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Summary. Microrobots have the potential to dramatically change many aspects
of medicine by navigating bodily fluids to perform targeted diagnosis and therapy.
Researchers have proposed numerous microrobotic swimming methods, with the vast
majority utilizing magnetic fields to wirelessly power and control the microrobot.
In this paper, we theoretically and experimentally compare the two most promising
methods of microrobot swimming—using magnetic fields to rotate helical propellers
that mimic bacterial flagella, and pulling with magnetic field gradients—considering
the practical limitations in the generation of magnetic fields. We find that swimming
with a helical propeller generally becomes more desirable as size decreases, and will
likely be the best choice for in vivo applications.

1 Introduction

Microrobots have the potential to dramatically change many aspects of medi-
cine by navigating bodily fluids to perform targeted diagnosis and therapy.
Microrobots, like microorganisms, swim in a low-Reynolds-number regime,
requiring swimming methods that differ from macroscale swimmers [1]. How-
ever, microrobots can also vary in size by orders of magnitude. Researchers
have proposed numerous microrobotic swimming methods, many biomimetic,
with the vast majority utilizing magnetic fields to wirelessly power and control
the microrobot. It remains unclear which propulsion method is optimal, and
a comparison that considers the microrobot’s size coupled with the practical
limitations in generating magnetic fields is needed. To do this we have de-
veloped two different magnetic microrobots that utilize very different propul-
sion schemes: one is a submillimeter-sized device that is pulled with magnetic
field gradients (Figure 1(a)); the other has a helical propeller that mimics
a bacterial flagellum in both form and scale and is rotated with a magnetic
field (Figure 1(b)). In this paper, we compare these two propulsion methods,
which are representative of the majority of active research in wireless microro-
bots. We show that metrics of efficiency, which are often used to characterize
low-Reynolds-number swimming, can be quite misleading, and that practical
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Fig. 1. Swimming mi-
crorobots with a 30:1
size difference. Magnetic
fields (a) pull a 900-µm
assembled-MEMS Ni mi-
crorobot [2], and (b) ro-
tate a 30-µm microrobot
with a helical-nanocoil
“flagellum” with a Ni
“head” [3].

limitations in magnetic control greatly impacts which method is best for a
given application. We show that swimming with a helical propeller generally
becomes more desirable as size decreases and will likely be the best choice for
in vivo applications. We also find that limitations in the hardware used to
generate the magnetic fields can influence which swimming method is best.

2 Swimming at Low Reynolds Number

It has long been known that swimming at the microscale requires techniques
that are very different from those used by macroscale swimmers such as fish
and humans [1]. To understand this phenomenon, we turn to the Navier-Stokes
equations, which, when combined with boundary conditions, completely define
a fluid flow. For a fluid with constant density ρ and constant viscosity η, the
Navier-Stokes equations are given by a single vector equation, which can be
nondimensionalized in space and time by the magnitude of the free-stream
velocity V and some characteristic length L:

(

ρVL
η

)

dV

dt
= −∇p + ∇2

V =⇒ Re =
ρVL

η
(1)

V is the velocity vector field and p is the hydrodynamic pressure scalar field,
which have both been nondimensionalized as detailed in [4]. From this equa-
tion we discover the Reynolds number, the dimensionless quantity that em-
bodies the interaction between a fluid’s inertia and viscosity. At low Re, we
are in a world that is either very viscous, very slow, or very small. Low-Re
flow around a body is referred to as creeping flow or Stokes’ flow. We no
longer see a transition to turbulence, even behind bluff bodies. At low Re,
the role of time becomes negligible in (1); the flow pattern does not change
appreciably whether it is slow or fast, and the flow is reversible. Consequently,
reciprocal motion (i.e., body motion that simply goes back and forth between
two configurations) results in negligible net movement.

