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Abstract 
It is obvious that holding city population constant, differences in cities across the world are 

enormous. Urban giants in poor countries are not large using measures such as land area, 

interior space or value of output. These differences are easily reconciled mathematically as 

population is the product of land area, structure space per unit land (i.e., heights), and 

population per unit interior space (i.e., crowding). The first two are far larger in the cities of 

developed countries while the latter is larger for the cities of developing countries. In order to 

study sources of diversity among cities with similar population, we construct a version of the 

standard urban model (SUM) that yields the prediction that the elasticity of city size with 

respect to income could be similar within both developing countries and developed countries. 

However, differences in income and urban technology can explain the physical differences 

between the cities of developed countries and developing countries. Second, using a variety 

of newly merged data sets, the predictions of the SUM for similarities and differences of 

cities in developed and developing countries are tested. The findings suggest that population 

is a sufficient statistic to characterize city differences among cities within the same country, 

not across countries. 
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In the academic and policy literatures, population is often treated as a sufficient statistic to

characterize the state of urbanization across countries. Cities are grouped and classified based

on population. The standard measure of urbanization is the fraction of population residing in

cities above a minimum population limit. One piece of evidence that could justify using city

population to measure urbanization across countries was the historic association between city size

or fraction urbanized and country income per capita. However, this relation weakened during the

20th century and recent papers cast doubt on the relation between urbanization based on city

populations and economic development (Fay and Opal, 2000; Glaeser, 2014; Jedwab and Vollrath,

2015, 2018; Glaeser and Henderson, 2017; Henderson and Kriticos, 2018, e.g.).

Population may no longer be a sufficient statistic to characterize city sizes because, other than

similar population, cities like New York, Beijing, Sao Paulo, Mexico, Mumbai, Cairo and Dhaka,

which are all located in countries with different income and urban technology levels, appear to

have little in common.1 As can be seen in Table 1, while these cities all have the same population

(close to 19 million), Beijing, Sao Paulo, Mexico, Mumbai, Cairo and Dhaka are all much less

developed economically, whether measured by GDP or satellite night lights, and have much less

interior space, as measured by land area and building heights.

This raises several questions. First, how can we account for the increasing disconnect between

the population and the economic and physical size of cities? Relatedly, how have cities in

developing countries become “physically” able to accommodate such large populations? Second,

does this mean that urbanization is no longer predictive of economic growth or that population is

not a sufficient statistic to characterize urbanization? These questions are all the more important

because cities represent a large share of overall economic activity. Therefore, to better understand

long-run economic growth, there is an increasing need to open the black box of cities.2

A first purpose of this paper is to provide careful documentation of the similarities and

differences between the old urban giants of high income countries and the new urban giants of

similar population but located in low income countries. In the process of making these cross

country comparisons, a variety of new data sources are assembled and merged to reveal new

stylized facts about cross country variation in city characteristics. Using this data, we find that the

1Any mention of Hong Kong, Taipei and Taiwan in the paper should be taken as a reference to Hong Kong SAR,
Chinese Taipei and Taiwan POC, respectively).

2Agriculture accounts for 3% of the world’s GDP World Bank (2018). If two thirds of non-agricultural activities take
place in cities, as shown for a large sample of countries by Gollin et al. (2015), potentially 65% of the world’s GDP comes
from cities. Likewise, McKinsey (2011a) estimate that just 600 cities generate 65% of the world’s economic growth.
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elasticity of city size with respect of income per capita across countries is zero, but was positive

in the past. In other words, developing countries are now as likely as developed countries to

have large agglomerations when population is the measure. However, urban giants in poor

countries are not large cities using other measures, such as land area, interior square feet of space,

or total value of output. These differences are easily reconciled mathematically as population is

the product of land area, structure space per unit land, and population per unit interior space or

“crowding”. The first two are larger in the cities of rich countries while the latter is larger for the

cities of poor countries. Interestingly, over time, rich country cities built up more whereas poor

country cities densified much more, causing the latter to outgrow the former. Thus, cities in rich

and poor countries have reached similar population sizes, but they did so in very different ways.

A second purpose is to determine if the standard urban model (SUM) can explain these

similarities and differences. In the basic form of the SUM, city population size increases with the

earnings opportunities relative to alternative locations as well as construction and transportation

technologies. Additionally, for a given city, housing price, land rent, structure density, and

population density are characterized by a series of negative exponential functions, which

themselves depend on earnings and urban technology. We construct a modified version of the

SUM, focusing on the theoretical relation among population, income, land area, structure density

and population density, and other basic features of the city. We obtain central predictions for cities

in high vs. low income countries. First, city population varies directly with land area and structure

density and inversely with housing consumption per capita. Second, the elasticity of city size with

respect to earnings can be similar across countries but the entire relation between the logarithms

of earnings and city size is shifted downward as country income per capita rises. This means that

population is a sufficient statistic to make comparisons among cities within a given country where

there is a common urban technology but that population is not a significant indicator of other city

characteristics across countries. These two predictions are borne out by the data.

Finally, the paper explores the circumstances under which population can be used as a

sufficient statistic to characterize differences among cities in high and low income countries and

the circumstances under which simple use of population to characterize the extent of urbanization

could produce misleading results. Population is not a sufficient statistic to characterize urban

characteristics across cities with different levels of technology and income per capita. However,

within a country or among a group of countries where these are similar, then, to a first order of

approximation, population is a sufficient statistic to account for other urban characteristics.

4
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This paper makes several contributions. First, we add to the literature on the drivers of city

population sizes. A contribution of this paper is to assemble a large data set of economic and

physical characteristics for the largest agglomerations in the world. This involved the assembly

of various data sets because existing databases of cities lack information on GDP, land area or

structures. Doing so allows us to open the black box of cities and study what they are made of:

people, but also land, structures, units, and capital more generally. We document the disconnect

between urbanization and economic development. However, we do not attempt to explain the

disconnect.3 Instead, our contribution is to document how this disconnect is physically possible.

The fact is that many residents in the mega-cities of poor countries are willing to live in crowded

housing units, which implies that either they do not value housing consumption much in their

utility function or they choose to live in cities despite relatively low urban income levels.

By studying how land areas, structure heights, densities and crowding vary across cities and

over time, we complement studies on city structure in developed countries (e.g. Glaeser and Kahn,

2004; Burchfield et al., 2006; Baum-Snow, 2007; Overman et al., 2008; Saiz, 2010; Barr, 2012, 2013;

Duranton and Puga, 2015; Liu et al., 2018; Ahlfeldt and McMillen, 2018; Arribas-Bel et al., 2019)

and developing countries (e.g. Deng et al., 2008; Brueckner and Selod, 2009; Brueckner, 2013; AUE,

2016; Harari, 2016; Henderson et al., 2016b; Baruah et al., 2017; Brueckner et al., 2017; Michaels et

al., 2017; Gaduh and Civelli, 2018; Selod and Tobin, 2018; Brueckner et al., 2019). However, most

studies focus on one country or city, and thus miss important differences across countries. Also,

most studies only consider one component of city structure at a time.4 Our analysis complements

their analysis by giving a bigger picture of the patterns of sprawling, verticalization and crowding

across the world.5 Nonetheless, one limitation of our analysis is that it does not try to be causal.

We focus on correlations and their potential implications for the analysis of cities.6

Second, the standard urban model initially developed by Alonso (1964), Mills (1967, 1972) and

Muth (1969) and subsequently reviewed by Brueckner (1987) has become the most widely used

model in urban economics. The SUM has mainly been used to characterize urban development

in high income countries. However, Mills (1972) used it to explain urban transitions from the

19th through the 20th centuries, a period that began with low income per capita and simple

3Various explanations have been advanced, such as urban bias (Ades and Glaeser, 1995; Davis and Henderson,
2003), conflict (Fay and Opal, 2000; Maystadt and Duranton, 2014), natural disasters (Barrios et al., 2006; Henderson et
al., 2016a), trade (Glaeser, 2014; Gollin et al., 2015), and demography (Jedwab et al., 2015; Jedwab and Vollrath, 2018).

4There are few studies on tall buildings. One contribution of this paper is to use novel data on building heights.
5To our knowledge, the only other study with such aim and such scope is Khan, Selod and Blankespoor (2019).
6For example, we do not believe that there is an instrument that would explain changes in per capita income for

enough cities in the world without also affecting their structure, so land area, building heights, and overcrowding.
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construction and transportation technology and ended with current high income and modern

technology. In an attempt to test the implications of the SUM across countries and over time, Mills

and Tan (1980) compare the evolution of population density gradients. Of course, this research has

concentrated on differences in the population density gradient using data on population density

and land area rather than other aspects of cities due to lack of data on these other characteristics.

There are also notable examples of applications of the SUM to low income cities (Brueckner,

1990; Bertaud and Malpezzi, 2001; Bertraud and Malpezzi, 2001; Bertaud and Brueckner, 2005;

Brueckner and Sridhar, 2012). We add to the literature by discussing its theoretical implications

and testing some of its predictions for both poor countries and rich countries. In that, our study

is related to others that empirically test the predictions of urban models for developing countries

(Meijers et al., 2016; Chauvin et al., 2016; Quintero and Roberts, 2018).

Third, we contribute to a large literature using urbanization rates and city population sizes as

proxies for national and local economic development in the absence of income or wage data: (i)

Historical studies use such measures as outcomes to study the past effects of historical factors (e.g.,

DeLong and Shleifer, 1993; Acemoglu et al., 2005; Nunn and Qian, 2011); (ii) Development studies

on countries notorious for their dearth of spatialized economic data use city population sizes as

outcomes to study the effects of more recent factors (e.g., Jedwab and Moradi, 2016; Jedwab et al.,

2017; Jedwab and Storeygard, 2017); (iii) Urban studies that compare the effects of policies across

the world rely on city population sizes due to the absence of city income data in many regions

of the world (e.g., Gonzalez-Navarro and Turner, 2018); and (iv) Many policy publications use

a combination of urban population outcomes and possibly unreliable estimates of city GDPs to

analyze global and regional urbanization trends (e.g., McKinsey, 2011b, 2012; Brookings, 2016,

2018). Likewise, international organizations such as the UN and the World Bank only collect

data on urbanization rates, city population sizes urban infrastructure, and slum housing. Many

variables are not defined at the city level, or do not capture economic development.

Our analysis confirms that population is a sufficient statistic to characterize economic

differences among cities within the same country, but not across countries. This also suggests

that urbanization rates, the relative size of cities in a country, may imperfectly measure economic

development. In contrast, we find that a measure of economic development based on satellite

night lights is strongly correlated with GDP when comparing the cities of different countries. This

suggests that night lights is be a better measure of economic size than population.7

7We thus complement other works that have found that night lights constitute a good proxy for per capita incomes
at the country level or at the local level (e.g. Henderson et al., 2011, 2012; Donaldson and Storeygard, 2016; Bruederle
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The paper is organized as follows. Section 1. presents a modified version of the SUM and

discuss its implications for the relation between population and other general characteristics of

cities, first within a same country, and then across countries. Section 2. presents the data used in

the rest of the analysis. Section 3. decomposes for a sample of the largest agglomerations in the

world total population into land, structures, and crowding. Section 4. investigates the relation

between population and measures of economic development, both within and across countries.

1. Implications of the Standard Urban Model (SUM)

This section develops the implications of the standard urban model (SUM) for the relation between

population and other general characteristics of cities in an attempt to determine the theoretical

rationale for treating population as a sufficient statistic to describe the state of urbanization. First,

a standard model of the theoretical relation among population, land area, structure density, and

other basic features of the city is developed. Second, that structure is used to characterize the way

in which these elements vary with total population among cities within a given country. Third,

the analysis is extended to cities of the same size but located in countries that differ in income per

capita and technology, i.e. cities in developed (d) and developing (g) countries.

1.1. Setting Up the Basic Model of an Individual City

Set-Up. Following a long tradition extending from Muth (1969) and Mills (1972) through the

summary and review by Brueckner (1987), a monocentric city with homogenous households

having one worker per household is housed around an employment center at a radius k, ranging

from [0, k∗]. k∗ is the edge of the city, and the territory beyond the edge is the alternative location.

This subsection abstracts from the fact that there may be multiple cities of different sizes.

A fraction θ of the land area L is unavailable for housing due to factors including topography

and land required for non-housing uses. Land available for housing is given by:

L =

∫ k∗

0
θkdk with 0 < θ < 1. (1)

Households choose a location in a city based on earnings, y, the price of a composite

commodity, pc, and the rental price of housing at distance k, r(k), so that their utility is identically

equal to u∗, which is the utility associated with the location outside the city/countryside based on

wages and house prices in that alternative location. Households located at distance k experience

transportation costs which can include out-of-pocket or time costs (reductions in earnings) equal

to tk. Housing suppliers rent to the highest bidder and hence maximize housing rent, subject to

and Hodler, 2017). More generally, our analysis talks about the importance of urban data (Glaeser et al., 2015).
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the iso-utility constraint imposed by u∗. This makes the landlord’s pricing problem in a city:

Max r(k) = (y − tk − pcc)/h(k) subject to u∗ − u(h(k), c(k)) = 0 (2)

Where c is the composite commodity and h is housing space consumed per household. It is

well known that the solution to this problem is Muth’s equation (Muth, 1969):

dr(k)/dk = ∆t/h(k) (3)

or dividing both sides by r(k):

[dr(k)/dk]/r(k) = d log r(k) = ∆t/(r(k)h(k)) (4)

Housing Price Gradient. Assume that the real income constant own price elasticity of demand

for housing is equal to unity, (r(k)h(k)) = constant = v, where v is total expenditure on housing.

