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HOW SHARP ARE CLASSIFICATIONS?
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Abstract. Ecologists often use cluster analysis as a tool in the classification and map-
ping of entities such as communities or landscapes. The problem is that the researcher has
to choose an adequate group partition level. In addition, cluster analysis techniques will
always reveal groups, even if the data set does not have a clear group structure. This paper
offers a method to test statistically for fuzziness of the partitions in cluster analysis of
sampling units that can be used with a wide range of data types and clustering methods.
The method applies bootstrap resampling. In this, partitions found in bootstrap samples are
compared to the observed partition by the similarity of the sampling units that form the
groups. The method tests the null hypothesis that the clusters in the bootstrap samples are
random samples of their most similar corresponding clusters mapped one-to-one into the
observed data. The resulting probability indicates whether the groups in the partition are
sharp enough to reappear consistently in resampling. Examples with artificial and vege-
tational field data show that the test gives consistent and useful results. Though the method
is computationally demanding, its implementation in a C11 program can run very fast on
microcomputers.

Key words: bootstrap resampling; classification methods; cluster analysis; fuzzy vs. sharp groups;
group structure; mapping; partition, appropriate level for cluster analysis; resampling; sampling;
similarity, statistical analysis; vegetation, cluster analysis.

INTRODUCTION

Cluster analysis is a useful tool in classification when
the description of the objects is multivariate. Ecologists
often apply cluster analysis for the classification and
mapping of entities, such as communities or land-
scapes. For this purpose many clustering algorithms
are available, combined with many resemblance indices
(Orlóci 1978, Pielou 1984, Podani 1994). Although the
algorithms are objective, to obtain a classification the
researcher has to make a choice, which is often sub-
jective, of an adequate group partition level. Further-
more, cluster analysis techniques will always reveal
groups, even if the data set does not have a clear group
structure.

Milligan and Cooper (1985) evaluated many pro-
cedures available at that time to find the number of
clusters; they used simulated data sets with different
numbers of known clusters, dimensions, and group
sizes. The best criterion they found was the use of the
Calinski and Harabasz (1974) index, which is a ratio
of pooled sum of squares between and within clusters;
in the tests, this method determined the correct number
of clusters in 90% of the cases evaluated. Other criteria
also had good overall performance, but did not perform
well in data sets with two known clusters. The authors,
however, warn that the performances may be data de-
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pendent. Also, since all simulated data sets had well-
defined clusters, there was no evaluation of the criterion
‘‘resolving power.’’ Dale (1988) discusses at length
possible alternatives to finding an optimal partition lev-
el. According to him, there is no unique answer, for
different objectives are sought, and most of the meth-
ods are specific in their requirements.

The use of probabilistic resemblance is one of the
solutions I offered earlier (Pillar 1996) to evaluate
group homogeneity in plant community classification.
In this, the probabilities are generated by randomiza-
tion under the null hypothesis of random community
composition. A similar null hypothesis is involved in
testing randomness of species co-occurrences in islands
(Connor and Simberloff 1979, Wright and Biehl 1982,
Gilpin and Diamond 1987, Wilson 1987, 1988, Manly
1993), or in testing the significance of species clusters
(Strauss 1982, Jaksic and Medel 1990). However, there
is no agreement on exactly how the algorithm should
implement the null hypothesis of random composition.
All taxa may or may not have the same probability to
occur in a community. The richness of each site may
or may not be constant. Also, there are different ways
to treat quantitative compositional data. Again, even if
we agree on a reasonable implementation, the solution
is specific, in that random composition has to be a
relevant null hypothesis. It is not relevant if the vari-
ables describing the sampling units are not composi-
tional, such as climate, soil, or land use attributes.

The bootstrap is a resampling method devised by
Efron (1979, Efron and Tibshirani 1993) that adopts
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the principle that, in the absence of better information,
the distribution of observations in a sample is the best
indicator of the distribution in the sampling universe.
If this principle is tenable, resampling a sample with
replacement will mimic resampling the sampling uni-
verse. Each sample, obtained by resampling the sample,
is a ‘‘bootstrap’’ sample. The distribution of a given
attribute in the sampling universe can be estimated by
the distribution of the same attribute computed from
bootstrap samples. Confidence intervals can then be
defined and probabilities evaluated.

