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ABSTRACT

By providing especially tailored instances of a virtual net-
work, network slicing allows for a strong specialization of the
o�ered services on the same shared infrastructure. Network
slicing has profound implications on resource management,
as it entails an inherent trade-o� between: (i) the need for
fully dedicated resources to support service customization,
and (ii) the dynamic resource sharing among services to in-
crease resource e�ciency and cost-e�ectiveness of the system.
While the technology needed to support this paradigm is
well understood from a system standpoint, its implications in
terms of e�ciency are still unclear. In this paper, we �ll such
a gap via an empirical study of resource management e�-
ciency in network slicing . Building on substantial measure-
ment data collected in an operational mobile network (i) we
quantify the e�ciency gap introduced by non-recon�gurable
allocation strategies of di�erent kinds of resources, from ra-
dio access to the core of the network, and (ii) we quantify
the advantages of their dynamic orchestration at di�erent
timescales. Our results provide insights on the achievable ef-
�ciency of network slicing architectures, their dimensioning,
and their interplay with resource management algorithms.
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1 INTRODUCTION

Current trends in mobile networks point towards a strong
diversi�cation of services, which are characterized by in-
creasingly heterogeneous Key Performance Indicator (KPI)
and Quality of Service (QoS) requirements. This tendency
is driving the design of 5G networks that will eventually
have to support, e.g., the Internet of Thing (IoT) with ultra-
low rate communication from a massive number of devices,
automotive and tactile applications with millisecond laten-
cies, industrial communications with extreme reliability, and
virtual/augmented reality services with very high data rates.

However, clear needs for tailored KPI and QoS require-
ments are already evident in today’s mobile services, which
encompass, e.g., high-quality video streaming, machine-type
communication, low-latency mobile gaming, jointly with
best e�ort tra�c. Unfortunately, current mobile network ar-
chitectures [33] lack the necessary �exibility to meet the ex-
treme requirements imposed by such services. This situation
is pushing independent initiatives to address the problem.
3GPP has developed a IoT-speci�c MAC that co-exists with
the legacy general-purpose MAC layer [3]. Network deploy-
ments in industrial environments rely on proprietary archi-
tectures that ensure reliability levels not attainable with pub-
lic mobile networks [17]. Google started deploying its own
radio access infrastructure and proprietary transit network
to run its many services under hard QoS guarantees [12].
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Figure 1: Network slicing strategies. Deeper slices (A to

E) reserve resources to services across a wider portion

of the end-to-endnetwork architecture, but reduce the

space for unconstrained resource sharing.

Network virtualization and slicing.While their scope
is clearly limited, these solutions do show the need for cus-
tomized network support even with present-day tra�c. They
also substantiate the well-established vision that several net-
work instances, each devoted to a speci�c set of services,
have co-exist in the same infrastructure in order to satisfy
the KPI and QoS requirements of current and future mobile
applications. The agenda for 5G networks is to achieve this
mainly via network virtualization, which evolves the tradi-
tional hardbox paradigm into a cloudi�ed architecture where
the once hardware-based network functions (e.g., spectrum
management, baseband processing, mobility management)
are implemented as software Virtual Network Functions
(VNFs) running on a general-purpose telco-cloud. Network
virtualization enables the deployment of multiple virtual
instances of the complete network, named network slices.
Slices are then easily customized by tuning the functionality
and location of VNFs. They thus create on top of the physi-
cal infrastructure a set of logical networks, each tailored to
accommodate �ne-tuned Service Level Agreements (SLA)
re�ecting the needs of di�erent service providers.
Network slicing and resourcemanagement.Network

slicing has profound implications on resource management.
When instantiating a slice, an operator needs to allocate suf-
�cient computational and communication resources to its
VNFs. In some cases, these resources may be dedicated, be-
coming inaccessible to other slices [26]. Alternatively, smart
assignment algorithms can be employed to dynamically allo-
cate resources to slices based on the time-varying demands
of tenants [10, 15]. This grants the �exibility to modify the
share of resources assigned to each tenant, multiplexing logi-
cal slices into the software or hardware assets while trying to
abide by tenant requirements. However, such algorithms in-
troduce additional complexity, and may in some cases hinder
resource isolation, the corresponding guarantees to tenants,
and/or the ability to deploy fully customized slices.

The above shows that there is an inherent trade-o� among:
(i) service customization, which favours the deployment of
specialized slices with tailored functions for each service and,
possibly, dedicated and guaranteed resources; (ii) resource
management e�ciency, which increases by dynamically shar-
ing the resources of the common infrastructure among the
di�erent services and slices; and, (iii) system complexity, re-
sulting from deploying more dynamic resource allocation
mechanisms that provide higher e�ciency at the cost of em-
ploying elaborate operation and maintenance functions [28].

The above trade-o� is fundamentally a�ected by the strat-
egy adopted to implement network slicing, as illustrated in
Figure 1. In its simplest realization, slices are limited to the
core network (type-A slice in Figure 1): the allocation of re-
sources to slices only involves cloud resources, and mostly
becomes a Virtual Machine (VM) or container resource as-
signment problem [14]. In this case, the level of service cus-
tomization granted by slices is low, since it is restricted to
core network functions; yet, high e�ciency can be achieved
at low complexity, as a large portion of the network remains
shared among all services and tenants.
More dependable slicing would o�er customized func-

tions, possibly involving dedicated resources, also at the
radio access, through, e.g., cloud RAN (C-RAN) paradigms.
Here, basic radio-access slices allow for tailored MAC-layer
scheduling [30] across a large number of antennas (type-
B slice). Moving down the protocol stack, advanced slices
implement customized baseband processing (i.e., encoding
and decoding operations) in the Base Band Units (BBUs),
possibly providing tenants with a guaranteed bandwidth at
the air interface (type-C slice). These approaches provide the
ability to customize scheduling strategies, but at the same
time they reduce the possibility of radio resource sharing
and/or increase the system complexity.

At fronthaul, resource isolation becomes a hardware prob-
lem [31]. A �rst case for slicing is one where tenants share
antenna sites but are granted their own dedicated spectrum
(type-D slice); we have virtually independent protocol stacks
and full isolation, and sharing is limited to the physical hard-
ware. Otherwise, tenants may require dedicated end-to-end
resources down to the antennas (type-E slice); this results
into slices that tell apart full, end-to-end virtual networks.