In simpler terms, as the rent decreases with distance from the central business district (CBD),

housing consumption increases proportionally, so that the homogenous workers spend a constant

share of their equal income net of transportation cost on housing across all distances from the

CBD. Following Brueckner (1982) and Kim and McDonald (n.d.), this is a necessary assumption

to produce a negative exponential population density function.8 Equation 4 implies a negative

exponential housing price gradient in each city:

r(k) = roe
−(t/v)k or ln r(k) = ln ro − (t/v)k or dr(k)/dk = −t/v (5)

Equation 5 indicates that housing price is a negative exponential function with a decay rate

equal to −t/v. Thus, housing prices decrease with distance from the CBD, and this gradient

is flatter if housing expenditure v is higher or commuting costs t are lower. Workers want to

consume more housing as income increases, so they are willing to live farther away, which flattens

the gradient, even more so if commuting costs are low.

Housing, which should be interpreted as interior space used for housing, is produced using

structure and land inputs according to a standard Cobb-Douglas production function:

H = ALβS(1−β) (6)

where H is interior space produced, L is land input and S is structure inputs (i.e., non-

land inputs). Structure inputs determine the height or density of housing space per unit land.9

Structure inputs have the same price, ps, everywhere as does the housing productivity parameter,

A. β indicates the substitutability between land and building heights in the construction of

8See Zhao (2017) for a recent application of this approach including empirical validation for U.S. cities.
9Housing services are sometimes interpreted to include attributes of the unit such as appliances, air conditioning,

etc., but for the purposes of this discussion, the focus is on basic space.
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housing space. A lower β suggests that land is less constraining in terms of housing production.

Land has a rental price of R(k) which varies across locations within the city. Given that housing

is produced by a perfectly competitive industry, the structure/land ratio is:

S/L = [(1− β)R(k)]/[βps] (7)

Land Rent Gradient. The land rent gradient is based on the derived demand for land:

R(k) = [Aφr(k)1/β ]/[p(1−β)/β
s ] or lnR(k) = lnAφ+ (1/β)ln r(k)− [(1− β)/β]ln ps (8)

where φ = (1 − β)(1−β)ββ so that, as expected, land rent varies directly with the productivity

of the housing sector reflected in A, and with housing price r(k), while it varies inversely with the

price of structure inputs, ps. Differentiating equation 8 with respect to distance k, the nature of the

land rent gradient is revealed to be:

dlnR(k)/dk = (1/β)dln r(k)/dk = (1/β)(−t/v) = −t/(vβ) (9)

Equation 9 shows that land rent is a negative exponential function with a slope that is steeper

than housing price (see equation 5) by a factor of (1/β). In other words, land rents decrease with

distance from the CBD, even more so than housing prices. Higher substitutability between land

and structures, i.e. a lower β, implies a steeper land rent gradient.

Structure Density Gradient. The perfectly competitive housing industry takes r(k) and R(k) as

given and supplies housing at a density of:

(H/L)(k) = Aφr(k)[(1−β)/β]/p(1−β)/β
s or ln(H/L)(k) = ln (Aφ)+[(1−β)/β]ln r(k)−(1−β)/βln ps

(10)

Equation 10 implies that structure density is an increasing function of productivity in

construction, A, and housing rent r(k) while it varies inversely with the price of structure inputs

ps and the effect of β is ambiguous, depending on the relative prices of structure and land inputs.

As is traditionally the case with the SUM discussed in Brueckner (1987), the model does not

deal explicitly with the spatial distribution of land used for non-housing purposes including

commercial activity. However, only a fraction of land at each radius is available for housing.

This fraction is based on the parameter θ (see equation (1)). It follows from the logic of the model

that the land market forces non-housing activity to compete for land at each distance based on

the land rent function (see equation (8)) and hence that structure densities in non-housing will

follow the same negative exponential characterizing housing as structure is substituted for land

9
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when land price rises. Indeed, space for commercial purposes is produced using a process that

is quite similar to residential space and it is not uncommon to find both activities in the same

physical structure. For purposes of the SUM it is not necessary that all or even most employment

be located in a CBD at the city center. It is simply necessary that employment is more spatially

concentrated toward the CBD so that there is a premium on commuter access to the center.

Differentiating equation 10 with respect to distance gives the slope of the housing density

gradient:
dln(H/L)/dk = [(1− β)/β]dr(k)/dk = [(1− β)/β](−t/v) = −t(1− β)/(vβ) (11)

Equation 11 makes it apparent that the slope of the housing density gradient is steeper than

housing prices (see equation 5) but not as steep as the land rent gradient (see equation 9).

Population Density Gradient. Population density is simply the quotient of housing density from

equation 10 and housing consumption per household. If the real income constant own price

elasticity of housing demand is unity, housing consumption throughout the city is simply equal to

housing expenditure divided by the housing price: h(k) = v/r(k). Dividing both sides of equation

10 by this expression yields the population density gradient function:

D(k) = (H/L)(k)/h(k) = Aφr(k)1/β/(vp(1−β)/β
s ) or lnD(k) = ln (Aφ)+(1/β)ln r(k)−ln v−(1−β)/βln ps

(12)

and dlnD(k)/dk = (1/β)dln r(k)/dk = −t/(βv) or D(k) = Doe
−(t/βv)k (13)

Combining this equation with the rest of the model results in an open version of the SUM

where income is exogenous and, along with preferences and technology, determines the right

hand side components of the density function. Accordingly, rising income determines city size

along with preferences and technology. Note that the slope of the population density function

is steeper than the housing density function (see equation 11). Indeed, t/(βv) > t(1 − β)/(βv).

The intuitive reason for this is that housing space consumption rises with distance from the CBD

because total expenditure is constant while price falls with distance. The slope of the population

density function is identical to that of the land rent function (see equation 9). This is the artifact

of assuming Cobb-Douglas housing production and real income constant own price elasticity of

housing. If either of these assumptions are relaxed, the slope of the land rent function is steeper.

Taken together, equations 5, 9, 11 and 13 imply that for a given city, housing price, structure

density, population density, and land rent are characterized by a series of negative exponential

functions of increasingly steep slope. Figure 1 illustrates the relations among these variables that

characterize the spatial pattern of land use within the city. The city limit at k∗ is then determined

10

©International Monetary Fund. Not for Redistribution



by the point where the land rent function falls to the opportunity cost of land for other purposes,

commonly called the agricultural reservation price, RA.

Total Population. Having established the nature of the population density function in terms of the

model parameters, the next task is to generate the total population of the city, which also depends

on central density and not just the gradient. Recalling that total land available for household

residences is given by L =
∫ k∗

0 θkdk, it follows that household population in the city is the integral

of land area times density in equation 12 or:

N =

∫ k∗

0
θD(k)dk =

∫ k∗

0
θDoe

−(t/βv)kdk (14)

Thus far, no assumptions regarding the shape of the city have been made. If city development

is unrestricted, it will develop as a circle, and θ = 2π× the fraction of land available for housing.

It is convenient to let the absolute value of the population density gradient be equal to λ = t/(βv).

Then, the definite integral in equation 14 can be written as:

N = (θD0/λ
2)[(−λk∗e−λk∗)− (e−λk∗) + 1] (15)

Consider that, for large cities, which is the focus of our empirical analysis, k∗ is large and e−λk∗

approaches zero. This implies that total households can be written simply as:

N = θD0/λ
2 = θD0/(λ = t/(βv))2 = θD0β

2v2 t2 (16)

lnN = ln θ + lnD0 − 2ln λ = ln θ + lnD0 − 2ln (t/(βv)) (17)

The message of equation 17 should not be a surprise. The elasticity of population with respect

to central density is dlnN/dlnD0 = 1, as a given percentage rise in central density raises densities

throughout the city by the same percentage. If the slope of the density gradient depends largely

on parameters t, β and v, then the city population must be approximately proportional to the rise

in central density, D0. Note that, holding constant central density, factors that flatten the gradient,

like housing expenditure v (and thus earnings) and the importance of land in housing β increase

population while higher transportation cost t steepens the gradient and hence lowers population.

Having followed the literature on the SUM to establish the relation among general

characteristics for a single city, it is possible to take the model and vary city earnings to alter

population, and establish the relation among earnings or population and other characteristics.

1.2. Using the Model to Vary the Size of Cities within a Given Country

The result just developed above is designed to reflect the conditions that govern urbanization

within a given country. In a country, absent any role for amenities, population mobility should

11
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equate real income across cities. In addition, there is a presumption that urban technology

including transportation cost, the price of structure inputs, and the opportunity cost of converting

land to urban use are identical. Finally, the fraction of land available for development is assumed

constant, and there is no congestion that raises transportation cost per unit distance as city size

increases. Clearly, the actual city size distribution in a country includes variation among areas

in all these factors. The discussion here can either be thought of as abstracting from all these

factors or as treating their variation as idiosyncratic and unrelated to the fundamental driver of

size variation, differences in earnings of workers across cities in a given country.

Having Cities of Different Sizes. In order to generate cities of different sizes, the standard

approach is to formulate an open city model in which wages vary due to exogenous labor

productivity differences. It is then possible to establish a relation between earnings paid to

workers in the city and total population of the city. Once the relation between earnings and

population is established, the implications for all the other basic city characteristics can be

established and the question of whether these changes are all proportional to differences in

population (in which case population is a sufficient statistic to describe city differences within

a country) or not can be determined.

Imagine that all cities begin with identical characteristics. The price of housing at k∗ must

be identical in all cities because the cost of housing production at the city limit is identical

everywhere. Indeed, structure inputs are priced everywhere at ps while land at k∗ is always priced

at RA, leaving housing production cost, and thus housing price r(k∗), identical across cities.

In order to grow a particular city, y must rise making that city more attractive. Raising earnings

by ∆y means that workers at the city edge who pay r(k∗) for housing will be willing to pay an

additional ∆y = t∆k for transportation to work. Conversely, the outer boundary of the city can

expand by ∆k∗ = ∆y/t. Thus, if y increases in one city, k∗ in that city will increase until the

workers at the edge are indifferent between working at the CBD or outside the city. As k∗ and

thus total land area increase, population also increases.

In addition to expanding the city boundary, the rise in city earnings would raise the utility of

workers living closer than k∗ to exceed that of workers in other cities. Their willingness to pay for

housing in the city would rise. In order to maintain the iso-utility condition among cities, rents

must rise throughout the growing city as shown in Figure 2 with city 2 having higher earnings

than city 1. The increase in rent ∆r required to maintain the iso-utility condition in response to

this increase in wages, requires that housing expenditure must rise by ∆rh to offset the increase in
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earnings ∆y. It follows that ∆y = ∆rh = ∆rhr/r. Given that v = rh, it follows that ∆y = v∆r/r.

Letting η be the fraction of income spent on housing so that v = ηy, this implies y = ηy∆r/r

or ∆y/y = η∆r/r or that dlny = ηdlnr and dlnr/dlny = 1/η. Thus, the percentage increase in rent

needed to offset a given percentage rise in income is equal to the inverse of the share of housing

in income.

Totally differentiating equation 16 with respect to log income the effect of changing income on

central density may be written as:

d lnDo/d ln y = −∂ ln v/∂ ln y + (1/η)∂ ln r/∂ ln y = −1/η + 1/βη = (1− β)/βη(15) (18)

Central density thus varies inversely with β, which measures the importance of land as a factor

of production for housing, and η, which is the fraction of income spent on housing.

City Population Size-Earnings Elasticity. Now, it is possible to determine the elasticity of city

population size with respect to city earnings. The total differential of equation 17 with respect to

income is:

d lnN/d ln y = (∂ lnN/∂ lnDo)(∂ lnDo/∂ ln y) + (∂ lnN/∂ ln λ)(∂ ln λ/∂ ln y) (19)

From equation 19 it is evident that, as income increases, both central density and the density

gradient will change, which then determines the consequent change in total population.