A few antecedents use bootstrap resampling to eval-
uate the significance of clusters. Peck et al. (1989) ap-
ply bootstrap to find an optimal number of clusters that
maximize the parsimony of clustering and minimize
the loss of information. Felsenstein (1985, 1988) ap-
plies bootstrap resampling to set confidence limits on
phylogenies, yet Manly (1993) and Brown (1994) crit-
icize the technique. In Felsenstein’s method, the objects
of resampling are not the species, but the vectors of
character states that describe the species. This is ques-
tionable, for the method considers the set of vectors as
a random sample from a pool of potential independent
characters. Nemec and Brinkhurst (1988) use bootstrap
to evaluate the significance of clustering steps, but their
solution is specific to cases in which there are replicates
of each object, such as communities or sites. In the
same paper, they use bootstrap resampling to compare
group partitions of the same set of objects. The com-
parison involves shared objects, and the test in one
instance has an objective akin to the Mantel (1967)
test.

Here, I offer a more general method, based on boot-
strap resampling. It takes a data set from survey sam-
pling, performs a cluster analysis of sampling units,
and then examines the stability of the partition at a
given level by simulated resampling of the same uni-
verse. Unstable partitions will indicate the data set has
a fuzzy group structure at the level being considered.
In the resampling, different samples will likely not con-
tain exactly the same objects, but the cluster analysis
may produce similar groups. This method differs from
those described in Nemec and Brinkhurst (1988) by
incorporating a broader notion of similarity: partitions
are considered similar not only when they share the
same sampling units, but also when they share more
similar sampling units. For the same reason, my method
does not use any of the suggested measures reviewed
in Podani (1989) to compare partitions with the same
objects.

METHOD

A data set of n sampling units and p variables is
considered. The method supplies the probability need-
ed to evaluate the stability of the partition. A partition
with k groups is represented by a vector of n elements
containing integer values from 1 to k. These values
identify the group to which each sampling unit belongs.

An iterative algorithm uses the complete sample and
its k-group partition as references to which other
k-group partitions obtained in the sequel, by resampling
the sample, are compared. Each iteration takes a boot-
strap sample of n units with replacement and subjects
these sampling units to cluster analysis. Then it com-
putes G*, the similarity of the k-group partition in the
bootstrap sample, to the k-group partition in the ref-
erence sample, and computes G0 under the null hy-
pothesis that the partition is sharp. The comparison of
G* and G0 concludes one iteration. Any clustering tech-
nique may be used. A numerical illustration of the
method is given in Appendix A.

The G* attribute

The 2n sampling units in the reference sample and
in the bootstrap sample are viewed as if they were
points in the same space defined by p variables. Sim-
ilarly, in the same space, we can compare the k groups
in the reference sample with the k groups in the boot-
strap sample. In this space, G* is a relative measure
of agreement between reference and bootstrap samples
defined for the k-group partition level by

S
G* 5 1 2 . (1)

T

In this equation, T is a total sum of squares, defined
by

2n21 2n1
2T 5 d . (2)O O hi2n h51 i5h11

It is seen that T involves 2n(2n 2 1)/2 pair-wise squared
dissimilarities ( ) between the sampling units in the2dhi

pooled samples. S is the sum of squares between groups
attributed to sampling, i.e., the sum of squares for pair-
wise contrasts between the groups of the bootstrap sam-
ple and their nearest neighbor groups, mapped one-to-
one in the reference sample.

