICA samples,

we scaled each sample in X� by a gamma random variable prior to

step 1. Gamma distribution parameters had been optimized

beforehand via simulations to minimize perturbations in pixel

covariances.

Because the task is more difficult when the contrast fluctuation

cue is removed, we allowed subjects to view the stimuli as long as

necessary. However, we encouraged them to respond as quickly as

possible without sacrificing accuracy and also used different

texture sizes than in Experiments 1 and 2, so that the stimuli

would be roughly the same size on every trial to facilitate faster

visual processing. The texture sizes were 4:50

|4:50 for 3|3 and

4|4 pixel patches and 5:00

|5:00 for 5|5 and 8|8 pixel

patches. We measured discriminability for the unperturbed stimuli

as well under the same timing and size parameters. The

experiment therefore had two randomly interleaved conditions,

one for the unperturbed stimuli, the other for the contrast

distribution matched stimuli. All other aspects of the experimental

design were identical to the two alternative forced choice version

of Experiment 1.

Experiment 4
In Experiment 4, we used a two alternative forced choice task to

measure sensitivity to the cues present in binary images. Only

natural image patches above the median patch contrast value were

used as stimuli. Natural patches, X, of patch size p were therefore

selected only from the upper half (in terms of contrast) of the

corresponding dataset Xall . The discrimination task was more

difficult with these high contrast stimuli than with the stimuli of

Experiment 1, so we therefore used the timing and textures sizes of

Experiment 3. We measured discriminability for all models with

grayscale unperturbed stimuli in addition to the binary version.

The experiment was two one-hour sessions: session 1 for RND,

ICA, L2, and LP, and session 2 for the four MEC models. Each

one-hour session consisted of two shorter sessions, the first was the

grayscale version, and the second was the binary version. Seven

subjects participated, each contributing 36 test trials per model per

patch size (3|3, 4|4, 5|5, and 8|8 pixels). All other design

details were identical to the two alternative forced choice version

of Experiment 1.

Acknowledgments

We thank Fabian Sinz, Philipp Berens, and Alexander Ecker for comments

on the manuscript. We also thank Fabian Sinz and Sebastian Gerwinn for

discussions of the data analysis and Thomas Wiecki for implementing and

piloting Experiment 1.

Author Contributions

Conceived and designed the experiments: HEG FAW MB. Performed the

experiments: HEG. Analyzed the data: HEG. Wrote the paper: HEG

FAW MB.

References

1. Attneave F (1954) Some informational aspects of visual perception. Psychological

review 61: 183–193.

2. Barlow H (1959) Sensory mechanisms, the reduction of redundancy, and

intelligence. In: The mechanisation of thought processes. Her Majesty’s

Stationery Office London. pp. 535–539.

3. Atick JJ, Redlich AN (1992) What does the retina know about natural scenes?

Neural Computation 4: 196–210.

4. Dan Y, Atick JJ, Reid RC (1996) Efficient coding of natural scenes in the lateral

geniculate nucleus: experimental test of a computational theory. The Journal of

Neuroscience 16: 3351–3362.

5. Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field

properties by learning a sparse code for natural images. Nature 381: 607–609.

6. Bell AJ, Sejnowski TJ (1997) The ‘‘Independent Components’’ of Natural Scenes

are Edge Filters. Vision Research 37: 3327–3338.

7. Schwartz O, Simoncelli EP (2001) Natural signal statistics and sensory gain

control. Nature Neuroscience 4: 819–825.

8. Eichhorn J, Sinz F, Bethge M (2009) Natural image coding in V1: how much use

is orientation selectivity? PLoS Computational Biology 5: 1–16.

9. Lyu S, Simoncelli EP (2009) Nonlinear extraction of independent components of

natural images using radial gaussianization. Neural Computation 21: 1485–

1519.

10. Sinz F, Bethge M (2008) The conjoint effect of divisive normalization and

orientation selectivity on redundancy reduction. In: Advances in Neural

Information Processing Systems 21: 1521–1528.

11. Karklin Y, Lewicki MS (2009) Emergence of complex cell properties by learning

to generalize in natural scenes. Nature 457: 83–86.

12. Deriugin N (1956) The power spectrum and the correlation function of the

television signal. Telecommunications 1: 1–12.

13. Knill DC, Field D, Kersten D (1990) Human discrimination of fractal images.

Journal of the Optical Society of America A 7: 1113–1123.

14. Tadmor Y, Tolhurst DJ (1994) Discrimination of changes in the second-order

statistics of natural and synthetic images. Vision Research 34: 541–554.

15. Tolhurst DJ, Tadmor Y (2000) Discrimination of spectrally blended natural

images: Optimisation of the human visual system for encoding natural images.

Perception 29: 1087–1100.
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