Using the results that ∂lnN/∂lnDo ≈ 1 and that ∂lnN/∂lnλ ≈ −2 from equation 17,

substituting the result from equation 18 for d lnDo/d ln y, and substituting λ = t/(βv) = t/(βηy)

into equation 19 yields the elasticity of city population with respect to city earnings:

d lnN/d ln y = (1− β)/(βη) + 2/η = 1/(βη) + 1/η (20)

Equation 20 implies that the elasticity of household population with respect to income, or what

is commonly called the urban wage premium, is a constant equal to a function of the share of land

in housing construction and the share of housing in income. Thus, the urban wage premium varies

inversely with the importance of housing in household consumption bundles and the share of

land in housing construction. This result is consistent with but not based directly upon the Rosen-

Roback model (Rosen, 1979; Roback, 1982), which states that, in order to attract labor, growing

cities must overcome rising housing prices. The rise in housing price is larger when the share of

land inputs, i.e. β, is larger, and has a bigger effect on cost of living when the fraction of income

spent on housing, reflected in η, is larger. There is a transportation cost effect because commuting

distance and cost are embodied in the model. However, because transportation cost per unit
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distance traveled is assumed constant within a country, perhaps because larger cities have more

investment in transportation capacity, it does not enter the wage premium expression.10

It is possible to calculate the implied urban wage premium for the U.S. from equation 20

because there are well accepted values for the share of land in housing, β = 0.2, and the share

of housing in consumption in income, η = 0.3.11 Using these values, the calculated value of the

premium, is dlnN/dlny = (1/βη) + (1/η) = 20 or inverting this expression, a premium of 0.05,

a 10% rise in population generated by 0.5% rise in earnings. There is an established literature

on the urban wage premium for the U.S. which uses Mincer equations to compute the partial

relation between city size and earnings change. The general consensus is that the premium is

approximately 0.05 to 0.06 (Combes and Gobillon, 2015). The precision of these estimates is based

on use of high quality micro data on wages or earnings that allows for differences in population

composition, which are also associated with city size, to be removed. Estimating the premium

for lower income countries is more challenging due to the inability to adjust for the tendency for

human capital per worker to rise with city size. Recent estimates by Chauvin et al. (2016) place

the urban wage premiums for the U.S., Brazil, China, and India at 0.054, 0.052, 0.088, and 0.077,

respectively.12 Given the difficulty of removing the effect of the tendency for human capital per

worker to rise with city size on estimates of the urban wage premium in China and India, and

issues created by impediments to population mobility, these estimates are remarkably consistent.

Other Elasticities. It is possible to develop expressions for the elasticity of other city characteristics

with respect to income. Based on equation 18, the elasticity of central density with respect to

income is dlnDo/dlny = (1 − β)/(βη). If equation 10 is totally differentiated with respect to

income, the elasticity of structure density with respect to income is found to be identical to that

of central density. As we established before, the elasticity of the absolute value of the density

gradient with respect to income is −1/η which is confirmed in the empirical literature suggesting

that density gradients fall slightly with city size.

10Given λ = t/(βv) it follows that d ln λ/d ln y = ∂ ln t/∂ lny − ∂ lnβ/∂ lny − ∂ lnv/∂ lny. It could be argued that
∂lnt/∂lny 6= 0 as assumed here. The problem is that there are reasonable arguments for thinking that the effect of
income on transportation cost could be negative or positive. Negative due to improved transportation technology and
positive because higher earnings raise the value of time. Likewise, we could imagine that richer cities within a given
country are better able to substitute structures for land when producing housing, so ∂lnβ/∂lny < 0.

11See, for example Glaeser and Gyourko (2018).
12These are OLS estimates. IV estimates for the U.S. and Brazil are similar but IV estimates for China and India

exhibit wide variance.
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1.3. Using the Model to Compare Cities in Developed and Developing Countries

As noted above, the characteristics of large cities, whose populations are similar as we will see

below, vary dramatically across countries. The purpose of this section is to take the same SUM

model that explains the ability of population to reflect differences among cities within a country

with high population mobility and determine if it can generate differences in cities of the same size

that are observed across countries. The stylized example discussed here is the contrast between the

typical city in a developed country, noted d, with cities in developing countries, noted g.

Decomposition of Total Population. It is useful to consider a simple decomposition of the

determinants of total population because that is the principle characteristic that cities in developed

and developing countries have in common. Total population is the product of land area, structure

density, and “crowding” or population per unit interior space:

N = L(H/L)(N/H) (21)

where N = urban household population, L = land area, H = interior space, so that (N/H) =

population per square foot of interior space or “crowding”.

More formally, in terms of equation 14 above, this is written in terms of an integral rather than

the product of averages:

N =

∫ k∗

0
θD(k)dk =

∫ k∗

0
θ(H/L)(k)/h(k)dk (22)

where θ = 2π = fraction of land for housing (if development is unrestricted and the city is a circle),

D(k) = population density function, (H/L)(k) = density of interior space per unit land at k, h(k)

= interior space consumed or used per household at k and k∗ is the city limit.

Differences Within vs. Across Countries. The stylized facts that we will establish later on show

that, holding population constant, land area (hence k∗), building heights ((H/L)(k)) and interior

space consumption per household (h(k)) all increase directly with GDP per capita so that all three

are larger in developed than developing cities. Because population varies directly with land area

and structure density and inversely with interior space consumption, Equation 21 guarantees that,

holding population constant, cities in high income countries are very unlike those in low income

countries. The result is that knowing population N is, by itself, not sufficient to characterize any

of the three major spatial city characteristics in equation 22 and similarly for other characteristics

of the city including total output. Given that population N varies directly with land area (hence

k∗) and building heights (H/L(k)), and inversely with interior space consumption per household

(h(k)), it must be that the latter is sufficiently lower in developing countries to compensate for the
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influence on population of the lower values of the former two variables.

Therefore, the claim, based on the discussion above, that within a country there is a regular

relation among land area L, building heights (H/L), and interior density (N/H) along with other

aspects of urban spatial structure, need not hold across countries. The intuitive reason for this

difference is that, within a country, the iso-utility condition keeps housing expenditure v constant

and the sharing of technology for producing housing and transportation services limits variation

in A, t and ps. Therefore, the principal effect of rising population is to increase land area through

rising k∗ and the analysis of the implications of the SUM above indicated that the elasticity of

population with respect to income depends on factors, specifically β and η, which should not vary

appreciably across cities of a same country.

In contrast, there is no free mobility across countries. Comparing developed and developing

cities, there are also obvious differences in key parameters. First, real incomes are an order of

magnitude higher in the cities of developed countries (yd ≫ yg), and thus total expenditure on

housing is much higher (vd ≫ vg). It follows that housing consumption per household is higher

hd > hg. Superior building technology means that Ad > Ag. One important element of building

technology is secure property rights and financial markets that facilitate construction at a high

structure/land ratio. Likewise, developed countries may be better able to substitute structure

inputs for land (βd < βg). Lastly, it might be that td < tg due to advanced transportation technology

in developed countries. However, one element of transportation cost is the opportunity cost of

time and, given that wages are an order of magnitude higher in developed cities, this inequality

is ambiguous. Similarly, differences in cost of structure inputs ps are not obvious.

The implications of differences in the parameters for city structure are evident in equations 5,

10, 11, and 13 above. First, equation 5 shows that the slope of the housing price gradient becomes

flatter as v rises and t decreases. From equations 10 and 11, housing structure density is increasing

in A and the slope of the density gradient is decreasing in v. Finally, equation 13 shows that the

slope of the population density function flattens as t decreases, β increases, and v increases. This

last result is important because, comparing developed or developing cities with equal population,

if the density function of the developed city is flatter, then the radius of the developed city is larger

and the central density of the developed city must be lower. This relation is shown in Figure 3,

which plots the population density functions of a developed city and a developing city of similar

sizes. Note that the area under the D(k)g graph appears larger than the area under the D(k)d

graph but the weight of land at each distance is proportional to the square of k.
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Results on Structure and Population Densities. While our results suggest that there may be

similarities in the elasticity of city size with respect to earnings, the model implies that, in other

respects, the cities are very different. Consider structure and population densities. Equation 10

reproduced here implies that structure density is determined by construction technology, the share

of housing in land, the price of structure inputs, and the price of housing space:

(H/L)(k) = ln (Aφ) + [(1− β)/β]ln r(k)− (1− β)/βln ps (23)

Considering central structure density at (H/L)(0). Equation 23 suggests that unless ps is

much lower or r(0) is much higher in developing cities, the positive relation between A and

development should produce much higher central structure densities in cities in developed

countries. However, the slope of the structure density gradient shown in equation 11 to be

d ln (H/L)/dk = −t(1−β)/(βv) is clearly flatter in higher income countries as housing expenditure

v, is higher by an order of magnitude. Figure 4 displays the relation between structure density

functions of cities with the same population size in developed and developing countries.13

The SUM also predicts that, holding population constant, central population density

differences between cities in developed and developing countries will be the opposite of structure

density. Recall from equation 13 reproduced here that:

lnD(k) = ln (Aφ) + (1/β)ln r(k)− ln v − (1− β)/βln ps (24)

While it is true that the positive association between building technology, A, and development

tends to raise central density, D(0), the fact that income and hence v is higher by an order

of magnitude produces a negative association between central density and development, again

unless structure prices are much lower or rents much higher in the developing city. While central

population densities are predicted to be lower, the slope of the population density gradient is

based on equation d lnD(k)/dk = −t/(βv) which, like the structure density function, will flatten

with the level of economic development due to the rise in v with income. The relation between

population density functions in cities in developed and developing countries with identical

population is depicted in Figure 3.

In conclusion, when comparing cities in developed and developing countries, the relation

between total population and other city characteristics is problematic because the ratio of labor

to land or labor to capital stock is far lower in developing cities. The density of population is

13It might also appear that the structure density gradient is flatter in cities in developed countries because t falls with
improved transportation technology. While this is true, transportation cost also includes the value of time which rises
with income. Therefore, the relation between t and economic development may be ambiguous.
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much higher but structure densities are lower and land area is much smaller.

However, despite these substantial differences in levels for cities in developed and developing

countries with the same population, this does not mean that the elasticities of land, structures, or

output, with respect to population must be different. As noted in equation 20, it is possible for the

elasticity of income with respect to population to be similar for cities in developed and developing

countries. This means that, the ratio of output, land area, or structure capital to population for two

cities in a developed country can be the same as the ratio in a developing country. Accordingly,

research that uses population ratios to reflect ratios of other city characteristics could possibly pool

observations from cities in developed and developing countries.

The same forces that produce differences in population density between cities in high and

low income countries also apply to employment density. Higher income countries have greater

structure density due to building technology differences but space per worker also increases with

income as firms substitute physical capital in the form of space when labor costs rise. The result

is the same combination of higher structure density near the city center but lower employment

density as space per worker expands faster than space per unit land. Just as was the case with

housing and population density, the amount and spatial pattern of non-housing investment is

very different in high and low income cities although total employment may be similar.

We now present our data and then use it to test the implications of the SUM presented above.

Specifically, it appears that the cities of developing countries are large in terms of population size

but not in other dimensions. This establishes that population is not a sufficient statistic to make

statements about cities across countries. Finally, we test if population is a sufficient statistic to

describe city differences within a country.

2. Data on the World’s Largest Agglomerations

One contribution of this study is to assemble various databases to document the characteristics of

cities across income levels, focusing on the year 2015, but also studying earlier years.

United Nations (2018). This database gives the population of each urban agglomeration of at

least 300,000 inhabitants every five years from 1950 to 2015 (N = 1,860). These agglomerations are

“commuting zones” including central business districts, suburban areas, and satellite towns.

Demographia (2005, 2017). These databases give the population and land area (sq km) of many

agglomerations of at least 500,000 inhabitants circa 2000 (N = 360) and most agglomerations of

at least 500,000 inhabitants circa 2016, which is used as a proxy for 2015 (N = 1,042). Note that

the data are imperfect for the year 2000 because many agglomerations in developing countries are
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omitted. In addition, little details is provided on how land areas were obtained. For the year 2016,

estimates come from censuses and satellite imagery, and are thus more reliable.

CTBUH (2018). The Council on Tall Buildings and Urban Habitat (CTBUH) maintains a publicly

available online database of all tall buildings in the world.14 For each building, there is a webpage

showing its characteristics. Research assistants extracted the needed data from each webpage. We

know the years construction was proposed and/or started and/or completed. Next, we know

architectural height and/or height at the tip and/or height of the lowest occupied floor and/or

height of the observatory and/or the number of floors. Web Appendix Section A describes in

details how we use these characteristics to impute consistent measures of completion times and

architectural heights for all buildings. Finally, we know their functions (“residential” or “office”).

According to CTBUH’s website, they do not use a consistent definition of tall buildings.

However, in the data, the mode of the Kernel distribution of heights is 80 meters (see Web

Appendix Figure A2). Given floors of about 4 meters, this corresponds to buildings of about

20 floors. As described in Web Appendix Section A, we believe that the database mostly captures

buildings above 80 meters, and restrict our analysis to 14,839 such buildings.

Finally, one may question the quality of this data. According to their website, the data has been

“collected by the Council for more than 40 years [...] The Council relies on its extensive member

network [of academics, land developers, architectural firms, builders, city administrations, and

banks] and the public to maintain” the database and “an Editorial Board from around the world

helps maintain” it. The data set appears reliable. We thus use it to construct an index of the stock

of tall buildings for each city, which we use as a proxy for the stocks of all buildings.