Microorganisms are able to swim at low Re using a variety of techniques [5],
none of which look like macroscale swimmers (Figure 2). Cilia are active or-
ganelles that are held perpendicular to the flow during the power stroke and
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Fig. 2. Locomotion of microorganisms, adapted from [6]. (a) Cilia move across the
flow during the power stroke, and fold near the body during the recovery stroke. (b)
Eukaryotic flagella create patterns such as propagating waves or circular translating
movements. (c) Molecular motors spin bacterial flagella, which act somewhat like
corkscrews.

parallel to the flow during the recovery stroke. Many cilia are used simultane-
ously. Eukaryotic flagella are active organelles that deform to create paddling
motions, such as propagating waves or circular translating movements. Bac-
terial (prokaryotic) flagella work differently by using a molecular motor to
turn the base of the flagellum, which acts somewhat like a corkscrew. Some
bacteria have multiple flagella that bundle during swimming. All of the swim-
ming methods utilized by microorganisms are fairly inefficient, which is not a
problem because microorganisms’ source of energy (food) is so plentiful.

A number of robotic swimming methods have been shown to work at
relatively small scales, but will have reduced effectiveness as size decreases to
the microscale because they make use of reciprocating configurations. Other
biomimetic swimming methods utilize physics that scale well to the microscale.
Artificial eukaryotic flagella use distributed actuation to create a propagating
wave [7]. The need for distributed actuation can be somewhat overcome using
a reciprocating magnetic field to generate propagating-wave-like motion in
a flagellum [8]. There is a great deal of interest in microrobot swimming
using helical propellers that mimic bacterial flagella. Helical propellers can
be made rigid, removing the need for distributed actuation, and it is now
possible to fabricate these structures at the microscale [9]. Alternatively, it
has been suggested that the microrobot’s payload, such as a strip of drug, can
be twisted up into a helical propeller to actually contribute to propulsion [10].
Other screw-like robots have made use of helical propulsion as well [11].

A controllable external pulling source is not available to microorganisms,
but engineers can utilize gradients in magnetic fields to apply forces and
torques to untethered microrobots [2, 12]. This greatly simplifies fabrication
since no microactuator or special structure is needed for propulsion. It is also
reasonable to wonder if this form of propulsion, which could not have evolved
through natural selection, might outperform biomimetic methods.
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3 Magnetic Power and Control

Nearly every demonstrated and proposed method for wireless power and con-
trol of microrobots utilizes magnetic fields. No other actuation principle offers
the ability to transfer such large amounts of power wirelessly. In addition to
pulling with field gradients, a rotating magnetic field is an obvious choice to
rotate a helical propeller [3, 13], eliminating the need to replicate a molecu-
lar motor in a microrobot. However, even with all of their positive attributes,
magnetic fields impose strict limitations on the design of wireless microrobots.

If we want to apply controlled forces and torques to a body with magneti-
zation M using a controlled magnetic field H (both quantities are vectors with
units A/m), the governing control equations are as follows [14]. The magnetic
torque tends to align the magnetization of the body with the applied field:

T = µ0vM × H (2)

where v is the volume of the body in m3 and µ0 = 4π × 10−7 T·m/A is the
permeability of free space. The magnetic force on the body is

F = µ0v (M · ∇)H (3)

We can also express the applied magnetic field as an applied magnetic flux
density B with units T. B is related to H simply as B = µ0H.

If the body of interest is a permanent magnet, the magnetization M is
effectively constant with respect to the body with a magnitude equal to the
remanence magnetization of the material. We can increase torque by increas-
ing the angle between H and M, up to 90◦, or by increasing the strength of
H. We can increase force by increasing the gradients in the applied field. If
the body of interest is made of a soft-magnetic material, the magnetization
is a nonlinear function of the applied field and can rotate with respect to the
body; the governing equations for control are significantly more complex [4].

Controlled magnetic fields can be generated with electromagnets that are
position and current controlled [2], by orthogonal stationary current-controlled
electromagnets [15], by position-controlled permanent magnets such as with
Stereotaxis’ Magnetic Navigation System, or even by a commercial MRI sys-
tem [12]. However, the rapid decay of magnetic field strength with distance
D from its source creates a major challenge for magnetic control. In practice,
the geometry of a field source is important near the source, but we generally
observe that the strength of a magnetic field decreases as ∼ D−3. In addition,
we find that the gradients in the field decay even faster, as ∼ D−4.