In general, slicing strategies at the higher network layers
provide a lower level of customization yet they can more
easily achieve e�cient resource sharing without additional
complexity. Indeed, when slicing occurs at high layers (e.g.,
type-A), the operator cannot o�er full customization, but it
can easily employ highly dynamic allocation schemes for the
lower layers; in contrast, achieving such an e�cient resource
allocation is much more challenging when considering net-
work slicing schemes with stringent customization require-
ments (i.e., strategies involving the lower layers down to
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type-E slicing). For instance, when all slices have a common
MAC layer, an e�cient sharing of radio resources is easy, yet
MAC is not tailored to their di�erent needs; conversely, if
each slice implements a di�erent, customized MAC protocol,
it is more di�cult to e�ciently share radio resources.
Contribution of this paper. From a system standpoint,

the technology needed to support the di�erent types of slices
is well understood or even already available. For instance,
there exist several cloud resource orchestrators for both com-
mercial and open-source telco-cloud platforms [23]; similarly,
a variety of solutions have been proposed for the dynamic
allocation of resources across network slices [14].
However, the implications of network slicing in terms of

e�ciency of network resource utilization are still not well
understood. E�ciency intuitively grows as one moves away
from the radio access infrastructure (type-E slicing) towards
the network core (type-A slicing); but we lack any more
detailed characterization of the aforementioned trade-o�s
between customization, e�ciency, and complexity. This is
an important gap, since insights on the e�ciency gains in
network slicing are crucial to take informed decision on
resource con�guration strategies: if e�ciency is preserved
with solutions that assign resources to slices more or less
statically, high customization levels can be achieved at a
reduced complexity; however, if the price in e�ciency is high,
more elaborate (and expensive) solutions may be desirable.
Our aim is to shed light on the trade-o�s between cus-

tomization, e�ciency, and complexity in network slicing,
by evaluating the impact of resource allocation dynamics at
di�erent network points. Based on our analysis, it is thus
possible to determine in which cases the gains in e�ciency
are worth the sacri�ce in customization/isolation and/or the
extra complexity. Since resource management e�ciency in
network slicing highly depends on the tra�c patterns of
di�erent services supported by the various slices, we build
on substantial service-level measurement data collected by a
major operator in a production mobile network, and:

(i) quantify the price paid in e�ciency when suitable algo-
rithms for dynamic resource allocation are not available, and
the operator has to resort to physical network duplication;
(ii) evaluate the impact of sharing resources at di�erent

locations of the network, including the cloudi�ed core, the
virtualized radio access, or the individual antennas;

(iii) outline the bene�t of dynamic resource allocation
at di�erent timescales, i.e., allowing to reallocate resources
across slices with di�erent recon�guration intervals.

To the best of our knowledge, this is the �rst work tackling
the empirical assessment of network slicing in real-world
networks. We believe that the insights it provides can be
used as rule of thumb to evaluate the solution space for
smart resource assignment algorithms and infrastructure
dimensioning. For instance, our results show that e�ciency

Slice a 

Slice b 

Figure 2: Hierarchical mobile network architecture.

Nodes map to di�erent equipment depending on the

level ℓ, and form a hierarchy. The mobile tra�c of ser-

vices in each slice (e.g., a or b) is increasingly aggre-

gated as it �ows from radio access to network core.

gains are very high in the edge, where employing technolo-
gies that allow for dynamic resource allocation provides a
high reward; in contrast, gains are much reduced in the core,
where complex, highly �exible recon�guration schemes may
not always pay o�. Mobile network operators should thus be
aware that isolating slices at the radio access may have a high
cost in terms of e�ciency, and that network slicing should
be combined with solutions for dynamic orchestration of
resources, at least at the network edge.

2 NETWORK SCENARIO AND METRICS

In the following we expose our network scenario, our rep-
resentation of the slice QoS requirements and a consistent
resource allocation strategy, and the metrics we adopt to
evaluate the resource sharing performance.

2.1 Network slicing scenario

Let us consider a mobile network providing coverage to
a generic geographical region, where mobile subscribers
consume a variety of heterogeneous services. The operator
owning the infrastructure implements slices s ∈ S, each
dedicated to a di�erent subset of services.

We assume that each slice can be implemented according
to any of the strategies in Figure 1. To capture such a general
scenario, we model the mobile network architecture as a hi-
erarchy composed by a �xed number of levels (ℓ = 1, . . . ,L)
ordered from the most distributed (ℓ = 1) to the most central-
ized (ℓ = L), as illustrated in Figure 2. Every network level
ℓ is composed by a set Cℓ of network nodes, each serving a
given number of base stations. In the two extremes, we have
ℓ = 1, where network nodes in C1 have a bijective mapping
to individual antennas, and ℓ = L, where CL contains a single
network node controlling all antennas in the whole target
region. In between, for 1 < ℓ < L, the number of network
nodes in Cℓ decreases with ℓ, whereas that of base stations
served by each such node increases accordingly. Note that,



in general, a node c ∈ Cℓ will operate on data �ows that are
increasingly aggregated with ℓ, which, as we will see, has a
signi�cant impact on resource management.
This hierarchical representation allows considering a va-

riety of node types, along with their associate (possibly vir-
tual) network functions. At the most distributed level (ℓ = 1),
each node runs functions that operate at the antenna level,
e.g., involving spectrum or airtime. In intermediate cases
(1 < ℓ < L), nodes are at �rst in charge a small number of
antenna sites, e.g., C-RAN datacenters running VNFs such
as dedicated baseband processing or radio resource man-
agement. As ℓ grows, VNFs are pushed further towards the
network core, into telco-cloud datacenters that tunnel tra�c
to and from large sets of antenna sites: there, VNFs cus-
tomize VM resources for large tra�c volumes associated to
the services delivered by each tenant to subscribers in wide
geographical areas. In the limit case (ℓ = L), all tra�c in
the target region is managed in a fully-centralized fashion
at a single datacenter, where the operator can tailor cloud
resources to the whole demand for the services of a tenant.
Note that, in the case of VNFs, this allows to evaluate the
impact of instantiating or moving VNFs at di�erent nodes.
Ultimately, the layered network model allows generaliz-

ing our analysis to diverse VNFs, by studying the system
performance at di�erent network levels. This also implicitly
accommodates all of the network slicing strategies outlined
in Figure 1. Slices of type-D and type-E deal with the lowest
network layers that are implemented at the antennas, hence
correspond to ℓ = 1. Slices of type-A refer to VNFs operating
at higher network layers that are deployed at centralized
cloud datacenters, hence correspond to high values of the
network level ℓ. Slices of type-B and type-C are concerned
with VNFs for radio access resources, which may run at the
base stations (ℓ = 1) in a distributed implementation, or
at higher architectural levels (1 < ℓ < L) in a centralized
C-RAN implementation.

Note that we do not require that a single network deploys
virtualization technologies at all network levels. Instead, by
taking a large number of levels and considering each of
them in isolation, this approach lets us cover a wide range
of deployment options and provide insights for all of them.

2.2 Slice speci�cations

Network slicing allows the operator to ful�l minimum QoS
requirements requested by each tenant. We capture such
requirements as a slice speci�cation ③, which is established so
as to ensure a su�cient service quality for the slice demands.
More precisely, a slice speci�cation involves:

(i) Guaranteed time fraction f : the operator engages to
guarantee that the tra�c demand of the slice is fully
serviced during at least a fraction f ∈ [0, 1] of time.

(ii) Averaging window length w : the operator commitment
on fraction f above is intended on discrete-time de-
mands of granularityw , with tra�c averaged over the
disjoint time windows of durationw .

We denote such a slice speci�cation as ③ = ( f ,w ), which
becomes more stringent for higher values of f and smallerw .