Main Sample. We focus our analysis on 1,010 agglomerations of at least 300,000 inhabitants in

2015 in United Nations (2018) and data on land area in Demographia (2017) (Web Appx. Fig. A3

shows their location). 405 of them have tall buildings. For other agglomerations, we assume that

they have almost no tall buildings, giving them half a building (40 m).

World Bank (2018). The World Development Indicators database of the World Bank provides

national per capita GDP (PPP and constant 2011 international $) for each country-year from 1990

to 2017. We then use per capita GDP growth rates from Maddison (2008) (in 1990 Geary-Khamis

dollars, which is equivalent to PPP and constant international $) to reconstruct per capita GDP

from 1950 to 1990. In order to avoid our measures of per capita GDP being contaminated by

14The full online database can be found here: http://www.skyscrapercenter.com/. As one example, here is the
webpage for the Burj Khalifa in Dubai: http://www.skyscrapercenter.com/building/burj-khalifa/3.
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fluctuations in factors like commodity prices, we use two-year moving averages.

Oxford Economics (2019). This database prepared for the World Bank includes per capita GDP

(constant 2012 million $) for 775 agglomerations annually from 2000 to 2017. According to their

methodology note, they used detailed national accounts data or estimates provided to them by

the administrations of these cities. When the data was unavailable, they used per capita GDP for

regions encompassing the agglomerations. Because no details are provided for each estimate, and

since estimates may have been spatially and/or temporally interpolated and/or extrapolated, we

believe that the quality of this data is not high and do not use it as our main source of income data.

NGDC (2015). As is now standard in the literature (Henderson et al., 2012), satellite night lights

data are used as a proxy for economic activity. Satellite images are provided by NGDC (2015), and

are available at a fine spatial resolution, annually from 1996-2011. Note that we use the radiance

calibrated version of this data, to avoid issues related to top-coding, especially for cities.15

The Global Rural-Urban Mapping Project, CIESIN (2017), then provides geocoded polygons

of urban extent boundaries circa 1995. Using GIS, we obtain the sum of satellite night lights in

each polygon from 1996 to 2011. We match the agglomerations in our sample to their respective

geocoded polygon. In addition, CIESIN (2017) reports the urban population of each polygon

in 1990 and 2000. According to their website, “for population counts, city population data was

collected from multiple sources. These include national censuses, the City Population database

(undated), and World Gazetteer (web site no longer exists).” More precisely, 31,361 urban

polygons have a non-zero population in their sample. Actually, given that the minimal population

in the sample is 1,000 for many countries, these urban polygons possibly attempt to capture most

cities of at least 1,000. In our analysis, we will focus on large agglomerations of at least 300,000

inhabitants. We will also perform analyzes including all cities above 1,000 inhabitants. However,

the urban character of villages of 1,000 to even 10,000 is problematic.

We now describe other data sets that we will use to assess the robustness of our main results.

UN-Habitat (1993). UN-Habitat (1993) was launched following UN-Habitat II in 1996. Key

indicators were collected in 237 cities circa 1993. Because cities may have different definitions

of these indicators, reliability is uncertain. The sample is also not representative of the world.

AUE (2016). This database features a global sample of 200 cities supposed to be representative of

the universe of agglomerations of 100,000 people or more in the world in 2010. Data for some

15Radiance calibrated data imply that night light intensity can go beyond the typical upper-bound of 63.
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variables is reported for 1990, 2000, and 2014 (which we use as a proxy for 2015). For other

variables, data are reported for two periods: “pre-1990” (which is used as a proxy for 1990) and

“1990-2015” (both 2000 and 2015). Note that the data were created based on census estimates and

satellite imagery. The quality of this data set appears to be relatively high.

European Commission (2018). This database reports for the years 1970, 1990, 2000 and 2015

estimates of land areas and populations for 11,836 cities of at least 50,000 inhabitants in 2015. To

obtain land areas, it uses satellite images and machine learning to identify building footprints

and distinguish urban agglomerations. The advantage of this data set is that a consistent

methodology is used across all cities and countries. However, a common algorithm for all cities

and countries may miss city- or country-specific idiosyncrasies in land use patterns that only a

more administrative country-specific treatment of census or satellite data would yield.

OECD (2018). This database reports per capita GDP (in nominal USD) for 281 agglomerations in

29 countries annually from 2000-2014. Only one developing country, Mexico, is included.

3. Components of City Population Sizes

3.1. City Population Size and Country Economic Development

Location of Urban giants. Large agglomerations are not exclusively concentrated in developed

regions such as East Asia, Western Europe or North America. There are many large

agglomerations in relatively poor regions, for example in Sub-Saharan Africa and South Asia.

Among the 100 top largest agglomerations in the world in 2018 (source: United Nations (2018)),

only 28 are located in high income countries, and 27 are located in low or lower-middle income

countries. Among the top 10 mega-cities, 4 of them are located in lower-middle income countries.

Income elasticity of city population size. Are urban giants concentrated in richer countries? This

is tested using the larger data set from United Nations (2018). As can be seen in Figure 5, for

1,773 agglomerations of more than 300,000 inhabitants in 2015, there is no relationship between

log population size and economic development proxied by log national per capita GDP (PPP).

Column (1) of row 1 in Table 3 shows the elasticity of log population size with respect to log per

capita GDP when controlling for log country population in 2015 since larger countries have larger

cities. In column (2), we weigh observations by their population size in 2015, thus giving more

weight to the giants. The elasticity is close to 0 and never significant.16 Likewise, if we focus on

the main sample (N = 1,010), elasticities remain close to 0 (see row 2).

16Note that standard errors are clustered at the country level in all regressions.
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Robustness. Column (1) of Table 4 replicates the baseline results. Low elasticities are also obtained

for 300K+ agglomerations when using other data sets and their own population estimates for the

year 2015, whether Demographia (2017) (N = 1,040; col. (2)), European Commission (2018) (1,549;

col. (3)) or AUE (2016) (162; col. (4)), and likewise if we use cities below 300K (not shown).17

Finally, elasticities remain unchanged if we drop each country one by one (not shown) or remove

the largest cities of each country, to study non-primate cities only (not shown).

National per capita incomes are used because consistent income or earnings data does not

exist for enough individual cities. In addition, at the world level, income differences are driven by

differences between countries rather than by differences across cities within countries. Indeed, with

free mobility and abstracting from amenities and worker skill heterogeneity, all cities in a country

should offer similar wages in local PPP terms (i.e., net of housing and other prices). National per

capita GDP is indeed strongly correlated with both city per capita GDP (source: Oxford Economics

(2019); 0.91-0.92) and night lights per capita (source: NGDC (2015); 0.78-0.81).18 The between

component, i.e. differences across countries, accounts for 91-93% and 67-68% of the variation

in city per capita GDP and night lights per capita, respectively. We nonetheless verify that low

elasticities are found when using city per capita GDP (col. (5) and (6)) or night lights per capita

(col. (7) and (8)), whether for the full sample (N = 746-745) or the main sample (694-693).

Has this lack of association between per capita income and city size been stable over time?

Evolution. We find that the elasticity strongly decreased over time. For the full sample of 1,773

agglomerations and controlling for total population, it was -0.00, 0.10***, 0.21***, 0.33*** and 0.50***

in 2015, 2000, 1990, 1975 and 1960, respectively (see col. (1) and (9)-(12) of row 1). Using weights,

it was 0.04, 0.20**, 0.31**, 0.40*** and 0.42*** (see row 2). Similar elasticities are found for the

1,010 agglomerations of the main sample (not shown). When plotting the relationship over time,

one can see that the change in the elasticity was driven by developing country cities becoming

larger given a certain income level (see Web Appx. Fig. 1(a)-1(b)). The large cities of developing

countries, especially their urban giants, thus outgrew the cities of developed countries over time.19

Other dimensions of city size. Table 2 shows that cities in developing countries – including low-

income countries, lower-middle income countries, and upper-middle income countries, according

to the World Bank in 2016 – are relatively large in terms of population size, but not in other

17The coefficient of correlation between log city population size in United Nations (2018) and log city population size
in each of the three data sets used here is 0.94-0.97, 0.93-0.83, and 0.72-0.90, respectively.

18Night lights per capita is the sum of night lights of the city (2011) divided by the population of the city (2010).
19The elasticity also decreased over time in the other data sets (not shown).
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dimensions such as land area, interior space (proxied by the sum of building heights), and GDP

(proxied by national GDP or total night lights). Row 1 of Panel A includes all agglomerations

for which data is available. Although cities in developing countries make up 74.2% of the

total population of the sample, they account for 50.3% of total land area, 34.4% of total interior

space, 42.1% of total GDP, and 23.7% of night lights. Since land area data is missing for many

agglomerations, these results could be driven by compositional biases. Row 2 shows these results

hold if we focus on 1,009 agglomerations for which we have data across all dimensions. Row

1 of Panel B shows that these patterns are, if anything, accentuated when reclassifying upper-

middle income countries as developed. Although cities in developing countries make up 29.7%

of population, they account for 15.7% of land area, 6.1% of interior space, 8.1% of GDP, and 4.3%

of night lights. These results are also not driven by compositional biases (see row 2 of Panel B).

What has enabled the urban giants in poor countries to grow so rapidly and reach the same

population sizes as the urban giants of rich countries? Differences among cities with comparable

populations can be decomposed into three components: land area, average building height, and

occupant density. We now investigate how these vary with per capita national and city incomes.

3.2. City Land Area and Country Economic Development

Income elasticity of city land area. Figure 6 shows for 1,010 large agglomerations a strong

positive relationship between log city land area (sq km) and log national per capita GDP (PPP).

When regressing the former on the latter, the coefficient is 0.52*** (R2 = 0.19), which we report

in column (1) of row 3 in Table 3. Therefore, the land area of urban agglomerations increases

by 52% when per capita income doubles. Alternatively, agglomerations in high-income countries

consume on average 6.0-6.8 times more land than cities in low-income countries. When weighting

observations by city population, the coefficient becomes 0.58*** (R2 = 0.17, col. (2)). The area-

income relationship is thus not different when focusing on the giants.

The results suggest that the entire urban systems of richer countries use more land than the

entire urban systems of poorer countries. If we control for log city population size, elasticities are

similar, at 0.50***-0.54*** (R2 = 0.67-0.79, col. (3)-(4)), which is not surprising since the elasticity

of population size with respect to income is close to 0. This implies that there is also much more

land available per capita in the cities of richer countries. As explained in the model, this must

come from higher incomes and better commuting technologies in richer countries. With higher

incomes, people consume more housing and thus more land. Also, higher incomes imply higher

capital-labor ratios, and thus more land per capita is needed to accommodate the extra capital.
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Better commuting technologies then magnify the effect of income on land consumption. Similarly,

land used for production is also larger in cities of higher income countries.

In the rest of the analysis, note that we privilege specifications where we do not control for

city population size, since our main goal is to explain why entire urban systems in developing

countries have become on average as populated as entire urban systems in developed countries.

Robustness. There could be classical measurement error in city land area. However, since

city land area is the dependent variable, this would only affect precision. Yet, if the quality

of the land area measurement is correlated with income, the elasticity is mis-estimated. For

example, if land area is under-estimated in developing (developed) country cities, the elasticity

will be over-estimated (under-estimated). We thus check how robust our results are when using

alternative data sets of city land areas, since the different data sets use different sources and

methodologies. Next, the availability of city land area estimates itself could be endogenous.

Finally, classical measurement error in per capita income causes a downward bias, whereas non-

classical measurement error in income could generate either an upward bias or a downward bias.

First, log land area in Demographia (2017) is strongly correlated with log land area in AUE

(2016) (0.91-0.91; N =140) and European Commission (2018) (0.78-0.87; N =1,007). Column (1)

of Table 5 then replicates the baseline results. The elasticity of land area with respect to income

remains close to 0.5 if we use AUE (2016) (col. (2)). If we residential built-up area or non-residential

built-up area instead of total land area, since these measures are available in AUE (2016), we

find very similar elasticities (not shown). Note that built-up areas account for 70% of total land

area, of which two thirds is “residential”. The fact that elasticities differ little between residential

and non-residential areas suggests, consistent with the discussion of the SUM above, that rich

country cities use more land for all purposes. Now, if we use European Commission (2018) data,

elasticities become smaller but only if we use total land area (col. (3)), not if we use built-up area

estimates (col. (4)).20 Elasticities also remain unchanged if we drop each country one by one,

except the U.S.. In that case, the elasticities are lower, at 0.36***-0.43*** (not shown). U.S. cities thus

disproportionately consume land given their income level. If we drop primate cities, elasticities

are, if anything, even higher, at 0.66***-0.71*** (N = 863, not shown).