4 Swimming with a Helical Propeller

An alternative to generating propulsive forces using magnetic field gradients
is to use a helical propeller with parameters defined as shown in Figure 3. We
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Fig. 3. Definition of parame-
ters for a helical propeller. The
force f and torque τ are those
not due to the fluid.

follow a similar derivation to [16], a difference being that [16] assumes that
the body slowly rotates counter to the helix to balance angular momentum
(as a bacterium would due to flagellar rotation at a molecular motor), while
we assume the helix is rigidly connected to the body. The result is a propul-
sion matrix relating the four principle quantities—forward velocity v, angular
velocity ω, applied torque τ , and applied load f—for our helical swimmer:
[

f
τ

]

=

[

−2πnr
(

Clc
2 + Cns2

)

/s − Dv 2πnr2 (Cn − Cl) c
2πnr2 (Cl − Cn) c 2πnr3

(

Cnc2 + Cls
2
)

/s + Dω

] [

v
ω

]

(4)
where s = sin θ and c = cos θ, n is the number of turns of the helix (such
that the helix length is nλ), and Dv and Dω are linear and angular drag
coefficients for the body, respectively. The constants Cn and Cl are the viscous
drag coefficients for a thin cylindrical element of the propeller for flow normal
to the cylinder’s axis and along the length of the cylinder’s axis, respectively:

Cn =
4πη

ln
(

0.36πr

t sin θ

)

+ 1

2

, Cl =
2πη

ln
(

0.36πr

t sin θ

) (5)

where η is the fluid’s viscosity [17]. If we consider a spherical body, the drag
coefficients are described simply in Stokes’ flow:

Dv = 6πηb , Dω = 8πηb3 (6)

A motivating factor for the use of helical propulsion is that we can now
microfabricate nanocoils by rolling up prestressed bilayers [9]. This technique
has better control over helical geometry than grown helical carbon nanotubes
or ZnO nanobelts. The radius of the coil is determined by the Young’s moduli
of the materials and the lattice mismatches of the bilayers. The geometrical
relation of the nanocoil parameters is shown in Figure 4(a). The width of the
stripe is given by its initial pattern design, and the depth is controlled during
fabrication. Figure 4(b) shows the process sequence to fabricate nanocoil mi-
crorobots, which consist of a 27-nm-thick ribbon that, upon wet etch release,
self-forms into a 3µm-diameter coil with a length between 30 and 40µm. A
2 µm×2 µm×0.2µm Ni plate is formed on one end that serves as a “head” [3].
Figure 4(c) shows an SEM image of an as-fabricated nanocoil with a Ni plate
on one end. For the first propulsion experiment, individual magnetic nanocoils
were immersed in paraffin oil, actuated with a rotating magnetic field (Figure
1(b)), and their motion was captured on video through a microscope [3]. One
sequence for a 30-µm-long nanocoil is shown in Figure 4(d). The time for one
rotation is 0.39 s. An axial velocity of 3.9µm/s is is estimated from the figure.
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Fig. 4. Nanocoils as artificial bacterial flagella. (a) Schematic drawing showing
the relationship between the stripe and etching direction in nanocoil parameters.
Image courtesy of Li Zhang, ETH Zurich [9]. (b) Process sequence: initial planar,
epitaxial bilayer with Ni parts, all patterned through conventional microfabrication
techniques, self-forms into a 3-D nanostructure during wet etch release. (c) SEM
image of an as-fabricated nanocoil with a Ni plate attached to one end. The probe
tip that is used to break the attachment of individual coils is also visible. (d) A 30-µm
nanocoil rotated in oil with a magnetic field, which results in forward motion [3].