Finding the value of S involves the computation of
sum of squares for all k2 pair-wise contrasts between
the k groups in the bootstrap sample and the k groups
in the reference sample. The computation of contrasts
based on the distance matrix follows Pillar and Orlóci
(1996). For any pair-wise contrast j between one of the
groups in the bootstrap sample and another group in
the reference sample, we compute the following: Tj,
the total sum of squares involving squared distances of
the sampling units in the two groups; WjB, the sum of
squares within the group in the bootstrap sample; and
WjR, the sum of squares within the group in the ref-
erence sample. Tj is based on Eq. 2, but using only the
squared distances of the ncB 1 ncR sampling units in
the groups involved in the contrast. WjB is defined by

2n21 2n1
2W 5 d d(h, i, c ) (3)O OjB hi Bn h51 i5h11cB

where ncB is the size of group c in the bootstrap sample,
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and the indicator variable d(h, i, cB) 5 1, if sampling
unit h and i belong to group cB, and takes on the value
zero otherwise. WjR is similarly defined. The between
groups sum of squares for contrast j is then

Qj 5 Tj 2 (WjB 1 WjR). (4)

The sum of squares Qj of k2 pair-wise contrasts are
arranged in a k 3 k matrix, with rows identifying the
groups found in the bootstrap sample and the columns
identifying the groups in the reference sample. The k!
permutations of the columns of this matrix are exam-
ined, such that a minimum trace is found. The minimum
trace is the value of S we are seeking. The k pair-wise
contrasts in the main diagonal indicate the best ap-
proximation of a one-to-one correspondence of the
groups in the bootstrap sample with the groups in the
reference sample. If k is large, too many permutations
will have to be examined. However, the computations
may use random permutations and an algorithm that
seeks minimum values in the matrix, repeating the pro-
cess until a stable minimum trace is found. The stable
minimum trace is a good approximation of the true
value of S.

It is important to note that the additivity of the terms
in Eq. 4 and, as a consequence, the computation of G*
is valid only for a dissimilarity matrix with Euclidean
metric properties (Orlóci 1978, Gower and Legendre
1986). As a simplification, computing a sum of squares
from the distance matrix avoids the need for going back
to the original data to calculate group centroids. This
also enables the application of the method to data sets
of any type (quantitative, presence–absence, qualita-
tive, or mixed), provided an appropriate dissimilarity
measure is used.

The G0 attribute

The similarity index G* may range from zero, a con-
ceptual limit, to one, when bootstrap and reference par-
titions coincide. The sharper the partition, the more
likely that the groups in the bootstrap sample will re-
cover the group partition in the observed sample, and,
thus, the larger will be G*. However, G* close to 1
does not by itself indicate that the partition is not fuzzy.
G* must therefore be compared to a value of G0 gen-
erated under the null hypothesis that the groups are
sharp. The null hypothesis states that each group found
by cluster analysis in the bootstrap sample is a random
sample of the corresponding nearest neighbor group in
the reference sample. For each group j with size nj in
the bootstrap sample, a random sample with the same
size nj and with replacement is taken from its nearest
group in the reference sample. This is the null bootstrap
sample. The 2n units in the reference and the null boot-
strap sample are put together. The distance matrix used
in Eq. 2 will provide the distances to make up the
distance matrix between these units. With this matrix,
the total sum of squares T0 (Eq. 2) and the contrast
sum of squares (Eq. 4) are computed. Their sum0Qj

over k group contrasts between reference and null boot-
strap sample will give the following:

k
0QO j

j510G 5 1 2 . (5)
0T

After performing a large number of resampling it-
erations, the probability P(G0 # G*) is defined. The
larger the number of iterations B, the more stable and
closer to its true value will be P(G0 # G*). The choice
of the number of iterations should balance precision,
efficiency of the implemented algorithm, and available
computing power.

If P(G0 # G*) is not larger than a specified threshold
a, we conclude, with a probability P(G0 # G*) of being
wrong, that the k groups in the partition are not sharp
enough to consistently reappear in resampling. That is,
we reject the null hypothesis and conclude that the
groups are fuzzy. If, instead, we accept the null hy-
pothesis, we conclude that there is not enough evidence
to refute that the groups are sharp.

Sample size influences the power of the group par-
tition stability test. A small sample size will likely
increase the error type II, the probability of accepting
the null hypothesis when it is actually false. That is,
P(G0 # G*) . a may either indicate that the group
structure is sharp, or that the sample size is too small.
Sample size sufficiency can be evaluated by examining
the stability of probabilities across a series of sample
sizes. For this, probabilities P( # ) are found by0G G*k k

bootstrap resampling for each sample size nk # n, taken
from the observed sample with n sampling units (Pillar
1998). The sample is considered sufficient if the prob-
abilities reach stability within the range of sample sizes
evaluated. Typical cases are depicted in Fig. 1.