City land area in Demographia (2017) is only available for 1,010 out of 1,773 agglomerations

of more than 300,000 inhabitants in 2015. If we regress a dummy equal to one for whether

20We believe that this has to do with the algorithm that they use, which appears to disproportionately under-estimate
urban open spaces in richer countries or over-estimate urban open spaces in poorer countries.
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land area is available on log national per capita GDP, we find negative significant coefficients

(0.015/0.026**; N = 1,773; not shown). Since the data set misses large agglomerations in developed

countries, we verify results hold if we use weights that makes the main sample of 1,010 cities

representative of the income distribution of the full sample of 1,773 cities (col. (5)).21

Finally, if we use other per capita income measures, we find similar elasticities for city per

capita GDP (source: Oxford Economics (2019); N = 694; col. (6)), but lower elasticities for night

lights per capita (0.31***-0.35***; source: NGDC (2015); N = 1,009; col. (7)).22

Evolution. The problem with Demographia (2005) is that it has only one-third of the cities in

Demographia (2017). Patterns over time become evident when we focus on a balanced sample of

232 cities that exists in both datasets. In that case, the elasticity decreases by 0.31-0.29 between 2000

and 2015 (not shown). Given elasticities of 0.52-0.58 in 2015, this would give elasticities of about

0.83-0.87 in 2000. However, this balanced sample may not be representative of the whole urban

world. If we use the more balanced data set from AUE (2016) (N = 162), the elasticities are 0.55***-

0.61*** in 2015 (col. (3)), 0.62***-0.65*** in 2000 (col. (8)), and 0.72***-0.75*** in (col. (9)), thus also

showing a reduction over time. However, if we use built-up area data from European Commission

(2018), elasticities are relatively similar in 2015, 2000, 1990 and 1975 (col. (5) and (10)-(12)). Thus,

the elasticity of land use with respect to income per capita either decreased or remained stable

over time. In other words, land expansion either became relatively more important or remained

as important for poorer countries.23 Indeed, when plotting the relationship between log land area

and log national per capita GDP in each year, one can see that the lower elasticities over time in

AUE (2016) are coming from cities in developing countries using relatively more land over time

(see Web Appx. Fig. 4(a)). Next, the stable elasticities in European Commission (2018) hide across-

the-board increases in city land areas (see Web Appx. Fig. 4(b)).24

3.3. City Building Heights and Country Economic Development

Income elasticity of building height. To obtain average height, we divide the sum of tall building

heights (m) by land area (sq km).25 We thus restrict our analysis to the main sample of 1,010

agglomerations. As shown in Figure 7, we obtain a strong positive relationship between log

21More precisely, the weights are constructed to reflect the respective population shares of high-income, upper-
middle income, lower-middle income and low income countries among the 1,773 agglomerations.

22Since the elasticity of night lights per capita with respect to national per capita GDP is 1.29*** once we control for log
city populations (N = 1,009; not shown), the implied elasticities with respect to national per capita GDP are 0.40-0.45.

23Similar patterns are obtained for residential and non-residential areas (not shown).
24Whether urban land expansion takes the form of compact development at the edge or scattered development not

at the edge – i.e., sprawl strictly defined – cannot be answered with our data.
25Using the mean of heights in our building database would be misleading for cities with few, but tall, buildings.
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average building height (m) and log national per capita GDP (PPP). When regressing the former

on the latter, the coefficient is 0.34*** (R2 = 0.06). When weighting observations by city population,

the coefficient becomes 0.71*** (R2 = 0.16). If we control for log city population size, elasticities

are similar, at 0.33*** and 0.68*** respectively (R2 = 0.16 and 0.35). Thus, average building heights

increase by about one third when per capita income doubles. The elasticity doubles when giving

more weight to the giants. Alternatively, cities in high-income countries have on average 11 times

taller tall buildings than cities low-income countries (3 times without weights).

Robustness. Column (1) of Table 6 replicates the baseline results. Our data comes from CTBUH

(2018) and captures tall buildings above 80 m (about 20 floors). Since our data could mismeasure

building stocks, we examine how the sum of heights in our data compares with other measures

from Emporis (2019), another global provider of building information.26 Note that Emporis (2019)

claims to capture all high-rise buildings, which they define as buildings above 35 m. They then

classify as skyscrapers buildings above 100 m. First, they list the 100 top cities in the world in terms

of number of skyscrapers. For these, the correlation with our own number of buildings above

100 m is 0.85 (0.86 with weights; N = 94). Next, for the same cities, they provide a Skyline Index

which gives more points to taller buildings but also includes high-rise buildings in the 35-100 m

range. The correlation between their number of skyscrapers and their Skyline index is 0.88 (0.86

with weights; N = 100). Thus, our measure of building stocks should be a good proxy for building

stocks extending to buildings as low as 35 m. Finally, we regress the Skyline Index on the number

of skyscrapers and then regress the residuals – which captures cities having 35-100 m buildings

instead of buildings above 100 m – on national per capita GDP. There is no effect, no matter

whether we use population weights or not (not shown). Thus, if we miss cities with buildings

between 35 and 100 m, that measurement error is not systemically correlated with income.

We know land area in 2016 for 1,040 cities from Demographia (2017). However, only 405 of

these have tall buildings in our data. So far, we assumed that building height in the remaining

635 cities is 40 m, realizing that the correct number could be above zero. The elasticities remain

similar if we drop cities without buildings (col. (2)) or give these cities one third (27 m) or two

thirds (53 m) of a building (col. (3)-(4)). Elasticities are unchanged if heights are not imputed

using the number of floors (col. (5)) or if we use raw architectural heights (not shown). Next, since

the website of CTBUH (2018) is in English or Mandarin, we verify results hold if we keep countries

where these are official languages (col. (6)). Lastly, taller buildings could be better reported than

26According to their website, they also rely on their extensive member network to gather information on buildings.
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smaller buildings, because there are fewer of them and they stand out more. Results hold if we

only use buildings above the 25th percentile height (100 m, col. (7)), median height (125 m, col. (8))

or mean height (135 m, col. (9)) Finally, results hold if we use weights that makes the main sample

of 1,010 cities representative of the income distribution of the full sample of 1,773 cities (col. (10)).

One may then wonder to what extent measurement error in building stocks could be correlated

with per capita income.27 One could imagine that more buildings are reported in richer countries,

because their real estate industry is more mature and CTBUH (2018) has more experts from these

countries. In that case, we over-estimate the elasticity. Conversely, we could imagine that poorer

countries have fewer tall buildings, making them easier to report.28 The elasticity is then under-

estimated, which is less of an issue for us. We verify that results hold if we drop countries in the

bottom or top 10% in income per capita (col. (11)-(12)). Alternatively, we can drop cities in the top

10% in terms of number of buildings (col. (13)), in case cities with more tall buildings have more

misreported buildings. Next, tall buildings could be reported more accurately in smaller cities,

since they stand out more there. However, large cities may have more people reporting buildings.

Since city size does not vary with income, this should not be an issue. Yet, we verify results hold

when we drop cities in the bottom or top top 10% of city size (col. (14)-(15)).29 Finally, elasticities

are unchanged if we drop each country one by one (not shown).

We find that 48% of buildings and 47% of the building stock are used for residential purposes.

These shares are 44% and 47% for offices.30 Next, the elasticity is similar if we use non-residential

buildings (0.23*** and 0.61***, not shown) or just office buildings (0.19*** and 0.59***, not shown).

For residential buildings, it is 0.03 without weights and 0.48*** with weights (not shown).31

Lastly, elasticities increase if we use city per capita GDP (col. (16)), decrease for lights (col. (17)).32

Evolution. Land area used to compute average building heights is observed for 2015 and comes

from Demographia (2017). If we focus on 232 cities that also exist in Demographia (2005), we

find that the elasticity increased by 0.19 (unweighted) and 0.25 (weighted) between 2000 and 2015

(not shown). Given elasticities of 0.34 and 0.71 in 2015, this gives elasticities of 0.15 and 0.46 circa

2000. If we use land areas from AUE (2016), we find that the unweighted elasticity increased

27Classical measurement error in the dependent variable, tall building heights, would only lower precision.
28For example, in our data, New York has 1,247 tall buildings but cities like Cairo or Rio have fewer than 50.
29Elasticities are mechanically lower when dropping the top cities since tall buildings are a feature of large cities.

Likewise, elasticities are lower, at 0.25*** and 0.51***, if we drop the primate cities (N = 863, not shown).
30Other functions are much more marginal: hotel (about 12% of buildings), retail (3%), and government (1%).
31We also give half a building (40 m) to cities without residential / non-residential / office buildings.
32Since the elasticity of night lights per capita with respect to national per capita GDP is 1.29*** once we control for

population (N = 1,009; not shown), the implied elasticities with respect to national per capita GDP are 0.14 and 0.39.
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from 0.25* in 1990 to 0.47*** in 2000 and 0.71*** in 2015 whereas the weighted elasticity increased

from 0.50*** to 0.62*** and 0.91*** (col. (18)-(20)). If we use land areas from European Commission

(2018), the unweighted elasticity increased from 0.05 in 1975 to 0.23** in 1990, 0.37*** in 2000 and

0.60*** in 2015 whereas the weighted elasticity increased from 0.44** to 0.60***, 0.74*** and 0.95***

(col. (21)-(24)). Although elasticity estimates differ slightly across the different data sets, patterns

are similar in all of them, with elasticities increasing by about 0.15-0.20 between 1975 and 1990,

0.15-0.20 between 1990 and 2000, and 0.20-0.30 between 2000 and 2015.

Finally, when plotting the relationship between log average building heights and log

national per capita GDP in each year, one can see in Web Appendix Figures 5(a)-5(b) that the

higher elasticities over time in AUE (2016) and European Commission (2018) are coming from

cities in developing countries having decreasing average building heights – since land area is

disproportionately increasing there, as discussed in Section 3.2. – and cities in developed countries

having increasingly taller buildings. If we focus on larger cities, the rising elasticities are mostly

due to taller buildings in richer countries (see Web Appx. Fig. 6(a)-6(b)). Similar patterns are

obtained if we use built-up areas instead of total land areas (not shown). Thus, cities in richer

countries, especially large ones, have disproportionately grown by building up.

3.4. City Interior Space and Country Economic Development

Income elasticity of interior space. Differences in overall amounts of physical structures are based

on the sum of differences in structure density and land area. Knowing the area-income and height-

income elasticities allows estimation of the elasticity of total interior space with respect to income.

When not weighting by population, this gives 0.52*** + 0.34*** = 0.86***. When weighting by

population, this gives 0.58*** + 0.71*** = 1.29***. We verify this by estimating the elasticity directly,

i.e. by regressing the log sum of building heights on log national per capita GDP (see row 5

of Table 3). Thus, interior space approximately doubles when per capita income doubles. The

elasticity is then 50% higher when more weight is given to larger cities, due to taller buildings

there. Alternatively, cities in high-income countries have on average 71 times more interior space

than cities low-income countries (18 times when not using weights).33

Robustness. We verify that these elasticities remain relatively similar if we implement the same

robustness checks as described above for the building heights and income data, since interior

space is constructed in our analysis using building heights only (not shown).

Evolution. Over time, the area-income elasticity decreased or remained the same whereas the

33Web Appendix Figure A8 shows the relationship between log total interior space and log national per capita GDP.
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height-income elasticity increased. The latter effect then dominated the former effect. Indeed,

while the interior space-income elasticity was 0.31*** in 1975, it was 0.50***, 0.65*** and 0.86*** in

1990, 2000 and 2015, respectively (see Col. (1)-(4) of row 1 in Table 7). The weighted elasticity then

increased from 0.79*** in 1975 to 0.95***, 1.08*** and 1.28*** in 1990, 2000 and 2015 (row 2). When

plotting the relationship over time, it is disproportionately driven by increases in interior space for

richer countries (not shown). Because these increases did not come from rising income elasticities

of land area, they can be entirely attributed to rich country cities disproportionately building up.

3.5. City Population Density and Country Economic Development

Income elasticity of population density. Given taller buildings in the cities of richer countries,

one would expect the cities of the developed world to be more densely populated. At the same

time, these cities are more likely to build out, which would reduce density. As shown in Figure 8,

for the 1,010 agglomerations of the main sample in 2015, there is a strong negative relationship

between log city population density (inh. per sq km) and log national per capita GDP (PPP).

When regressing log city density on log per capita GDP, the coefficient is -0.50*** (R2 = 0.34; N

= 1,010; col. (1) of row 6 in Table 3). When weighting observations by population, the coefficient

becomes -0.53*** (R2 = 0.39; N = 1,010; col. (2)). Alternatively, the agglomerations of high-income

countries are 5-6 times less dense than the ones of low-income countries. These negative density-

income elasticities contrast with the positive density-income elasticities that have been estimated

for groups of cities belonging to a same country in extensive literature on agglomeration effects.

Robustness. We verify that these elasticities remain relatively similar if we implement the same

robustness checks as described above for the population, land area and income data (not shown).

Evolution. Over time, the population-income elasticity decreased, because city population sizes

disproportionately increased in poorer countries, and the area-income elasticity decreased or

remained the same (land areas disproportionately increased in poorer countries in some data sets).