5 Pulling versus Helical Propulsion

In order to make a fair comparison between microrobots that utilize rotating
magnetic fields and a helical propeller and microrobots that are pulled by
magnetic field gradients, we must consider the hardware that generates the
magnetic field. In practice, there will be limits to how close the field sources
can be placed to the microrobot. Let us compare the control of a microrobot
with two current-carrying coils, as shown in Figure 5. Our field sources are
assumed to be located a distance L from our microrobot. The limitations
imposed by this two-coil system are representative of other magnetic control
systems, such as those as described in Section 3. We will assume a simple
magnetic bead of radius b for our microrobot. We have two options for control:
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Fig. 5. (a) Uniform magnetic fields are generated by two coils with the current
flowing in the same direction. The field can be used to rotate a microrobot. The
field is calculated accurately with a current-loop model [14]. (b) Gradient fields can
be generated by the same hardware by running the current in opposite directions.
The gradient can be used to pull on a microrobot.

we can attach a helical propeller to our bead and then apply current in the
same direction in the two loops, creating a uniform field that is used to rotate
and thus propel the bead; or, we can apply the current in opposite directions,
creating a field gradient that is used to pull on the bead directly. From the
equations that describe the magnetic field and field gradient at the midpoint
of the current loops [14], shown in Figure 5, we see that the field that we can
generate changes with the gap between the two loops as ∼ L−3, while the
gradient that we can generate changes as ∼ L−4, as expected. We also find
that there are optimal values for the coil radii for a given coil gap to maximize
the respective quantities: R =

√
2L for case (a) and R =

√

2/3L for case (b).
In Figure 6 we plot the maximum no-load (f = 0) velocity and the maxi-

mum stall (v = 0) force versus bead size. For the helical parameters, we choose
r = b, t = 0.01b, and θ = 45◦. Under present-day limitations in nanocoil fab-
rication, these parameters can be achieved for a bead size as low as b = 1 µm.
For the coil gap, we assume L = 0.2 m, which is the approximate value that
would be needed to control a microrobot somewhere inside a human head. To
avoid biasing the results, we use the optimal radii R for the respective cases.
The results for two helices are shown: one for n = 3, and one for n = 10.
The magnetization of the bead and the current through the loops enter into
the maximum velocity and force linearly, so we can normalize our results to
these quantities. The reciprocal of viscosity enters into the maximum velocity
linearly, so we can normalize to this quantity as well; the viscosity has no
bearing on the maximum force, even for the helical propeller.

We find that the maximum velocity varies as ∼ b for helical propulsion
and as ∼ b2 for pulling. We find that the maximum force varies as ∼ b2 for
helical propulsion and as ∼ b3 for pulling. This indicates that there will always
exist a microrobot size below which using helical propulsion is desirable over
pulling with field gradients. In addition, even though the helical parameters
used were not optimized, Figure 6 indicates that helical propulsion is desirable
over pulling for any microrobot size that would reasonably be considered as
microscale.
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Fig. 6. Comparison of (a) normalized no-load (f = 0) velocity and (b) normalized
stall (v = 0) load vs. bead radius for helical propulsion and field-gradient pulling.

Although helical propulsion of a body is described as being quite inefficient
compared with simply pulling the body through the fluid [1], this is misleading
in the context of magnetic control. Theoretically, helical propulsion is likely to
outperform pulling with field gradients by a large margin in the size range of
microrobots. In addition, increasing the distance between the magnetic field
sources and the microrobot (e.g. L), which will likely be necessary for in vivo

applications, will always tend to improve helical propulsion relative to pulling,
although the effectiveness of both will be reduced.

The linearity of helical propulsion in Stokes’ flow, predicted in (4), has been
experimentally verified many times [13, 16]. However, the actual propulsion-
matrix values in (4) are subject to modeling errors. The model in (4) assumes
that the body and the helical propeller do not affect each others’ flow fields,
which clearly cannot be true. In addition, the individual Stokes’-flow models
are derived assuming an infinite extent of fluid. Figure 7 shows magnetic and
hydrodynamic data for three steel beads, taken with a custom measurement
system [18]. We see that the magnetic models are quite accurate, but the
viscous drag coefficient Dv for Stokes’ flow around a sphere is less accurate,
due to the wall effects of the container. Wall effects have also been observed
to affect the helical-propulsion model [16], and are generally important at
low Reynolds number [5]. Helical-propulsion models also typically assume a
perfectly rigid helix. In Figure 5 we show experimental data for a nanocoil still
attached to the chip, like that seen in Figure 4(c), subjected to a magnetic
field and characterized as a spring in [3]; the nanocoil is clearly not rigid.
The characterization of the stiffness of artificial flagella [19] can be used for
improved helical-propulsion models.