To ensure compliance with the requirements, the operator
shall guarantee that enough resources are allocated to all
slices s ∈ S at every node c ∈ Cℓ of each network level
ℓ. Formally, the required amount of resources needed to
meet a slice speci�cation ③ = ( f ,w ) is computed as follows.
Let oc,s (t ) denote the load o�ered by slice s at node c and

time t ; also, let oc,s (k ) =
1
w

∫

k
oc,s (t ) dt be the average load

over window k covering a time interval of the same name
with duration w . Let us also denote by r③c,s (k ) the amount
of resources allocated to slice s at node c during window k .
According to the above requirements, r③c,s (k ) has to be set
such that the following inequality holds

P
(

r③c,s (k ) ≥ oc,s (k )
)

≥ f , (1)

where P (·) denotes the probability of the argument. Basically,
Equation (1) states that the resources allocated should meet
the demand for at least a fraction f of averaging windows.

Note that the expression in Equation (1) assumes that the
amount resources needed to serve a given slice, r③c,s (k ), is
directly proportional to the mobile tra�c demand in that
slice, oc,s (k ). While this clearly holds for some types of re-
sources (e.g., radio), we acknowledge that it may be a strong
simpli�cation in other cases. We argue, however, that it is
a reasonable assumption for many practical VNFs. More-
over, this choice allows us to investigate through a uni�ed
framework di�erent network levels ℓ, where resources map
to diverse physical assets (such as spectrum, airtime, CPU
time, computational power, or memory) depending on ℓ.

2.3 Resource allocation to slices

In presence of algorithms that enable a dynamic recon�gu-
ration of VNFs, the resource allocation can be re-modulated
over time. If, at some node c , one could reallocate resources
at every averaging window, it would be su�cient to assign
to a slice s the resources it requires during that window with
probability at least f , according to Equation (1).
However, in practice the periodicity of recon�guration

is limited by the adopted slicing strategy (see Figure 1) as
well as by the constraints of the underlying technology. For
instance, when network slicing is performed at the antenna
level, non-negligible times in the order of minutes are needed
to turn on and o� the radio-frequency front-end and reset
the transport network. When dealing with radio resource
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Figure 3: Example of resource allocation to a slicewith

speci�cation = ( f ,w ). Left: time series of the mobile

tra�c demand for a slice s dedicated to a popular video

streaming service. The time series refers to tra�c av-

eraged over windows of lengthw = 1 hour, recorded at

a datacenter c serving a medium-sized city (ℓ = L) dur-

ing one recon�guration interval n (τ = 1 week). Right:

CDF Fws,c,n of the demand in the left plot. The guaran-

teed time fraction is f = 0.9, hence the minimum re-

sources r̂c,s (n) to meet the service requirements under

slice speci�cation = ( f ,w ) = (0.9, 1 hour) is the 90th

percentile of the distribution, highlighted by the ver-

tical line. The same value is shown in the left plot as a

horizontal line: tra�c above it is not guaranteed.

management algorithms (i.e., dynamic spectrum or multi-
provider scheduling), re-assignments are constrained by sig-
nalling overhead. Or, in the case of VM orchestration, the
timescale is limited by instantiation and migration times [20].

Let us assume that τ ≫ w is the minimum time needed for
resource reallocation, which we refer to as a recon�guration
period. Let us denote by n ∈ T the nth recon�guration pe-
riod within the set T of all the recon�guration periods that
compose the whole system observation time; also, r̂c,s (n) is
the amount of resources allocated to slice s in node c during
the recon�guration period n, under speci�cation . Since
no reassignment is possible within a recon�guration period,
then rc,s (k ) = r̂c,s (n), for all averaging windows k within
recon�guration period n. In compliance with Equation (1),
the allocation of resources at recon�guration period n shall
be such that the o�ered load does not exceed r̂c,s (n) for at
least a fraction f averaging windows encompassed by n.
Let Fws,c,n be the Cumulative Distribution Function (CDF)
of the demand for slice s at node c during recon�guration
period k , averaged over windows of lengthw : then, the min-
imum r̂c,s (n) that satis�es Equation (1) can be computed as

r̂c,s (n) = (Fws,c,n )
−1 ( f ). Figure 3 illustrates this concept1.

Once we have computed r̂c,s (n), we can de�ne the amount
of resources that the operator will need to allocate at network
level ℓ over the entire system observation period as

R
ℓ,τ
=

∑

s ∈S

∑

c ∈Cℓ

∑

n∈T

τ · r̂c,s (n). (2)

1All tra�c volumes in the paper are normalizedwith respect to theminimum

average tra�c recorded at a 4G antenna sector in our reference scenarios.

The above equation represents the total amount of re-
sources needed to meet slice speci�cations , under the pos-
sibility of dynamically re-con�guring the allocation with
periodicity τ . Note that it can accommodate the special case
where no recon�guration is possible at level ℓ, by setting τ
to the total system observation time, i.e., |T | = 1.

2.4 Multiplexing e�ciency

Equation (2) provides the total amount of resources that the
operator needs to provision in order to satisfy the commit-
ments with all tenants. In order to unveil the implications
of this value, we compare it against a perfect sharing bench-
mark. In perfect sharing, the allocated resources correspond
to those required when there is no isolation among di�erent
services, hence tra�c multiplexing is maximum. Formally,

P
ℓ,τ
=

∑

c ∈Cℓ

∑

n∈T

τ · r̂c (n), (3)

where r̂c (n) denotes the resources needed to accommodate
the tra�c demand at node c during recon�guration period n,
aggregated over all slices. For the sake of fairness, the same
speci�cation = ( f ,w ) assumed for individual slices are
enforced in the benchmark provided by Equation (3). Thus,
r̂c (n) = (Fwc,n )

−1 ( f ), where Fwc,n is the CDF of the total de-
mand for mobile data tra�c at node c during recon�guration
period n, averaged over windows of lengthw .

Taking the above benchmark, we de�ne the multiplexing

e�ciency as the ratio between the resources required with
network slicing and those needed under perfect sharing, i.e.,

E
ℓ,τ
= R

ℓ,τ
/ P

ℓ,τ
. (4)

Equation (4) refers to network level ℓ, resource recon�gura-
tion intervals of duration τ , and slice speci�cation .

In summary, E
ℓ,τ

quanti�es the e�ciency of the network

slicing paradigm in terms of resource management: as E
ℓ,τ

approaches 1, the total amount of slice-isolated resources
tend to that assured by a perfect sharing. Indeed, with perfect
sharing we can allocate resources at a given level according
to the total peak demand over the recon�guration period,
while with network slicing we need to allocate resources
according to the peak demand at each slice, which becomes
ine�cient when such peaks occur at di�erent windows. Fig-
ure 4 illustrates the intuition behind multiplexing e�ciency
with an example.

3 CASE STUDIES

We evaluate the e�ciency of resource allocation in a sliced
network by considering two realistic case studies in modern
metropolitan-scale mobile networks. As mentioned in the
introduction, today’s mobile services already o�er a variety
of requirements that makes it meaningful to investigate the
impact of slice isolation on resource management.
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Figure 4: Example of multiplexing e�ciency. Left:

time series of the mobile tra�c demands for a set S

of �ve slices s, observed at a single datacenter c serv-

ing one medium-sized city (ℓ = L), during one recon-

�guration interval n (τ = 1 week). The slice speci�-

cation = ( f ,w ) = (0.9, 1 hour) commits the opera-

tor to serve, for each slice, at least the tra�c volumes

highlighted by the grey horizontal lines (computed for

each time series as in Figure 3). The sum value of such

lines, in thick gold, denotes
∑

s ∈S τ · r̂c,s (n): as we are

looking at a single node c and one speci�c recon�gu-

ration interval n, this is the tra�c volume that drives

the needed resources according to Equation (2). Right:
time series of the tra�c demand aggregated over all

services for the same set of slices. By applying an iden-

tical slice speci�cation, we get the equivalent tra�c

volume r̂c (n) to be served under perfect sharing as

per Equation (3); this is highlighted by the horizontal

thick gold line. Themultiplexing e�ciency is the ratio

between the values highlighted by the thick gold lines

on the right and left plots. In this toy example, the two

values are close, hence resource isolation is e�cient.