EXAMPLES

Artificial data sets

The first example uses simulated data sets with two
equally sized clusters separated by expected difference
d in each variable ranging from d 5 0 (a single group)
to d 5 0.32 (very sharp groups). The data sets with 40
sampling units contain 40 random variables. The values
range from zero to one in one cluster and from 0 1 d
to 1 1 d in the other cluster; also the variables have
equal variances n within each cluster, in one case with
normal (n ø 0.004) distribution, and in the other case
with uniform random distribution. Ten data sets were
generated for each difference d, type of distribution,
and partition level. Results are given in Fig. 2a. As
seen, the values of P(G0 # G*) for partitions with two
groups are low for d # 0.02 with normal distribution,
and for d # 0.05 with uniform distribution (Fig. 2a).
This indicates the rejection (threshold a 5 0.1) of the
null hypothesis of group sharpness, since there is no
evident group structure other than by chance. As d
increases slightly, the values of P(G0 # G*) with two
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FIG. 1. Examples of the influence of sample size on the
probabilities P(G0 # G*). In (a), the data set is a 60 3 60
matrix with random numbers in the interval [0, 1]. The par-
tition level is two groups, and the partition is found to be
fuzzy with sample sizes .10. In (b), the dimensions are the
same as in (a), but the observations are random numbers in
the interval [0, 1] in sampling units 1–20, in the interval [10,
11] in sampling units 21–40, and in the interval [15, 16] in
sampling units 41–60. The partition level is three groups, and
the probabilities stabilize with sample sizes .15; thus the
sample is sufficient to conclude that the groups are sharp. In
(c), the partition level is four groups, and the data set is from
Tcacenco and Pillar (1996), the same used in Table 2. Prob-
abilities stabilize and are larger than a 5 0.1 with sample
sizes .25.

groups steeply increase to ;0.5, correctly indicating
that the groups are sharp at this partition level. The
probability curve is monotonic within limits set by the
standard deviations of the mean. With three groups (and
higher partition levels not shown) the values of P(G0

# G*) rightly indicate fuzziness for any d in both data
types.

The second example uses similarly defined series of
simulated data sets, but there is one sampling unit in
one group and 39 in the other, with the variables nor-

mally distributed. The results are given in Fig. 2b. At
partitions with two groups, the test indicates that the
groups are fuzzy (a 5 0.1) for d # 0.06. Again, at this
partition level there is a steep increase in the proba-
bilities for larger values of d, correctly indicating two
sharp groups. The values of P(G0 # G*) at higher par-
tition levels correctly indicate fuzziness (Fig. 2b for
three-group partitions, others not shown).

The third example is similar to the first, but the data
sets contain four variables instead of 40 (Fig. 2a). The
reduced dimensionality does not affect the effective-
ness of the test in detecting the correct number of
groups (two), though the probabilities for three- and
four-group partitions are close to the threshold a 5 0.1
(Fig. 2c). Partitions with two groups are fuzzy for d #
0.04.

In the fourth example, the simulated data sets have
five equally sized groups. Values of d range 0–0.64,
but expected differences within each data set have in-
creasing values; that is, 0.25d between clusters 1 and
2, 0.5d between clusters 2 and 3, 0.75d between clusters
3 and 4, and d between clusters 4 and 5. The interpre-
tation of the probabilities (Table 1), using a 5 0.1,
indicates that partitions with the correct number of five
groups are sharp (not fuzzy) at minimum d $ 0.04, but
partitions with two, three, or four groups, which are
also real, are sharp at smaller minimum d. It is relevant
to note that when five-group partitions are found to be
sharp, lower level partitions should by consequence be
sharp as well, unless ambiguities are present when
groups are all equally separated, which is unlikely in
nature. A pattern similar to the previous cases is ob-
served: as d increases, probabilities P(G0 # G*) in-
crease monotonically and then stabilize. Partitions with
six groups were found fuzzy for any d.