Theoretical models of microrobot swimming should be improved, but the
discrepancy between the models at the microscale observed in Figure 6 might
be too large to be drastically affected by improved models. However, there is
another practical limitation in the magnetic control of helical swimmers that
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Fig. 7. Experimental results for three steel beads using a custom measurement
system [18]. (a) Magnetic forces are accurately predicted using a theoretical model.
(b) Hydrodynamic predictions of the beads being pulled through silicon oil (ρ =
970 kg/m3, η = 0.98 Pa·s) are less accurate, as Stokes’ flow equations do not accu-
rately account for wall effects of the 26-mm-diameter container.

we must consider. Our actual control variable is the rotation frequency ω of
the magnetic field. The microrobot rotates in sync with the field, with the field
leading the magnetization such that the magnetic torque from (2) balances
the viscous torque. As ω is increased, the magnetic torque eventually reaches
its maximum; this is the step-out frequency [11], above which the microrobot
can no longer track the rotating field. The maximum velocity and force curves
of Figure 6 assume that the microrobot is turning at its step-out frequency,
which also increases linearly with the quantity |M|i/η. For any field generation
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Fig. 8. A nanocoil attached to the chip,
as shown in Figure 4(c), is subjected to
a magnetic torque and characterized as a
spring [3].

system, there are practical satu-
ration limits in generating high ω
due to, for example, motor speeds,
induction, eddy currents, or sam-
pling rates. If this ω-saturation is
reached, the values shown in Fig-
ure 6 will over-estimate the capa-
bilities of helical propulsion. We
must also recall that the propul-
sion model implicitly assumes low-
Re flow, which could be violated
for very high ω. Thus, although it
is always desirable to increase |M|
and i for improved control using
either swimming method, it could
reduce the performance of helical
propulsion relative to pulling.
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Fig. 9. (a) Simple helical propulsion results in drift due to gravity. (b) Swimming
similar to helicopter flight can counteract gravity.

There is another factor that must be considered in microrobot swimming:
gravity. It is often claimed that inertia is negligible at low-Re, but “inertia” is
used differently here than “mass.” A microrobot will reach its terminal velocity
in a fluid nearly instantaneously, and the terminal velocity decreases with size.
However, even at low-Re, a microrobot will still fall downward under its own
weight. The helical propulsion model developed in Section 4 assumes that flow
is along the axis of the propeller. However, this only provides for propulsion
along the axis, which will be insufficient to counteract gravity when swimming
horizontally, as shown in Figure 9(a). It may be necessary to swim with an
angle of attack, as shown in Figure 9(b), similar to the way a helicopter flies.
Microorganisms that swim using flagella have a density similar to water, and
are thus neutrally buoyant, making this effect of gravity on helical propulsion
unique to microrobots that are constructed of denser-than-water materials.

Finally, it is possible to combine the benefits of field gradients with those
of helical propulsion. That is, we can pull as we rotate. This hybrid method
has the potential for improved performance. However, it will require a more
complicated actuation scheme than that considered in Figure 5(a), and will
likely place additional demands on localization needed for closed-loop control.

6 Conclusions

Magnetic fields provide an unequaled means of wireless power and control for
microrobots. However, the strength of magnetic fields and field gradients de-
crease rapidly with distance from the source, which has a profound impact on
the best way to make use of these fields for microrobot propulsion. Although
it has been previously observed that a swimming microrobot with a helical
propeller is far less efficient than simply pulling the microrobot through the
fluid, we find that a helical propeller is theoretically far superior to pulling
if we consider the limitations of magnetic field sources. We find that a heli-
cal propeller generally becomes preferable to pulling with field gradients as
microrobot size decreases or as the distance from the magnetic field sources
increases. Consequently, helical propulsion will likely be the best choice for in

vivo applications. However, the design of hardware that realizes the theoretical
possibilities of helical propulsion remains a challenging problem.
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