Therefore, density patterns are ambiguous. If we use land area from Demographia (2017), we find

that the density-income elasticity slightly increased over time, by about 0.14-0.16. Given elasticities

of -0.50/-0.53 in 2015, this would give elasticities of -0.34/-0.39 in 2000. If we use AUE (2016), the

elasticities remained similar over time, at -0.46***/-0.46*** in 1990 and -0.48***/-0.53*** in 2015. If we

use European Commission (2018), elasticities decreased over time, from -0.17/-0.23*** in 1975 to -

0.44***/-0.49*** in 2015. The data sets thus give different pictures of population density patterns.34

34Similar patterns are obtained if we use built-up areas instead of total land areas (not shown).
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3.6. City Occupant Density and Country Economic Development

Income elasticity of occupant density. Population density falls with income (elasticity around

-0.50/-0.53). This could be because city land areas increase relatively more than city heights with

income. However, elasticities for city heights are not that smaller, or even higher, than for land

areas (0.34 and 0.71 vs. 0.52 and 0.58). A major explanation, especially for larger cities, is that

occupant density, i.e. the density within housing and commercial units, is disproportionately

higher in the cities of poorer countries. In other words, the cities of poorer countries have less

interior space per sq km but also more people in their interior space, and thus are more crowded.

This hypothesis can be tested. There is limited data on space consumption across the world.

But we can use the height data from CTBUH (2018) and the population data from United Nations

(2018) to obtain for the same 1,010 cities the sum of building heights (m) per capita in 2015. As

before, the assumption is that cities without tall buildings have half a tall building (40 m).

Figure 9 shows a strong positive relationship between log city occupant density and log

national per capita GDP (PPP) in 2015. When regressing the former on the latter, the coefficient is

-0.84*** (R2 = 0.33; N = 1,010; see col. (1) of row 7 in Table 3). When using population weights, it

is -1.24*** (R2 = 0.39; see col. (2)). Occupant density thus more than halves when income doubles.

Alternatively, the giants of high-income countries have 60.8 times denser housing units than the

ones of low-income countries (16.2 times when not using weights).

Robustness. We verify that these elasticities remain relatively similar if we implement the same

robustness checks as described above for the population, building heights and income data (not

shown, but available upon request). UN-Habitat (1993) also provides for 181 cities in 1993 floor

area per person defined as “the median usable living space per person last year”. Although the

data set is from 25 years ago, this is the only data set with international data on floor area. Web

Appendix Figure A9 shows there is a strong relationship between floor area per person and log

per capita GDP (PPP). Residents of the agglomerations of high-income countries have about 29-30

sq m per capita vs. close to 7-8 sq m in the agglomerations of low-income countries. When using

the log of this alternative measure, the estimated elasticity is also high, at 0.47***-0.56*** (R2 =

0.56-0.50; not shown). To have as many observations as possible, we use all cities available in UN-

Habitat (1993) for this analysis. If we restrict the sample to 128 agglomerations of at least 300,000

inhabitants in 2015, we obtain similar elasticities, at 0.44*** and 0.56*** (not shown).35

35One issue with UN-Habitat (1993) is that it may overestimate living space in poorer countries, because the
“extensive surveys of the housing sector” that they rely on focus on the less crowded formal sector.
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Evolution. The population-income elasticity decreased over time whereas the height-income

elasticity increased over time. Logically, the occupant density-income elasticity should have

decreased over time, which is what we find. The unweighted elasticity decreased from 0.02 in

1975 to -0.25, -0.52*** and -0.84*** in 1990, 2000 and 2015, respectively (see Col. (5)-(8) of row

1 in Table 7). The weighted elasticity then decreased from -0.47** in 1975 to -0.68***, -0.91***

and -1.24*** in 1990, 2000 and 2015, respectively (row 2). When plotting the relationship over

time (Web Appx. Fig. 7(a)-7(b)), we find that these decreases were due to both occupant densities

increasing in poor country cities and occupant densities decreasing in rich country cities. Behind

these patterns, population increased in poor countries and heights increased in rich countries.

Summary. Table 3 summarizes the main elasticities found for each component of city population

size. In columns (1)-(2), where we do not control for city population size, the elasticities of land

area, building heights and occupant density are 0.52/0.58 (row 3), 0.34/0.71 (row 4) and -0.84/-

1.24 (row 7), respectively. As explained in Section 1.3., the sum of these elasticities should be close

to the city population size-income elasticities that were estimated, -0.00/0.04 (row 1) for the full

sample or 0.02/0.06 for the main sample (row 2). Row 8 shows that the sum of the three elasticities

is close to 0.00, so the estimated elasticities of city population size with respect to income and the

elasticity constructed from its individual components are almost the same (rows 9-10).

These results have several implications for today’s city population sizes: (i) The elasticity of

interior space with respect to income is close to 1 and can be decomposed into the elasticity of

land area with respect to income and the elasticity of building heights with respect to income.

Therefore, cities can grow their stock of space per capita by either building out or building

up; (ii) Since the relationship with income is positive for both land area and heights, cities in

richer countries use both margins to do so. Thus, we are not in a world where poorer countries

experience urban land expansion while cities in richer countries “skyscraperize”. Instead, cities

in richer countries both consume more land and “skyscraperize” while cities in poorer countries

are not expanding interior space per capita at the same rate and, relatively speaking, are packing

in more inhabitants in existing structures; (iii) When focusing on the giants, these patterns are

accentuated. In particular, the largest cities of richer countries disproportionately build up,

whereas the structures of the largest cities in poorer countries disproportionately densify.

Our results also have several implications for understanding the growth of cities over the past

few decades: (i) The lack of relationship between city population sizes and income is a more

recent phenomenon, and is due to the population of developing country cities growing fast. In
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particular, the population-income elasticity changed by about -0.2 between 1990 and 2015; (ii)

Cities in richer countries have built up more: The building heights-income elasticity changed by

about +0.4 between 1990 and 2015; (iii) If anything, this should made have rich country cities grow

more. However, interior space per person has grown to absorb the additional supply of housing

and commercial space. In contrast, the disproportionate increase in city population sizes in poorer

countries has been accommodated by both land expansion, and, to an even greater extent, by the

densification of existing structures. More precisely, the area-income elasticity and the occupant

density-income elasticity changed about -0.1 and -0.5 between 1990 and 2015, respectively.

Although the growth of cities in developing and developed countries may be understood using

the common framework of the SUM, their patterns of growth are like different species of the same

animal. More generally, our analysis shows that cities can reach similar population sizes but in

different ways, for example by having more space being provided – which should be associated

with urban economic development – or by densifying existing spaces – which should be associated

with urban pauperization –. We thus investigate in the next section how the relationship between

city population sizes and economic development varies within and across countries.

Why do cities in richer countries use more land and have taller buildings? While this is a

direct result of higher incomes and thus higher land values, one question is to what extent their

ability to build out and build up is permitted by better technologies and/or more permissive

regulations, and to what extent these technologies and regulations are themselves endogenous to

income. Now, since building heights disproportionately increased in rich countries for a given

income level, it may be that their building technologies improved over time. Next, since land

areas disproportionately increased in poor countries for a given income level, it must be that

their transportation technologies improved. However, this change was smaller than the change

in heights in rich countries, so urban technology must have on net improved relatively more in

richer countries. Consequently, and considering that interior space use and consumption are likely

to increase with income, it must be that the massive relative increase in population in poor country

cities must have come from rural earnings decreasing faster than city earnings.

4. City Economic Development and City Population Sizes

The issue with using national per capita GDP as a proxy for city economic development is

that there is, by construction, no variation across the cities of a same country. We thus cannot

study how the relationship between population and economic development varies depending on

whether the analysis is conducted across countries, as we did so far, or within countries.

32

©International Monetary Fund. Not for Redistribution



In this section, we focus our analysis on 31,361 urban polygons/agglomerations of at least

1,000 inhabitants in 223 countries in 2000 according to CIESIN (2017). We use 1,000 inhabitants

instead of 300,000 as in the previous section because we need to have enough cities for each

country. We will nonetheless show results hold when using 300,000 as a cut-off.

From NGDC (2015), we obtain for each of these cities the sum of (radiance calibrated) night

lights in 2000. Next, we examine if population captures the sum of night lights across cities, first

within countries, and then across countries. Note that, when using Theil decompositions, the

within component and the between component account for 60% and 40% (63% and 37% when

using population as weights) of the variation in night lights across agglomerations, respectively.

Thus, most variation in night lights across cities comes from differences within countries.

4.1. Relationship for Cities in the U.S. and India

We first focus on two countries with enough cities to achieve precise estimates, the U.S. and India

(5,034 and 2,733 in our sample, respectively), and study how the log sum of night lights correlates

with log population for the year 2000. As can be seen in Figure 10, there is a strong positive

relationship between the two measures for both countries. The slope is relatively similar for

both countries, at 1.04*** for the U.S. and 1.11*** for India. If anything, we expect larger cities

to offer higher wages, hence the positive slope. However, if larger cities have better housing

and commuting technologies or amenities, they can attract a larger population without having

to offer higher wages, which should lead to a flatter relationship.36 While these factors can vary

across countries, it appears they do not disproportionately vary across the whole urban spectrum

between the U.S. and India. Thus, Mumbai, Delhi and Kolkata may offer higher wages and access

to better technologies than other cities in India the same way New York, Los Angeles and Chicago

do in the U.S. Interestingly, the slope becomes flatter when using city populations as weights, thus

giving more weight to the giants. It is 0.92*** for the U.S. and 1.06*** for India. Alternatively, the

slopes are 0.87*** and 1.04*** if we restrict the analysis to agglomerations above 300,000 inhabitants

(right of the dashed vertical line in the figure; N = 85 and 107, respectively). Note that it is also

important to implement this test this because small cities appear to be missing in India.

The overall level of night lights for a given level of population is higher in the U.S. than in

India. For example, New York and Mumbai have similar population levels, but New York is much

brighter. Likewise, if we pool the two samples and add country fixed effects, we obtain a slope

of 1.06***, with a R-squared of 0.80 (N = 7,767, not shown). However, without fixed effects, both

36Returns-to-scale in the provision of luminosity would also flatten the relationship.
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the slope and the R-squared become much smaller, at 0.39*** and 0.13 respectively (not shown).

A significant share of the variation in night lights across cities thus comes from countries. The

coefficient of the U.S. fixed effect is then 3.74***, which implies that U.S. cities have 3.74 log points

more of night lights than India cities. This is a noticeable difference: The log sum of night lights is

equal to 7.9 for the average U.S. city in the sample, and 16.0 for New York.37

4.2. Relationship for the Whole World

The same analysis can be conducted for our full sample of cities. More precisely, we focus on 171

countries with at least 5 cities of 1,000 inhabitants or more (N = 28,259).

Urban Wage Premium for the World. If we pool all the samples and regress log night lights on

log population, the slope coefficient is 0.52***, with a R-squared of 0.18 (see Column (1) of Row 1

in Table 8). However, if we add country fixed effects, the coefficient becomes 1.11*** and the R-

squared increases to 0.83 (Col. (1) of Row 2). Country effects thus account for a disproportionate

share of the variation in night lights across cities. A coefficient of about 1.10 then suggests an

urban wage premium for the world of 10%.

There are several special challenges to estimating the urban wage premium when micro data

on workers is not available for use in estimating a Mincer equation. First, is the possibility, as is

certainly the case in higher income countries, for education levels, i.e. human capital per worker,

to rise with city size. When differences in human capital are an omitted variable, any positive

correlation with city size tends to bias the coefficient relating city size to earnings upward and

raise the implied urban wage premium. In the case of our estimates, which are based on night

lights (or GDP below) per capita, there is a further issue raised by the possibility that the share of

labor in output varies with city size. In this case, if the share of labor varies inversely with city

size, the estimate urban wage premium is also biased upward. Therefore, we anticipate that the

estimated elasticity of city size with respect to population may be biased upward. However, we

do not know how the size of any bias would vary with the level of income of the country.

We obtain somewhat similar results – a slope coefficient around 1.10 and much higher R-

squared when country fixed effects are included (see row 2 vs. row 1) – when using other data

sets. For these, we also restrict our analysis to countries with at least 5 observations. In column

(2), we use data for 1,590 cities above 300,000 inhabitants (for the year 2015) in United Nations

(2018). In column (3)-(4), we use data for 593 cities (2000 and 2015) in Oxford Economics (2019).

37When using population weights or cities above 300,000 inhabitants (N = 192), the slopes with fixed effects are
0.99*** and 0.95*** (R2 = 0.71 and 0.96) whereas the slopes without fixed effects are 1.10*** and 1.12*** (0.30 and 0.95).
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This data set is useful because city per capita GDP is available. In columns (5), we use data for

11,261 cities above 50,000 inhabitants (2015) in European Commission (2018). For this data set, we

use the night lights estimates they provide. Finally, in columns (6)-(7), we use data for 250 cities

(2003 and 2012) in OECD (2018). For this data set, city per capita GDP is also provided but Mexico

is the only developing country included.38 Overall, and with only one exception (col. (2) of row 2),

the urban wage premium for the world is close to, or above, 10%. Finally, the slope coefficients

might be better measured in countries with more city-observations. If we use as weights the

number of observations in the country, we also obtain similar coefficients and R2 (col. (8)).