Real data sets

One of the examples uses a data set from Cadenazzi
(1996) with 20 sampling units, which are vegetation
quadrats described by the cover of 67 species. The 0.1
3 1 m quadrats are laid systematically on a 40 m tran-
sect on grassland in the Campos formation near Porto
Alegre, Brazil. The data was checked for spatial au-
tocorrelation, which was found nonsignificant. The re-
sults in Table 2 for this case indicate that the null hy-
pothesis of sharp groups should be rejected, i.e., the
groups are fuzzy at any partition level from two to nine
groups (a 5 0.1).

Another example uses a data set with 37 sampling
units. These are vegetation quadrats described by the
percentage cover of 12 species (Tcacenco and Pillar
1996). The quadrats were 30 3 90 m in size and were
laid in anthropogenic grasslands over 4000 km2 in
Santa Catarina state, Brazil, systematically on the re-
gional scale and preferentially on the local scale. In
this case, Table 2 indicates that the partitions with two,
three, and four groups are not fuzzy, although the par-
tition with four groups is very close to the threshold
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FIG. 2. Probability curve of P(G0 # G*) for increasing separation between groups in simulated data. Random data sets
were defined with two groups separated by expected difference d between centroids ranging from d 5 0 (a single group) to
d 5 0.32 (clearly two groups). In (a) and (c), the groups have equal sizes (20 sampling units); in (b), one group has one
sampling unit and the other group has 39 sampling units. The data contain 40 variables in (a) and (b) and four variables in
(c), with normal ( ) or uniform (········ [only in (a)]) distribution within each group. Standard deviations of the means
based on 10 data sets in each case are indicated. The partition level after cluster analysis is indicated on each line. The
number of iterations is 1000 for each combination of centroid difference, partition level, distribution type, and data set
replicate.
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TABLE 1. Probabilities P(G0 # G*) generated by bootstrap resampling on artificial data sets at different partition levels.

Centroid
difference

Partition level

2 3 4 5 6

0
0.0025–0.01

0.005–0.02
0.0075–0.03

0.01–0.04

0.010 6 0.002
0.010 6 0.002
0.159 6 0.029
0.259 6 0.027
0.214 6 0.025

0.002 6 0.001
0.002 6 0.001
0.008 6 0.002
0.060 6 0.017
0.172 6 0.031

0.000 6 0.000
0.000 6 0.000
0.004 6 0.001
0.016 6 0.005
0.018 6 0.004

0.000 6 0.000
0.000 6 0.000
0.001 6 0.000
0.002 6 0.001
0.004 6 0.002

0.000 6 0.000
0.000 6 0.000
0.000 6 0.000
0.000 6 0.000
0.001 6 0.000

0.0125–0.05
0.015–0.06

0.0175–0.07
0.02–0.08
0.04–0.16

0.255 6 0.043
0.360 6 0.025
0.355 6 0.024
0.289 6 0.034
0.352 6 0.025

0.239 6 0.032
0.273 6 0.022
0.285 6 0.033
0.312 6 0.015
0.306 6 0.012

0.085 6 0.018
0.237 6 0.024
0.313 6 0.026
0.417 6 0.015
0.499 6 0.004

0.017 6 0.003
0.027 6 0.005
0.034 6 0.003
0.035 6 0.006
0.287 6 0.032

0.002 6 0.001
0.003 6 0.001
0.008 6 0.003
0.011 6 0.002
0.041 6 0.005

0.08–0.32
0.16–0.64

0.302 6 0.017
0.333 6 0.005

0.324 6 0.009
0.304 6 0.007

0.516 6 0.008
0.503 6 0.003

0.507 6 0.006
0.496 6 0.004

0.063 6 0.008
0.059 6 0.007

Notes: Table entries are means 6 1 SE, based on 10 data sets. The data sets are defined with five equally sized groups
separated by expected difference d between centroids, ranging from d 5 0 (a single group) to d 5 0.64, which is variable
within each data set: 0.25d between clusters 1 and 2; 0.5d between clusters 2 and 3; 0.75d between clusters 3 and 4; and d
between clusters 4 and 5. The data sets contain 40 sampling units and 40 variables with normal distribution within each
group, with random values ranging from 0 to 1 in the first group, from 0 1 0.25d to 1 1 0.25d in the second group, and so
on. The number of iterations is 1000 in each data set.