In practical scenarios (Section 4.1), we �nd major dif-

ferences between network slicing and perfect sharing,

and resource isolation proves highly ine�cient.

Our two reference urban regions are a large metropolis of
several millions of inhabitants, and a typical medium-sized
city with a population of around 500,000, both situated in
Europe. Service-level measurement data was collected in the
target areas by a major operator with a national market share
of around 30%. We leverage these real-world tra�c demands
to de�ne network slices. Details are in Section 3.1.

On top of this, we model the hierarchical network infras-
tructures in the target regions by assuming that the operator
deploys level-ℓ nodes so as to balance the o�ered load among
them. This is discussed in Section 3.2.

3.1 Mobile service demands

The real-world demands generated by individual mobile ser-
vices in the two reference regions were collected by the
operator during three months in late 2016. The informa-
tion was gathered by monitoring individual IP data sessions
over the GPRS Tunneling Protocol user plane (GTP-U), and

Figure 5: Percentage of the mobile tra�c generated by

the each service in our study. The fraction of downlink

and uplink tra�c is denoted by di�erent colors. Left:

large metropolis. Right: medium-sized city.

Figure 6: PDF of tra�c demands across antenna sec-

tors. Left: large metropolis. Right: medium-sized city.

running Deep Packet Inspection (DPI) and proprietary �n-
gerprinting algorithms to infer the mobile service associated
to each 2G/3G/4G data session. The data was aggregated
geographically (per antenna sector) and temporally (over
5-minute time intervals) by the operator, so as to make the
data non-personal and to preserve user privacy; all opera-
tions were carried out within the operator premises, under
control of the local Data Privacy O�cer, and in compliance
with applicable regulations.

The resulting measurement data describe downlink and
uplink tra�c for hundreds of prominent mobile services con-
sumed in the target regions. Building on such information,
we de�ne potential slices by identifying mobile services that
meet two requirements: (i) they generate a substantial of-
fered load (above 0.1% of the total network tra�c), su�cient
to justify the creation of a dedicated network slice; and (ii)

they entail clearly distinguishable KPIs and QoS require-
ments. We identify 38 services that meet the criteria above,
and associate them to a di�erent network slice each.

Our choice of services represents well the heterogeneous
nature of today’smobile tra�c. It encompassesmany popular
services, such as YouTube, Net�ix, Snapchat, Pokemon Go,
Facebook or Instagram, and covers a wide range of classes
with diverse network requirements, including mobile broad-
band (e.g., long-lived and short-lived video streaming), low-
latency (e.g., gaming, messaging), and best e�ort (e.g., web
browsing, social media). We consider such service classes
as representative forerunners of those expected for 5G ser-
vices [13]. Figure 5 provides basic information on our selec-
tion of services. It outlines the downlink-dominated, highly
skewed tra�c split among the services: the percent tra�c
can di�er of more than two orders of magnitude.
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Figure 7: Antenna deployments in the target regions.

Left: large metropolis. Right: medium-sized city.

A strong diversity also emerges in the way the selected
services are consumed across the geographical space within
the two urban regions. Figure 6 portrays the Probability Den-
sity Function (PDF) of the total o�ered load at individual
antenna sectors, which again spans several orders of mag-
nitude. The main cause of heterogeneity is the radio access
technology: as our measurement data captures 2G, 3G, and
4G access, it is natural that 4G antennas accommodate much
larger fractions of the demand and generate the rightmost
bell-shaped lob of the distributions. Still, 10-time di�erences
in the tra�c volume appear even across 4G antenna sectors,
implying substantial location-based demand variability.

3.2 Hierarchical network structure

The deployment of antennas in the target regions is illus-
trated in Figure 7, which highlights the di�erent scales of the
two case studies in terms of geographical span and density
of user populations, and thus of the network infrastructures
needed to support the local mobile service demands. While
we do not have information on the architecture of the mobile
networks beyond the radio access, we model the hierarchical
structure exempli�ed in Figure 2 after current proposals for
cloudi�ed network slicing [24], as follows.
At the generic level ℓ, the operator deploys a number

Nℓ = |Cℓ | of nodes, each responsible for a subset of the an-
tenna sites at the radio access level. Every node will thus
run VNFs (whose nature will depend on ℓ) on the mobile
data tra�c incoming from or outgoing to its associated an-
tennas. We assume that the operator deploys generic level-ℓ
nodes and links based on two criteria: (i) the o�ered load
should be similar at all nodes; and, (ii) the subset of antennas
associated to a same node shall be geographically contigu-
ous. The �rst criterion ensures basic load balancing, while
the second reduces capital expenditures to connect (e.g., via
optics �bre) the antenna sites to the nodes. As these crite-
ria aim at maximizing the performance of network slicing,
we argue that they correspond to a plausible deployment
strategy. We remark that the resulting node deployment is
static and does not change during our experiments; instead,
the node resources allocated to each slice may change when
employing dynamic resource allocation schemes.

Under these criteria, the problem of associating the level-ℓ
nodes with the original antenna sites in Figure 7 is a special
case of balanced graph k-partitioning. Let us consider a graph
where each vertex v ∈ V maps to one antenna site, and has
an associated cost c (v ) equal to the mobile tra�c demand
recorded at the site; also, let an edge e = {u,v} ∈ E connect
vertices u and v only if the corresponding antenna sites are
geographically adjacent2. The problem of level-ℓ node-to-
antenna site association translates into dividing the graph
into Nℓ sub-graphs, such that the sum of costs of nodes in
each partition is balanced. We introduce decisions variables

euv =




1 if e is a cut edge

0 otherwise
∀e ∈ E, (5)

xv,k =




1 if v is in partition k

0 otherwise
∀v ∈ V ,∀k, (6)

and formulate an Integer Linear Programming (ILP) problem:

min
∑

euv ∈E

euv (7)

s.t.
∑

v ∈V

xv,kc (v ) ≤ (1 + ϵ )

∑

v ∈V c (v )

Nℓ

, ∀k (8)

∑

v ∈V

xv,kc (v ) ≥ (1 − ϵ )

∑

v ∈V c (v )

Nℓ

, ∀k (9)

∑

k

xv,k = 1, ∀v ∈ V . (10)

euv ≥ xu,k − xv,k , ∀e ∈ E,∀k (11)

euv ≥ xv,k − xu,k , ∀e ∈ E,∀k (12)

The objective function given by Equation (7) aims at min-
imizing the number of cut edges that join vertices in sepa-
rate partitions, so as to generate graph subsets that are as
compact as possible. Our goal in terms of load balancing is
ensured by the constraints given by Equations (8) and (9),
which bound the load di�erence among the various subsets
of antennas: each partition is forced to have a total cost that
is within a fraction ϵ from the ideal case of a perfectly even
cost
∑

v ∈V c (v )/Nℓ . The constraint given by Equation (10)
ensures that each vertex is in exactly one partition, while
those given by Equations (11) and (12) determine the value
of decision variables euv based on whether vertices u and v
belong to a same partition as de�ned by xu,k and xv,k .
The resulting optimization problem is NP-hard. We use

a suitably con�gured version of the Karlsruhe Fast Flow
Partitioner (KaFFPa) heuristic [29] to solve it. In doing so,
we allow for a ±10% unbalance among the load served by
nodes at every level ℓ, i.e., ϵ = 0.1 in Equations (8) and (9).