Urban Wage Premium for Each Country. The slope of the log night lights-log population

relationship is estimated for each individual country. As can be seen in Figure 11, the estimated

slope coefficient is close to 1.10 for most countries.39 The slope coefficient is not correlated with

national per capita GDP. When regressing the former on the latter, we find a insignificant effect of

-0.00 (R2 = 0.00, col. (1) of row 3). The relationship varies little across income levels, which is an

impressive feature of urban systems. Note that these results are not driven by countries having

only a few cities. If we focus on countries with at least 10, 25 or 50 cities, the coefficient remains

small and insignificant, at -0.02 (N = 144; R2 = 0.01), -0.02 (N = 106; R2 = 0.02) and 0.01 (N = 68;

R2 = 0.00), respectively (not shown). Conversely, if we restrict the sample to cities above 300,000

inhabitants, the coefficient is unchanged, at -0.03 (N = 44; R2 = 0.01; not shown).

Next, if we use the alternative data sets or the number of city-year observations in each country

as weights, we still find that slope coefficients are not, or little, correlated with national per capita

income (see col. (2)-(8) of row 3). In addition, the R-squared are usually small.

Country Effects. If we plot the country effects (relative to the U.S.) against national per capita

GDP (PPP, constant 2011 international dollars) in 2000, we find a strong and significant negative

relationship (see Figure 12). The coefficient of log per capita GDP is 1.00*** (R2 = 0.68: N =

170; see col. (1) of row 4). If we restrict the sample to countries with at least 10, 25 or 50

cities, the coefficient remains positive and significant, at 1.01*** (N = 144; R2 = 0.68), 1.02*** (N

= 106; R2 = 0.74) and 1.08*** (N = 68; R2 =0.72), respectively (not shown). Conversely, if we restrict

the sample to cities of at least 300,000 inhabitants, the coefficient remains close to 1, at 0.95***

(N = 44; R2 = 0.67, not shown). The high R-squared suggests that population is a particularly

bad measure of urban economic development across countries. However, it is a good measure of

38The relatively high R-squared in row 1 for this data set is due to most countries in the sample having relatively
similar per capita income levels, making country effects not as relevant, and thus needed.

39It is significantly different from 1.11 for only about one third of the countries (not shown).
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urban development within countries.

Next, if we use the alternative data sets or the number of city-year observations in each country

as weights, level differences between countries remain strongly correlated with national per capita

income, as shown by the large point estimates and the high R-squared (see col. (2)-(8) of row 4).

Summary. Overall, urban systems behave relatively similarly across countries. The urban wage

premium – i.e. how city per capita income varies with city size within a same country – is not

that different from 10% for most countries. Coming back to the model section, and equation 20,

if the share of land in housing and the share of housing in income are both one third, the urban

wage premium is about 8%. Unfortunately, we do not know how these parameters vary between

developed countries and developing countries, but if they vary, they, and other forces not in the

model, must do so in a way that is neutral for the urban wage premium. The important remaining

fact is that rich country cities are much wealthier than poor country cities for a given city size, and

these level differences are almost entirely explained by the income levels of the countries. Thus,

across countries, it is not surprising that city size does not vary with city per capita income.

4.3. Conclusion Discussion

This paper began with the observation that although population is used as a measure of

urbanization, the urban giants of developing countries and the urban giants of developed

countries with the same populations have little in common beyond total population. Furthermore,

the historical relation between mega cities and GDP per capita that once held was shown to have

been displaced by a zero correlation between city size and output per capita. We show that behind

these patterns lay the facts that rich country cities disproportionately build “up” and build “out”

whereas poor country cities disproportionately build “in” with much greater population density.

Rich country cities have greater structure density, but this difference is dominated by relatively

greater crowding in poor country cities. As a consequence of these differences, population is a

sufficient statistic to characterize city differences among cities within the same country, but not

across countries.

Our results have several implications. First, cities in rich countries and poor countries

grow in very different ways, revealing a strong disconnect between urbanization and economic

development. Second, the SUM potentially explains differences in the relationship between city

population sizes and economic development across countries, which shows its relevance more

than 50 years after its creation. Finally, our results suggest caution in using differences in city

population as a measure of city size or urbanization in empirical or policy analyses.
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Table 1: RELATIVE SIZE OF SELECTED URBAN AGGLOMERATIONS, CIRCA 2015

(1) National
Per Capita

GDP ($, PPP)

(2) City
Population

(000s)

(3) City
GDP

(millions $)

(4) City Sum
of Night
Lights

(5) City
Land Area

(sq km)

(6) City
Avg. Tall
Building

Height (m)

(7) City Sum
of Tall

Building
Heights (km)

New York 52,354 18,648 1,489,896 5,077,941 11,875 13 154

Columns (2)-(7): Percentage Difference (%) Relative to New York City

Beijing 13,089 -1 -77 -81 -65 -83 -94

Sao Paulo 14,659 12 -71 -79 -74 -59 -89

Mexico 16,753 14 -81 -79 -80 -72 -94

Cairo 9,947 1 -94 -85 -84 -88 -98

Mumbai 5,759 4 -92 -95 -63 -76 -91

Dhaka 3,141 -6 -97 -99 -97 -90 -100

Notes: This table shows the percentage differences in population, measures of economic activity, and measures of land area and building
heights, between the agglomeration of New York City and six selected urban agglomerations of similar population sizes. National per
capita GDP (PPP and constant 2011 international $) comes from World Bank (2018). City population comes from United Nations (2018).
Estimates of city GDP (cst 2012 million $) comes from Oxford Economics (2019). The sum of radiance calibrated night lights comes
from NGDC (2015). City land area comes from Demographia (2017). Data on tall building heights comes from CTBUH (2018). Average
tall building height in column (6) comes from dividing the city sum of tall building heights by city land area.

Table 2: RELATIVE SIZE OF CITIES IN DEVELOPING COUNTRIES, CIRCA 2015

Dimension: Population Land Area Interior Space National
PCGDP

Night Lights

Panel A: % in Developing Country Cities, Including Upper-Middle Income Countries

1. Unbalanced Sample 74.2 50.3 34.4 42.1 23.7

Observations 1,773 1,010 1,773 1,773 1,765

2. Balanced One (Data for the 5 Dim.) 74.4 50.3 34.7 42.1 27.2

Observations 1,009 1,009 1,009 1,009 1,009

Panel B: % in Developing Country Cities, Excluding Upper-Middle Income Countries

1. Unbalanced Sample 29.7 15.7 6.1 8.1 4.3

Observations 1,773 1,010 1,773 1,773 1,765

2. Balanced One (Data for the 5 Dim.) 30.6 15.6 6.2 8.3 4.7

Observations 1,009 1,009 1,009 1,009 1,009

Notes: Panel A: This table shows the respective percentage contributions of urban agglomerations in developing countries (based on the
classification of the World Bank in 2016, so low-income countries, lower-middle income countries and upper-middle income countries)
to the total population (source: United Nations (2018)), total land area (sq km; source: Demographia (2017)), total interior space (proxied
by the sum of building heights (m); source: CTBUH (2018)), sum of national GDP (PPP and constant 2011 international $; source: World
Bank (2018)), and sum of night lights (source: NGDC (2015)) in the sample of urban agglomerations for which data is available. Balanced
one: Sample for which all 5 variables are available. Panel B: We show the same shares if we reclassify upper-middle income countries as
developed countries, thus only considering low-income countries and lower-middle income countries as developing countries.
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Table 3: SUMMARY OF ELASTICITIES AND DECOMPOSITION OF POPULATION, 2015

Elasticity of ... wrt National Per Capita GDP

(1) (2) (3) (4)

1. Population Size (Full Sample; N = 1,773) -0.00 0.04 -0.00 0.04

[0.02] [0.08] [0.02] [0.08]

2. Population Size (Main Sample; 1,010) 0.02 0.06 0.02 0.06

[0.03] [0.09] [0.03] [0.09]

3. Total Land Area (Main Sample; 1,010) 0.52*** 0.58*** 0.50*** 0.54***

[0.13] [0.12] [0.11] [0.12]

4. Avg. Build. Heights (Main Sample; 1,010) 0.34*** 0.71*** 0.33*** 0.68***

[0.06] [0.10] [0.06] [0.11]

5. Interior Space (Main Sample; 1,010) 0.86*** 1.28*** 0.83*** 1.22***

[0.15] [0.13] [0.12] [0.14]

6. Population Density (Main Sample; 1,010) -0.50*** -0.53*** -0.50*** -0.54***

[0.11] [0.12] [0.11] [0.12]

7. Occupant Density (Main Sample; 1,010) -0.84*** -1.24*** -0.83*** -1.22***

[0.13] [0.12] [0.12] [0.14]

8. Sum of Rows 3, 4 and 6 0.02 0.05 -0.00 -0.00

[0.03] [0.09] [0.00] [0.00]

9. Diff. btw Row 8 and Row 2 0.00 -0.00 -0.02 -0.06

[0.00] [0.00] [0.03] [0.09]

10. Diff. btw Row 8 and Row 1 0.02 0.01 0.00 -0.04

[0.02] [0.02] [0.02] [0.08]

City Population in Year t as Weights N Y N Y

Control for Log City Population in Year t N N Y Y

Notes: This table summarizes the main elasticities found for each component of city population size. The full sample consists of
1,773 urban agglomerations of at least 300,000 inhabitants in 2015 according to United Nations (2018). The main sample consists
of 1,010 urban agglomerations of at least 300,000 inhabitants in 2015 according to United Nations (2018) and for which land area is
available in Demographia (2017). We control for the log total population of the city’s country in rows 1-2. In columns (3)-(4), we
control for the log total population of the city in rows 3-7. Standard errors are clustered at the country level in all regressions.

Table 4: POPULATION-INCOME ELASTICITY, ROBUSTNESS CHECKS

(1) (2) (3) (4) (5) (6)

Check: 2015 Demographia GHS AUE City PCGDP City Lights PC

1. No Pop. Weights 0.00 0.00 0.01 0.08 0.15 -0.07

[0.02] [0.03] [0.05] [0.07] [0.10] [0.06]

2. Pop. Weights 0.04 0.00 0.01 0.09 0.18* -0.05

[0.08] [0.03] [0.04] [0.07] [0.09] [0.06]

Observations 1,773 1,040 1,549 162 746 745

(7) (8) (9) (10) (11) (12)

Check: City PCGDP City Lights PC 2000 1990 1975 1960

1. No Pop. Weights 0.15 -0.07 0.10*** 0.21*** 0.33*** 0.50***

[0.09] [0.06] [0.02] [0.03] [0.05] [0.08]

2. Pop. Weights 0.18* -0.04 0.20** 0.31** 0.40*** 0.42***

[0.09] [0.06] [0.10] [0.12] [0.12] [0.06]

Observations 694 693 1,765 1,764 1,763 1,760

Notes: This table shows that the income elasticity of city population size remains similar to the baseline results if we implement various
robustness checks described in the main text. In row 2, city population sizes in the same year are used as weights.
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Table 5: LAND AREA-INCOME ELASTICITY, ROBUSTNESS CHECKS

(1) (2) (3) (4) (5) (6)

Check: Baseline AUE GHS GHS Built (B) Repr. World City PCGDP

1. No Pop. Weights 0.52*** 0.55*** 0.27*** 0.51*** 0.52*** 0.49***

[0.13] [0.13] [0.07] [0.09] [0.13] [0.10]

2. Pop. Weights 0.58*** 0.61*** 0.32*** 0.53*** 0.58*** 0.59***

[0.12] [0.13] [0.10] [0.11] [0.12] [0.09]

Observations 1,010 162 1,749 1,749 1,010 694

(7) (8) (9) (10) (11) (12)

Check: City Lights PC AUE 2000 AUE 1990 GHSB 2000 GHSB 1990 GHSB 1975

1. No Pop. Weights 0.31*** 0.62*** 0.72*** 0.48*** 0.48*** 0.53***

[0.07] [0.11] [0.09] [0.07] [0.07] [0.07]

2. Pop. Weights 0.35*** 0.65*** 0.75*** 0.49*** 0.51*** 0.54***

[0.07] [0.12] [0.11] [0.10] [0.11] [0.12]

Observations 1,009 161 161 1,741 1,739 1,736

Notes: This table shows that the income elasticity of land area remains similar to the baseline results if we implement various robustness
checks described in the main text. In row 2, city population sizes in the same year are used as weights.

Table 6: BUILDING HEIGHTS-INCOME ELASTICITY, ROBUSTNESS CHECKS

(1) (2) (3) (4) (5) (6)

Check: Baseline No Build. Build 1/3 Build 2/3 No Floors Engl. Mand.

1. No Pop. Weights 0.34*** 0.34** 0.43*** 0.28*** 0.34*** 0.50***

[0.06] [0.16] [0.07] [0.06] [0.06] [0.10]

2. Pop. Weights 0.71*** 0.57*** 0.78*** 0.66*** 0.73*** 0.87***

[0.10] [0.17] [0.10] [0.10] [0.10] [0.20]

Observations 1,010 405 1,010 1,010 1,010 534

(7) (8) (9) (10) (11) (12)

Check: ≥ 25th Pctile ≥ Median ≥ Mean Repres. World No Bottom Inc. No Top Inc.