TABLE 2. Probabilities P(G0 # G*) generated by bootstrap resampling on two vegetation data
sets at different partition levels (number of groups).

No.
quadrats

No.
species

Number of groups

2 3 4 5 6 7 8 9

20†
37‡

67
12

0.0446
0.4128

0.0233
0.2364

0.0203
0.0979

0.0205
0.0394

0.0154
0.0278

0.008
0.0193

0.0036
0.0099

0.0029
0.0061

Note: The number of iterations is 10 000.
† Cadenazzi (1996).
‡ Tcacenco and Pillar (1996).

a 5 0.1. Since the groups are not fuzzy, are they also
sharp? Sample size reached sufficiency, as indicated by
the fact that probabilities increase and then are con-
sistently stable and .a at sample sizes .25, for two-,
three-, and four-group partitions; the latter is depicted
in Fig. 1c. Since sample size is sufficient, we conclude
that the groups at these partition levels are indeed likely
sharp. Interestingly, Tcacenco and Pillar (1996) de-
tected four grassland types by inspection of the den-
drogram in Fig. 3b, a decision now supported by the
partition significance test. Indeed, this dendrogram
shows a sharper increase in the dissimilarity level at
the last few clustering steps than does the dendrogram
in Fig. 3a. Similarly, a sharper group structure can be
seen in the point configuration in Fig. 4b than in Fig.
4a.

DISCUSSION

The results with the simulated data sets indicated
accurate numbers of known groups, for sufficiently
large cluster separation, in all cases examined. The use
of a 5 0.1 as a threshold seems adequate. A more strict
(smaller) threshold, say a 5 0.05, would have indicated
sharpness in several cases of partitions known to be
fuzzy (three-group partitions in Fig. 2c and six-group
partitions in Table 1). This would lead to increased

error type II, the probability of accepting the null hy-
pothesis when it is actually false.

The hypothesis test actually proves fuzziness of the
group partition by rejecting the null hypothesis. If the
null hypothesis is accepted, either the groups are really
sharp or sample size is too small. It may be argued that
the logic of proving sharpness by accepting a null hy-
pothesis is faulty. It is clear that sample size may affect
the results of the test. The decision of discriminating
between sharpness and insufficient sample size is non-
statistical; nevertheless, it is helped by the examination
of sample size sufficiency prior to making conclusions.
Upon the null hypothesis being accepted and sample
being sufficient, concluding that the groups are sharp
is not less faulty than, for instance, concluding that
there is no effect of treatments in an experiment.

It can be shown that the sampling universe, simulated
in bootstrap resampling with replacement, is infinitely
larger than the sample itself. If the real sampling uni-
verse is also infinitely large, there is no inconsistency
of resampling with replacement in a data set acquired
by sampling without replacement. This is so, because
replacing or not replacing sampling units in a real sur-
vey of an infinitely large sampling universe is without
consequence. Infinitely large sampling universes are
defined, for instance, when the sampling units are ag-
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FIG. 3. Cluster analysis of (a) 20 grassland quadrats, 0.1
3 1 m (Cadenazzi 1996), and (b) 37 grassland quadrats, 30
3 90 m (Tcacenco and Pillar 1996). Partitions with any num-
ber of groups are fuzzy in (a) as seen in Table 2. A four-
group partition is identified in (b), which is sharp, as con-
cluded from Table 2. The clustering criterion is minimum
variance, and the analysis uses Euclidean distances.

FIG. 4. Ordination of (a) 20 vegetation quadrats, 0.1 3 1
m (Cadenazzi 1996), and (b) 37 grassland quadrats, 30 3 90
m (Tcacenco and Pillar 1996). The method is principal co-
ordinates analysis from Euclidean distances. The labels iden-
tify groups found in cluster analysis (see Fig. 3).

gregates with size and shape set by the investigator, as
in quadrat sampling in an ecological study. The resam-
pling with replacement must be understood as a way
to simulate the pseudosampling universe and not the
actual sampling process. Likewise, simulating an in-
finitely large sampling universe is compatible with
sampling with replacement in a finite sampling uni-
verse.