2Multiple notions of adjacency are possible. We opt for one that leverages

the common practice of approximating antenna coverage areas via a Voronoi

tessellation: two sites are then adjacent if they share one Voronoi cell side.
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Figure 8: Association of antenna sites to level-ℓ nodes

in the large metropolis scenario. The plots refer to ℓ =

8 (16 nodes, left), ℓ = 9 (8 nodes, middle) and ℓ = 10 (4

nodes, right). Figure best viewed in colours.

ℓ 1 2 3 4 5 6 7 8 9 10 11 12

Tra�c per node 5 10 15 30 60 75 100 150 300 600 1167 2334

Nℓ

Metropolis 422 230 160 80 40 32 23 16 8 4 2 1

City 122 60 40 20 10 8 6 4 2 1

Table 1: Hierarchical network deployments in our two

urban case studies. Rows are (i) the level ℓ ∈ {1, . . . , 12},

(ii) the corresponding normalized mobile tra�c per

node, and (iii)-(iv) the number of nodes Nℓ serving a

reference urban region at network level ℓ. At ℓ = 1,

nodes map to individual 4G antenna sectors, and the

tra�c per node is an average. From ℓ = 2 to ℓ = L, we

consider the partitions obtained by solving the opti-

mization problem given by Equation (7).

Figure 8 shows three examples of antenna site partitioning
among network nodes, for a selection of levels ℓ in the large
metropolis scenario3 Table 1 summarizes instead the main
features of the partitions obtained in our two urban scenarios.

4 DATA-DRIVEN EVALUATION

We organise our evaluation as follows. First, we investigate
worst-case settings where very stringent slice speci�cations
are enforced, and no dynamic recon�guration of resources
is possible (Section 4.1). We then relax these constraints, and
assess e�ciency as slice speci�cations are softened (Sec-
tion 4.2), or in presence of periodic resource orchestration
(Section 4.3). Finally, we evaluate the impact of varied slice
con�gurations (Section 4.4), and of a resource assignment
accounting for instantaneous tra�c demands (Section 4.5).

4.1 Slicing e�ciency in worst-case settings

The least e�cient sliced network scenario involves: (i) strict
slice speci�cations, where the mobile network operator com-
mits to guarantee the whole tra�c demand (f = 1) averaged
over short time periods (w = 5 minutes), for all slices; and,
(ii) no possibility of resource recon�guration over time, i.e.,
τ spans the whole three-month observation time in our mea-
surement data, and |Tτ | = 1. In these worst-case settings, the

3Note that graph partitioning is only used to outline plausible deployments

where node load is reasonably balanced, yet, as we do not require a perfect

balance, the speci�c partitioning algorithm is of no particular relevance.

Figure 9: E�ciency of slice multiplexing versus the

normalized mobile tra�c served by one node (bottom

x axis) at level ℓ (top x axis) in the two reference ur-

ban scenarios. Results are for a static resource assign-

ment, i.e., |Tτ | = 1, and slice speci�cation = ( f ,w ) =

(1, 5minutes). Dots denote ℓ = 1 and triangles ℓ = L,

for each scenario. Scattered grey points around ℓ = 1

denote the e�ciency and tra�cmeasured at all level-1

nodes (i.e., individual 4G antenna sectors) separately.

operator is forced to replicate physical resources for di�erent
slices, statically allocating to each slice the resources needed
to meet the associated o�ered load.
The multiplexing e�ciency of slicing under these condi-

tions is presented in Figure 9, which portrays it as a function
of the network hierarchy level ℓ; for the sake of clarity, the
latter is also mapped to the normalized mobile tra�c demand
observed by a level-ℓ node, as per Table 1. Each curve refers
to a urban region, and con�rms the intuition that the e�-
ciency grows as one moves from the antenna level (dot on
the left) to a fully centralized cloud (triangle on the right).

The underlying reason for this trend is that the tra�c de-
mands for each slice can be very bursty at individual antenna
sectors; this forces the allocation of substantial resources
in order to accommodate, for each slice, extemporaneous
activity peaks that occur erratically in time. Aggregating
demands over an increasing number of antennas results in-
stead in growingly smoother time series. To substantiate this
explanation, we look into (i) the timing behaviour of the
di�erent services, and (ii) the impact of aggregating tra�c
at di�erent levels in the network, and observe the following:
(i) Di�erent slices typically peak at di�erent times, e.g.,

some during work hours and others in the evening. This is ex-
empli�ed by the time series in the left plot of Figure 4, and is
in line with recent analyses of mobile service dynamics [18].
(ii) The burstiness of demands associated to each slice

is signi�cantly reduced as the network level grows. For in-
stance, in the metropolis case study, the coe�cients of varia-
tion of the tra�c time series range in [1.487, 2.363] for ℓ = 1,
in [0.618, 0.758] for ℓ = 5, and in [0.511, 0.587] for ℓ = L.

Ultimately, non-aligned and elevated tra�c peaks make a
static resource allocation ine�cient at low network levels.
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For higher values of ℓ the peak intensity is reduced, mitigat-
ing these e�ects and increasing multiplexing e�ciency.
In addition to the general trend of e�ciency with ℓ, Fig-

ure 9 allows appreciating the following quantitative results.

• The e�ciency is extremely low (∼0.15) at the antenna
level: ensuring physical resource isolation across slices
in absence of dynamic recon�guration capabilities
would require approximately 7 times the capacity of
a legacy architecture where no network slicing is im-
plemented. The grey dots in the �gure highlight that
such poor e�ciency uniformly a�ects all 4G antenna
sectors, independently of their o�ered load.
• The e�ciency grows slowly when aggregating tra�c
at the network edge (ℓ = 2 to ℓ = 6). Instead, the
multiplexing gain starts to be appreciable as onemoves
above ℓ = 7 in our reference scenarios, i.e., at network
nodes that accommodate the demands from many tens
of antenna sectors at least.
• However, in absolute terms, even when considering
that all tra�c generated in each of our two target urban
scenarios is aggregated at a single level-L node (recall
that ℓ = L = 12 in the large metropolis, and ℓ = L = 10

in the medium-sized city, see Table 1), the e�ciency
remains fairly low, at 0.4–0.65. In other words, imple-
menting the most basic form of slicing within the net-
work core cloud (type-A slicing in Figure 1) would still
double the amount of required resources with respect
to a legacy non-sliced case.

Interestingly, di�erences are minimal between the two refer-
ence cities, and only emerge for high values of ℓ: we impute
those to the intrinsic topological and demographic di�er-
ences that characterize the two scenarios.