The algorithm is computationally demanding, but its
implementation in C11 is reasonably fast on recent
microcomputers (see Appendix B for availability of the
application program). On a Macintosh computer with
a PowerPC 200 MHz 603e CPU, the run time for gen-
erating the probabilities in the first case in Table 2 took
11 s for two groups and 69 s for nine groups. It took
32–117 s to compute the probabilities for the second
case in Table 2.

It is true that the results of the test will be influenced
by insufficient sample size. In addition, the results may
be affected by lack of independence of the sampling
units (Efron and Tibshirani 1993:396), such as in con-
tiguous quadrats. Nevertheless, the method I offer to

test statistical significance of partitions in cluster anal-
ysis of sampling units possesses the following positive
attributes: (1) it is generally applicable under a broader
range of conditions than other available methods; (2)
it produces consistent results in artificial data sets with
known properties; (3) it has proven to be useful in real
data sets; and (4) it is computationally feasible even
on microcomputers.
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APPENDIX A

In this Appendix, the bootstrap resampling algorithm for testing the significance of partitions in cluster analysis of sampling
units is explained with a numerical illustration.

1) Complete data set (variables are rows, sampling units
are columns):

17 14 27 21 16

5 9 8 5 0

5 8 0 0 10

2) Distance matrix (squared Euclidean) of sampling units:

0 34 134 41 51

0 234 129 89

0 45 285

0 15

0

3) Reference partition with two groups generated by clus-
ter analysis:

Sampling units: 1 2 3 4 5

Groups: 1 1 2 2 1

4) Get a bootstrap sample:

Sampling units: 1 5 4 4 5

5) Distance matrix (squared Euclidean) of sampling units
(reference plus bootstrap):

0 34 134 41 51 0 51 41 41 51

0 234 129 89 34 89 129 129 89

0 45 285 134 285 45 45 285

0 150 41 150 0 0 150

0 51 0 150 150 0

0 51 41 41 51

0 150 150 0

0 0 150

0 150

0

6) Bootstrap sample partition with groups 3 and 4 gen-
erated by cluster analysis:

Sampling units: 1 5 4 4 5

Groups: 3 4 3 3 4

7) Sum of squares for contrasts between groups of sam-
pling units in the reference (rows) and bootstrap sample (col-
umns); matrix is rearranged:

3 4 4 3

1 78.2 32.8 → 32.8 78.2

2 28.6 206 206 28.6

8) Total sum of squares computed from distance matrix of
step 5:

T 5 (34 1 . . . 1 51 1 . . . 1 150)/10 5 411.6.

One-to-one nearest neighbor sum of squares between parti-
tions:

S 5 32.8 1 28.6 5 61.3667.

Nearest neighbor groups: 1, 4; 2, 3;

G* 5 1 2 S/T 5 0.8509.

9) Null bootstrap sample (the units in each group are taken
at random from the nearest group in the reference sample):

Sampling units: 3 1 3 4 5

Groups: 3 4 3 3 4

10) Distance matrix of sampling units (reference plus null
bootstrap sample):

0 34 134 41 51 134 0 134 41 51

0 234 129 89 234 34 234 129 89

0 45 285 0 134 0 45 285

0 285 51 285 150 0

0 134 41 51

0 45 285

0 150

0

11) Sum of squares for contrasts between nearest neighbor
groups of sampling units in the reference and null bootstrap
sample:

1, 4: 6.5

2, 3: 1.5

12) Total sum of squares computed from distance matrix
of step 10:

T0 5 (34 1 . . . 1 51 1 . . . 1 285 1 150)/10 5 495.8.

Exclusive nearest neighbor sum of squares between parti-
tions:

S0 5 6.5 1 1.5 5 8 G0 5 1 2 S0/T0 5 0.9839.

Since G0 . G*, this iteration will add zero to the cumulative
frequency F(G0 # G*).

13) Repeat steps (4)–(12) up to B times. A run with B 5
10 000 iterations gave P(G0 # G*) 5 0.3839 and a mean
value of G* 5 0.9068.

APPENDIX B

The application program in C11 for Macintosh or Windows is available in ESA’s Electronic Data Archive: Ecological
Archives E080-014.