The results can be disaggregated for downlink and uplink
tra�c, as shown in Figure 10. The outcome is consistent
in the two urban regions, and neatly tells apart the two di-
rections. Downlink tra�c dominates the total demand, as
previously seen in Figure 5: therefore, the associated e�-
ciency curves are very close to those in Figure 9. However,
this is not the case for the uplink direction: slicing uploads
tends to become remarkably (30% to 50%) less e�cient as one
moves towards more centralized network levels. We argue
that the reason lies again in the small uplink tra�c volume,
which results in bursty time series with high peak-to-average
ratios, even upon aggregation over multiple antennas.

The distinct trends for downlink and uplink are especially
important in the light of the di�erent costs associated to the
demands in the two directions. By looking at the sheer tra�c
load, the overall resource assignment should be driven by
the downlink behaviour, since it currently dominates the
aggregate data volumes, as per Figure 5. However, speci�c
applications, hence slices, heavily rely on uplink tra�c: for

Figure 10: E�ciency of slice multiplexing, in the same

settings of Figure 9, separating downlink and uplink.

Top: large metropolis. Bottom: medium-sized city.

instance, the fact that e�ciency at the antenna level is also
low in uplink means that services that pose strong require-
ments on access network latency (e.g., mobile gaming) are as
hard to accommodate as the bandwidth-eager ones in down-
link (e.g., video streaming). As another example, baseband
processing at a virtualized radio access is remarkably more
CPU-intensive for uplink tra�c [7]: the very low e�ciency
recorded in uplink at the network edge can make the re-
sources assignment problem very challenging when dealing
with type-C, type-D or type-E slices in Figure 1.

4.2 Moderating slice speci�cations

The poor e�ciency found above is also caused by the very
severe slice speci�cations we considered. To gain insight
on this, we investigate the impact of the QoS requirements
for each slice on the opportunities for multiplexing slice
demands, still under a static allocation of resources.

We �rst relax the stringent requirement considered before
in the fraction f of time during which the tra�c demand
for a slice must be guaranteed by the operator. The left plots
in Figure 11 show how reducing f from 1 to 0.9 a�ects the
e�ciency of slice multiplexing, at di�erent network levels ℓ
and in the two reference scenarios. Decreasing f drastically
improves the e�ciency; for instance, by reducing the guar-
anteed time percentage from 100% to slightly lower values,
such as 99.5%, we can nearly double the e�ciency. On the
downside, there exists a diminishing returns e�ect as f is
lowered. Even allowing an overindulgent 90% guaranteed
time percentage cannot bring e�ciency above 0.8 for ℓ = 1:
the operator shall still increase its radio access capacity by
20% in order to isolate slices. These observations hold for all
network levels ℓ and in both urban regions.
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Figure 11: E�ciency of slice multiplexing versus slice speci�cations. Left: guaranteed time fraction f . Right: aver-

aging window lengthw . Dashed and solid coloured lines denote the extreme network levels ℓ = 1 and ℓ = L, while

the black solid line follows an intermediate network level. Top: Large metropolis. Bottom: medium-sized city.

The other parameter governing our slice speci�cations is
the time window lengthw over which tra�c is averaged. We
�nd thatw has a less signi�cant impact on e�ciency than f .
The exact �gures are in the right plots of Figure 11: the gain
is mild even for long 2-hour windows, and tuningw cannot
reduce the large gap between the e�ciency at the antenna
level and in the network core cloud. Thus, a 3-fold capacity
increase would be needed to implement slicing at physical
level, even ifw were set to tolerant order-of-hour values.
A �nal relevant aspect is that, with the proposed slice

speci�cation, it is possible that the slice demands are not
satis�ed over periods involving more than one consecutive
time window. By appropriately setting the window size and
the f parameter, we have some control over the duration
of such periods. For instance, for the medium-sized city sce-
nario and a window size ofw = 5 m, the length of a period
not fully meeting the demand is (on average) around 2 win-
dows for f = 0.99, 2.5 windows for f = 0.95 and 3 windows
for f = 0.9. Similar trends are observed for the large city
and other window sizes. This shows that the e�ciency gains
resulting from decreasing f do not only involve a price in
terms of the total time not satisfying the demand, but also
in terms of the duration of the corresponding periods.

4.3 Orchestrating resources dynamically

We now relax the constraint on the fully static allocation of
resources, and consider a network where resources can be
dynamically re-allocated to VNFs over time. Such a system
allows the operator to re-assign the amount of resources
dedicated to each slice, adapting them to the actual time-
varying demand for the services associated to the slice.

As discussed in Section 2.3, we consider that the opera-
tor can recon�gure the resources with a �xed periodicity τ

Figure 12: E�ciency of slice multiplexing (left y axis)

and percent gain over static assignment (right y axis)

versus the normalized mobile tra�c served by one

node (bottom x axis) at level ℓ (top x axis) in the

two reference urban scenarios. Results are for a dy-

namic resource assignment where re-con�gurations

occur with periodicity τ = 30 minutes, under slice

speci�cation = ( f ,w ) = (1, 5minutes). Dots denote

ℓ = 1 and triangles ℓ = L for each scenario.

which depends on the capabilities of the underlying virtu-
alization technology. In our scenario, the operator allocates
resources optimally with respect to the target slice speci�ca-
tions, for each recon�guration interval of duration τ . This is
equivalent to assuming availability of an oracle algorithm
that, at the beginning of a recon�guration interval, has per-
fect knowledge of the future time series of the demand for
each service and for the rest of the interval. Then, exact
information about the following timespan τ allows for an
optimal matching of minimum resources to requirements, as
detailed in Section 2.3 and exempli�ed in Figure 3.
Our baseline result, in Figure 12, refers to the case of

τ = 30minutes. Note that this can be regarded as a fairly high
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Figure 13: E�ciency of slice multiplexing versus the

resource recon�guration periodicity τ . Dashed and

solid coloured lines denote the extreme network lev-

els ℓ = 1 and ℓ = L, while the black solid line follows

an intermediate network level. Top: Large metropolis.

Bottom: medium-sized city.

resource recon�guration frequency for several scenarios.
For instance, VNF management in the network core cloud
has typically larger time scales of hours or even days [32].
At radio access, instead, faster dynamic reassignments are
technically possible; however, forecasting the demand over
short time scales of minutes is challenging and easily leads to
slice speci�cation violations, hence recon�guration intervals
in the order of hours are more credible [30].

We can see from the results that dynamic allocation mech-
anisms and a perfect prediction of the demand over the future
30 minutes can substantially improve the e�ciency of slice
multiplexing. Indeed, when comparing the curves in Fig-
ure 12 with their equivalent in Figure 9, the gain is evident.
We made the bene�t explicit as the grey region in Figure 12:
it ranges between 60% and 400%, depending on the network
level ℓ considered. We further observe that there is a very
important di�erence between e�ciency at the radio access
and in the network core. A high-frequency dynamic orches-
tration of resources allows for near-perfect slice multiplexing
at a cloud datacenter that fully centralizes the tra�c in our
large metropolis scenario. In contrast, e�ciency is stuck at
0.6 (despite a much higher percent gain) for levels close to
ℓ = 1, i.e., at individual antenna sectors or at nodes serving
small groups of a few antennas each; this implies that the
operator still has to almost double the capacity to isolate
slices at network hierarchy levels close to the radio access.
A more comprehensive picture is provided by Figure 13,

which encompasses a wide set of recon�guration intervals
τ , from the 30 minutes case we just analysed in detail up
to 3 months (i.e., the entire timespan of the dataset, which
maps to the static resource con�guration case considered

Figure 14: E�ciency of slice multiplexing in pres-

ence of 7 slices dedicated to speci�c service categories.

Dashed and solid colored lines denote the extreme net-

work levels ℓ = 1 and ℓ = L, while the black solid line

follows an intermediate network level. Top: Large me-

tropolis. Bottom: medium-sized city.

in Section 4.1). As one could expect, the multiplexing e�-
ciency of slices is decreased as τ grows, since the system
becomes less �exible. Interestingly, the loss of e�ciency is
most remarkable for low values of τ : reducing the frequency
of reallocation from once every 30 minutes to once every 2
hours yields a high loss of e�ciency (close to 0.2) comparable
to that incurred, e.g., by increasing τ from 2 to 8 hours. If we
further constrain the frequency of resource reallocation to
once per week or once every three months, the additional
erosion of e�ciency is much lower. The takeaway message is
that either the operator is able to deploy virtualization tech-
nologies that allow for fast recon�guration (in the order of a
few hours at most), or it is probably not worth considering
dynamic resource allocation at all.

4.4 Varying slice con�gurations

The mapping of services into speci�c network slice instances
may be based on several factors, such as the requirements
of the services or the speci�c policies implemented by each
operator [1]. The number of slices and the resulting volume
of tra�c in each slice will have an impact on the overall
multiplexing e�ciency, which we investigate next.

We �rst study a slice con�guration where the services of
a similar type are aggregated together into the same slice,
which allows to reduce the 38 slices that we had in the pre-
vious experiments down to 7 slices dedicated to streaming,
social network, web, cloud, gaming, messaging and miscella-
neous services, respectively. Figure 14 illustrates the multi-
plexing e�ciency achieved by such a slice con�guration as a
function of the recon�guration period τ . The values are sub-
stantially larger than those obtained with a larger number of
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Figure 15: E�ciency of slice multiplexing as a func-

tion of the number of slices x , when the x − 1 services

with the highest tra�c load have a dedicated slice and

the remaining services are aggregated into a common

slice. Dashed and solid colored lines denote the ex-

treme network levels ℓ = 1 and ℓ = L, while the black

solid line follows an intermediate network level. Top:

Large metropolis. Bottom: medium-sized city.

slices (see Figure 13): by aggregating service tra�c we have
signi�cant gains in e�ciency, yet we lose the ability to pro-
vide customized functions to each speci�c mobile service. It
is worth highlighting, however, that multiplexing e�ciency
remains rather low for small l and large τ values.
A second sensible slice con�guration assumes that the

providers of the services that generate the highest tra�c
load acquire a dedicated slice tailored to their service, while
the remaining services are aggregated into a common, non-
customized, slice. In Figure 15, we analyze the multiplexing
e�ciency resulting from this con�guration as a function of
the total number of slices in the network (including the dedi-
cated slices and the common one) when the recon�guration
period τ is of 1 hour and f = 1 for all slices. Results show
that the trend becomes almost �at after 15 slices, which im-
plies that e�ciency is only improved when the services with
the largest demands are brought into the common slice.
In the above slice con�guration, it may be reasonable to

expect that those tenants acquiring dedicated slices are pro-
vided a stricter guarantees than the ones in the common
slice. In order to evaluate the bene�ts resulting from such a
strategy, Figure 16 illustrates the resource savings resulting
from providing the common slice with a guaranteed time
fraction f = 0.9, computed as the relative percentage of
resources spared with respect to those required in the con-
�guration where all slices have f = 1. Results show that
savings remain very low in the network core (when ℓ ∼ L),
but can be signi�cant for resources located close to the radio

Figure 16: Savings obtained by relaxing the service

guarantees of the common slice, corresponding to the

di�erence between the resources required when f = 1

for the common slice, and those requiredwhen f = 0.9

for that slice. Dashed and solid colored lines denote

the extreme network levels ℓ = 1 and ℓ = L, while the

black solid line follows an intermediate network level.

Top: Large metropolis. Bottom: medium-sized city.

access (when ℓ ∼ 1). In the latter case, savings are important
(up to 20-40%) when the top-10 services are included in the
non-customized, low-QoS common slice. Indeed, as these
account for 65% of the overall tra�c (see Figure 5), they have
a much higher incidence on the system performance.

4.5 Equipment deployment e�ciency

To conclude our analysis, we look at the problem of resource
multiplexing e�ciency in a sliced network from a rather
di�erent perspective. Equations (2) and (3) derived in Sec-
tion 2 assume that the relevant metric for the operator is
the amount of resources utilized to accommodate the de-
mand for mobile services aggregated over time. Therefore,
the analysis carried out in Sections 4.1–4.4 is appropriate to
evaluate operating expenses (OPEX), which increase when
the available resources are used more intensively, and can
be applied, e.g., to electric power consumption, management
overheads, or deterioration of assets with use.

However, another interesting viewpoint on e�ciency is in
terms of equipment to be deployed to meet the instantaneous
demand. This relates to the capital expenditure (CAPEX) in-
curred by the mobile network operator, typically hardware
and infrastructure costs. In this case, the expressions are
slightly di�erent, and capture the fact that the equipment
must be dimensioned so as to match the peak demand. For-
mally, let r̂c,s (n) be the resources needed to satisfy speci�ca-
tions for slice s ∈ S at node c ∈ Cℓ during recon�guration
interval n ∈ T , computed as indicated in Section 2.3. Then,
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Figure 17: E�ciency of slice multiplexing from an

equipment deployment perspective versus τ . Dashed

and solid colored lines denote the extreme network

levels ℓ = 1 and ℓ = L, while the black solid line follows

an intermediate network level. Top: Large metropolis.

Bottom: medium-sized city.

the equipment resources needed to accommodate the tra�c
activity peak in slice s at network level ℓ are computed as

R
⋆
ℓ,τ
=

∑

s ∈S

∑

c ∈Cℓ

max
n∈T

(

r̂c,s (n)
)

. (13)

Similarly, the equivalent resources needed under perfect
sharing in the same settings are

P
⋆
ℓ,τ
=

∑

c ∈Cℓ

max
n∈T

(

r̂c (n)
)

, (14)

where r̂c (n) is the amount of resources needed to accommo-
date the total demand aggregated over all slices in S at node
c and recon�guration interval n, under requirements . The
multiplexing e�ciency for deployed equipment is then

E
⋆
ℓ,τ
= P

⋆
ℓ,τ
/R⋆

ℓ,τ
. (15)

The equipment deployment e�ciency given by the above
equation is shown in Figure 17. The �gure summarizes re-
sults in our reference urban scenarios, under a wide range
of recon�guration time interval durations τ , and across all
network architectural levels ℓ. We highlight the following
aspects.
(i) In absence of mechanisms that allow for dynamic re-

con�guration, the e�ciency is very much comparable to that
observed in the previous analysis, as shown by the values for
τ = 3 months in Figures 13 and 17. This is a clear indication
that deploying hardware and infrastructure to provide re-
source isolation across slices risks to have an unbearable cost
for operators if no dynamic resource reallocation is possible.
(ii) Flexibility in the orchestration of resources pays o�

also in terms of equipment deployment e�ciency, which can
be increased up to 0.8–0.95 when fast recon�guration over

30-minute intervals is possible. These values correspond to
an additional 5%–25% cost in terms of network infrastructure
over the perfect sharing benchmark.

(iii) The main di�erence between e�ciency of resource us-
age, given by Equation (4), and equipment deployment, given
by Equation (15), is observed at architectural levels closer to
radio access. When ℓ is close to 1, a dynamic recon�guration
of resources allows improving deployed infrastructure e�-
ciency much faster than resource usage e�ciency. In other
words, resource isolation across slices has a sensibly lower
impact on equipment installation costs than on operating
expenses. For instance, at the antenna level (ℓ = 1), e�ciency
is 0.6 in Figure 13 and 0.8 in Figure 17, implying that the
extra cost over perfect sharing is high for resource utiliza-
tion (over 60%) and much lower for equipment deployment
(below 25%).

(iv) In contrast to the above, in the network core (i.e., for ℓ
that tends to L) trends are similar in Figure 13 and Figure 17.
Overall, our results stress how multiplexing e�ciency

of slice resources is largely consistent across the di�erent
perspectives entailed by the expressions of Equations (4)
and (15). That is, the OPEX and CAPEX incurred by the
operators to support network slicing have comparable trends
with respect to the di�erent system parameters, with the
notable exception of lower deployment costs for a radio
access infrastructure supporting high recon�gurability.

5 RELATED WORK

Multi-service networks [25] are the fundamental building
block for the implementation of the network slicing para-
digm [5] that, in turn, will enable new business models such
as multi-tenancy [28] and �nally pave the way to 5G.
At this stage, the bulk of the work on next generation

network sharing architectures is already available, ranging
from novel visions of the network [24] to speci�c architec-
tures proposals [21, 35]. More speci�cally, research work
already addressed the extension to multi-service settings of
fundamental parts of the 5G system, such as the radio access
network (RAN) [4, 11], the core network [27], or the man-
agement and orchestration components [19]. As a matter of
fact, that research e�ort is already making its way into stan-
dardization: 3GPP is considering multi-service and network
slicing aspects for the next Release 15, expected to deliver
the �rst set of 5G standards [2].

On top of the architectural research work, enabling multi-
service network has also been considered from an algorith-
mic point of view. The focal point of the research in the area
has been the resource allocation in the RAN [8, 10, 16, 22]
as the spectrum is the most di�cult part of the network to
oversubscribe. However, resource sharing in a virtualized net-
work has also been tackled for other kinds of functions [14].
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Despite the attention that multi-service networks, net-
work slicing and multi-tenant networks have been receiving
for the last few years, little attention has been paid to how
such network slices will behave in practical scenarios. Un-
derstanding the system e�ciency in the wild has only been
possible in reduced scenarios involving very few devices [10],
or bymaking assumption on the real patterns, modelling user
movements and service requests with random processes [6].

Our work sheds light on this overlooked aspect, by provid-
ing an empirical evaluation of slicing e�ciency in large-scale
scenarios, in presence of realistic multi-service demands.

6 TAKEAWAYS AND PERSPECTIVES

We analyzed, from an empirical perspective, the implications
of real-world mobile service usage patterns on the network
infrastructure. To the best of our knowledge, this is the �rst
attempt at understanding the impact on resource manage-
ment of network slices in a multi-service, multi-tenant net-
work at scale. We retain a number of takeaways, listed next.
Multi-service requires more resources. Building a net-
work that is capable of providing di�erent services (possibly
associated to several tenants) will necessarily introduce a
decrease in the e�ciency of the resource usage. We quantify
this loss in almost one order of magnitude if considering
distributed resources (such as spectrum), yet the e�ciency
loss stays as high as 20% even in a fully centralized scenario
(i.e., a large datacenter in the core network). These �gures
translate into high costs for the infrastructure provider, who
must compensate for them by aggressively monetizing on
the new business models enabled by a multi-service scenario
(e.g., Network slice as a Service, Infrastructure as a Service).
Tra�c direction is a factor. Uplink and downlink tra�c
exhibits similar e�ciency trends across network levels, but
uplink exacts a much higher e�ciency degradation to meet
equivalent QoS requirements. Although uploads account for
a small fraction of the overall load, the further reduced e�-
ciency of uplink may entail real challenges for the operators.
Indeed, uplink QoS requirements are key to speci�c services
with stringent network access needs (e.g., mobile gaming),
Even more so, it is likely that multiple instances of such
services belonging to di�erent tenants (e.g., video-gaming
platforms owned by di�erent gaming providers) have to be
served in a resource-isolated fashion in parallel.
Loose service level agreements may not help. Although
the slice speci�cations granted to tenants may be moderated,
the overall e�ciency grows only when requirements are very
much lowered, up to a point that they may be not suitable
for certain services (needing, e.g., “�ve nines reliability”, or
bandwidth guarantees over very short time windows).
Dynamic resource assignment must also be rapid. The
design of dynamic resource allocation algorithms is crucial

to increase the e�ciency of future sliced networks. How-
ever, substantial gains will only be attained if the virtualiza-
tion technologies enable a fast enough re-orchestration of
network resources. While current management and orches-
tration (M&O) frameworks provide such capabilities, intel-
ligent algorithms able to forecast mobile service demands
and anticipate resource recon�guration are also required,
which may be challenging for short timescales. Underestima-
tion of resources may lead to SLA violations, whereas over-
provisioning may harm the economic feasibility of the sys-
tem. Arti�cial intelligence and machine learning are promis-
ing techniques to accomplish this [34] and are being brought
into the network management landscape by standards [9].
Aggregating services is bene�cial. Aggregating similar
services into the same slice increases the system e�ciency
signi�cantly, yet this comes at the price of losing the ability to
provide a customized treatment to each service. In contrast,
if the services with the highest tra�c load acquire their own
slice and the remaining ones are aggregated into a common
slice, the resulting gains are limited unless the common slice
includes services with signi�cant load.
Deployment is slightly more e�cient than operation.

We analyzed the sharing e�ciency from both a continuous
resource usage and an infrastructure deployment perspective.
While they have similar trends in the network core, the
e�ciency at the radio access is higher for installed hardware
in presence of high-frequency resource reallocation.
Urban topography has limited impact. The fact that our
results are very consistent in two urban areas of a quite
di�erent nature lets us provide general insights that hold
beyond one particular scenario. More precisely, as usage
demands are eventually driven by human factors, we expect
that our considerations may be extended to other regions
and countries in (and possibly beyond) Europe.
There is room for improvement. As a �nal remark, we
would like to stress that ours does not pretend to be a com-
prehensive analysis, rather one that lays the foundations to
a better understanding of the new trade-o�s introduced by
network slicing in terms of resource management e�ciency.
The empirical bounds we derived represent a starting point
for deeper investigations of a unexplored subject with strong
implications for the future generations of mobile networks.
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