1. No Pop. Weights 0.30*** 0.25*** 0.23*** 0.35*** 0.29*** 0.49***

[0.06] [0.06] [0.06] [0.06] [0.08] [0.10]

2. Pop. Weights 0.67*** 0.63*** 0.61*** 0.71*** 0.73*** 0.82***

[0.10] [0.10] [0.10] [0.10] [0.10] [0.15]

Observations 1,010 1,010 1,010 1,010 908 922

(13) (14) (15) (16) (17) (18)

Check: No Top Stock No Bottom Pop.No Top Pop. City PCGDP City Lights PC AUE 2015

1. No Pop. Weights 0.24*** 0.39*** 0.27*** 0.52*** 0.11*** 0.71***

[0.06] [0.06] [0.07] [0.06] [0.04] [0.14]

2. Pop. Weights 0.49*** 0.73*** 0.46*** 0.75*** 0.25*** 0.91***

[0.10] [0.11] [0.08] [0.09] [0.07] [0.14]

Observations 969 908 909 694 1,009 140

(19) (20) (21) (22) (23) (24)

Check: AUE2000 AUE1990 GHS2015 GHS2000 GHS1990 GHS1975

1. No Pop. Weights 0.47*** 0.25* 0.60*** 0.37*** 0.23** 0.05

[0.10] [0.13] [0.09] [0.10] [0.11] [0.08]

2. Pop. Weights 0.62*** 0.50*** 0.95*** 0.74*** 0.60*** 0.44**

[0.14] [0.15] [0.10] [0.09] [0.15] [0.19]

Observations 139 139 1,007 1,001 989 942

Notes: This table shows that the income elasticity of building heights remains similar to the baseline results if we implement various
robustness checks described in the main text. In row 2, city population sizes in the same year are used as weights.
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Table 7: VOLUME- AND OCCUPANT DENSITY-INCOME ELASTICITY, EVOLUTION

(1)-(4): City Interior Space (5)-(8): City Occupant Density

(1) (2) (3) (4) (5) (6) (7) (8)

Year: 2015 2000 1990 1975 2015 2000 1990 1975

1. No Pop. Weights 0.86*** 0.65*** 0.50*** 0.31*** -0.84*** -0.52*** -0.25 0.02

[0.15] [0.15] [0.16] [0.12] [0.13] [0.14] [0.17] [0.13]

2. Pop. Weights 1.28*** 1.08*** 0.95*** 0.79*** -1.24*** -0.91*** -0.68*** -0.47**

[0.13] [0.15] [0.19] [0.21] [0.12] [0.16] [0.22] [0.23]

Observations 1,010 1,006 1,005 1,005 1,010 1,006 1,005 1,005

Notes: This table shows the respective evolutions of the city volume-income elasticity and the city occupant density-income elasticity
from 1975 to 2015. In row 2, city population sizes in the same year are used as weights.

Table 8: RELATION BETWEEN URBAN SIZE PREMIUM AND INCOME, ROBUSTNESS

Source Base U.N. Oxford Oxford GHS OECD OECD Base

Year t 2000 2015 2000 2015 2015 2003 2012 2000

Measure of City Income Lights Lights PCGDP PCGDP Lights PCGDP PCGDP Lights

(1) (2) (3) (4) (5) (6) (7) (8)

1. World Elasticity, No Country FE 0.52*** 0.95*** 0.85*** 1.09*** 1.35*** 1.17*** 1.14*** 0.14***

[0.01] [0.05] [0.06] [0.04] [0.02] 0.04] [0.03] [0.01]

Number of Cities 28,259 1,590 593 593 11,261 250 250 28,259

R-Squared 0.18 0.17 0.25 0.49 0.27 0.79 0.80 0.01

2. World Elasticity, Country FE 1.11*** 0.97*** 1.08*** 1.12*** 1.25*** 1.09*** 1.09*** 1.16***

[0.00] [0.03] [0.03] [0.02] [0.01] [0.02] [0.02] [0.01]

Number of Cities 28,259 1,590 593 593 11,261 250 250 28,259

R-Squared 0.83 0.72 0.94 0.93 0.80 0.96 0.95 0.78

3. Effect of LPCGDP on Slope Coef. -0.00 -0.13** -0.03 -0.09** -0.16*** -0.07 -0.11 -0.07*

[0.01] [0.06] [0.04] [0.04] [0.02] [0.06] [0.06] [0.04]

Number of Countries 171 54 32 32 134 13 13 171

R-Squared 0.00 0.12 0.01 0.15 0.33 0.07 0.11 0.22

4. Effect of LPCGDP on Level Diff. 1.00*** 1.34*** 1.34*** 1.38*** 1.42*** 1.03*** 1.05*** 0.97***

[0.06] [0.11] [0.05] [0.07] [0.07] [0.12] [0.12] [0.06]

Number of Countries 170 54 32 32 134 13 13 170

R-Squared 0.68 0.77 0.95 0.92 0.75 0.95 0.94 0.64

Min. City Pop. Size (000s) 1 300 222 392 50 422 439 1

Notes: Row 1 shows for various data sets the elasticity of the city sum of night lights or city GDP with respect to city population size.
Row 2 shows the same elasticity when country fixed effects are included in the regressions. Row 3 shows the effect of log national
per capita GDP (PPP and constant 2011 international $; source: World Bank (2018)) on the estimated slope coefficient for each country.
Row 4 shows the effect of national per capita GDP on the estimated level difference (relative to the United States, the omitted country
fixed effect). Col. (1): We use the baseline sample of cities available in CIESIN (2017). Col. (2): U.N. corresponds to the main sample of
agglomerations of at least 300,000 inhabitants in United Nations (2018). Col. (3)-(4): Oxford corresponds to the sample of cities available
in Oxford Economics (2019). Col. (5): GHS corresponds to the sample of cities available in European Commission (2018). Col. (6)-(7):
OECD corresponds to the sample of cities available in OECD (2018). Night lights in 2012 are used as a proxy for 2015 and come from
NGDC (2015) except in col. (5) where we use night lights estimates (2015) available in European Commission (2018). Col. (8): We use
as regression weights the total number of city-observations (≥ 5) in each country in the first-step regressions.
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Figure 1: RELATION AMONG GRADIENTS FOR HOUSE PRICE, LAND RENT,

STRUCTURE DENSITY AND POPULATION DENSITY

House price gradient: r(k)
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Figure 2: RAISING CITY RADIUS AND CITY RENTS BY RAISING CITY EARNINGS

House price gradient: r(k)
Land rent gradient: R(k)
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Figure 3: POPULATION DENSITY FUNCTIONS IN DEVELOPED AND DEVELOPING

CITIES

Population density function of developing city g
Population density function of developed city d
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Figure 4: STRUCTURE DENSITY FUNCTIONS IN DEVELOPED AND DEVELOPING CITIES

Structure density function of developing city g
Structure density function of developed city d
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Figure 5: ECONOMIC DEVELOPMENT AND CITY POPULATION SIZES, 2015

Notes: This figure shows for 1,773 urban agglomerations of more than 300,000 inhabitants in 2015 the relationship

between their log population size (inh.) in 2015 and log mean national per capita GDP (PPP and constant 2011

international $) for all available years in 2013-2017 (Y = 6.64*** - 0.00 X; R2 = 0.00; N = 1,773). Data on city population

sizes comes from United Nations (2018). Data on national per capita GDP comes from World Bank (2018).

Figure 6: ECONOMIC DEVELOPMENT AND CITY LAND AREAS, 2015

Notes: This figure shows for 1,010 urban agglomerations of more than 500,000 inhabitants in 2015 the relationship

between their log land area (sq km) in 2017 and log mean national per capita GDP (PPP and constant 2011 international

$) for all available years in 2013-2017 (Y = 0.62* + 0.52*** X; R2 = 0.19; N = 1,010). Data on city land areas comes from

Demographia (2017). Data on national per capita GDP comes from World Bank (2018).
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 Figure 7: ECONOMIC DEVELOPMENT AND CITY AVERAGE HEIGHTS, 2015

Notes: This figure shows for 1,010 urban agglomerations of more than 500,000 inhabitants the relationship between their

log average building height (m) in 2017 and log mean national per capita GDP (PPP and constant 2011 international $)

for all available years in 2013-2017 (Y = -3.87* + 0.34*** X; R2 = 0.06; N = 1,010). Average height is calculated as the sum

of tall building heights divided by land area. Data on city building heights comes from CTBUH (2018). Data on city

land area comes from Demographia (2017). Data on national per capita GDP comes from World Bank (2018).

Figure 8: ECONOMIC DEVELOPMENT AND CITY POPULATION DENSITIES, 2015

Notes: This figure shows for 1,010 urban agglomerations of more than 500,000 inhabitants the relationship between

their log population density (inh. per sq km) in 2017 and log mean national per capita GDP (PPP and constant 2011

international $) for all available years in 2013-2017 (Y = 6.24*** - 0.50*** X; R2 = 0.34; N = 1,010). Population density

is calculated as the number of residents divided by land area. Data on population comes from United Nations (2018).

Data on land area comes from Demographia (2017). Data on national per capita GDP comes from World Bank (2018).
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Figure 9: ECONOMIC DEVELOPMENT AND CITY OCCUPANT DENSITIES, 2015

Notes: This figure shows for 1,010 urban agglomerations of more than 500,000 inhabitants the relationship between log

city occupant densities and log mean national per capita GDP (PPP and constant 2011 international $) for all available

years in 2013-2017 (Y = 10.11*** - 0.84*** X; R2 = 0.29; N = 1,010). Occupant density is calculated as the number of city

residents divided by the sum of tall building heights in 2015. Data on city heights comes from CTBUH (2018). Data on

city population comes from United Nations (2018). Data on national per capita GDP comes from World Bank (2018).

Figure 10: CITY POPULATION AND CITY NIGHT LIGHTS, U.S. AND INDIA, CIRCA 2000

Notes: This figure shows for 5,034 urban agglomerations of more than 1,000 inhabitants in the United States and 2,733

urban agglomerations of more than 1,000 inhabitants in India the relationship between log population in 2000 and the

log sum of night lights in 2000 (for the U.S.: Y = -0.74*** + 1.04*** X; R2 = 0.80; N = 5,034; for India: Y = -5.21*** + 1.11***

X; R2 = 0.65; N = 2,733). The dashed vertical line separates urban agglomerations below vs. above 300,000 inhabitants.

Data on city population sizes comes from CIESIN (2017). Data on city night lights comes from NGDC (2015).
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Figure 11: ESTIMATED SLOPE COEFFICIENTS AND NATIONAL INCOMES, 2000

Notes: This figure shows for 171 countries with at least 5 urban agglomerations of 1,000 inhabitants or more the

relationship between the estimated slope coefficient – of the relationship between the log sum of night lights and log

city population size in 2000 – and log mean per capita GDP (PPP and constant 2011 international $) for all available

years in 1998-2002 (Y = 1.13*** - 0.00 X; R2 = 0.00; N = 171). Data on city populations comes from CIESIN (2017). Data

on city night lights comes from NGDC (2015). Data on national per capita GDP comes from World Bank (2018).

Figure 12: ESTIMATED LEVEL DIFFERENCES AND NATIONAL INCOMES, 2000

Notes: This figure shows for 170 countries with at least 5 urban agglomerations of 1,000 inhabitants or more the

relationship between the estimated level difference (relative to the United States, the omitted country fixed effect)

and log mean per capita GDP (PPP and constant 2011 international $) for all available years in 1998-2002 (Y = -6.67*** +

1.00*** X; R2 = 0.68; N = 170). Data on city population sizes comes from CIESIN (2017). Data on city night lights comes

from NGDC (2015). Data on national per capita GDP comes from World Bank (2018).
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WEB APPENDIX: NOT FOR PUBLICATION

A Details on the Building Heights Data

The original data set of CTBUH (2018) (accessed between January 2017 and January 2018) has

27,652 tall buildings. Once we keep “buildings” and “tower-buildings” that are completed or about

to be completed (architecturally or structurally topped out), we are left with 19,132 buildings.

Heights. According to the website of CTBUH (2018), they do not use a consistent definition of tall

buildings across all cities. We thus study how heights vary across the data set. To do so, we need

to obtain height for as many buildings as possible. For most buildings, we know height to tip of

the building (no matter the function of the highest element) and/or height to the architectural top

of the building (which may include spires but excludes antennaes) and/or height to the highest

occupied floor and/or height of the observatory of the building if there is one and/or the number

of floors above ground. Height to the highest occupied floor may be the best measure but it is

only available for 11.6% of buildings whereas architectural height is available for 84.7% of them,

height to the tip 60.6% of them, height to the observatory 1.1% of them, and the number of floors

98.2% of them. We thus use architectural height as our main measure. Since it is missing for

15.3% of buildings, we impute it when possible with data on height to the tip (correlation between

architectural height and this height = 0.99), then data on height to the highest occupied floor

(correlation = 0.98), then data on height to the observatory (correlation = 0.96). We then regress

our measure of height on the number of floors and find a coefficient of 3.8***, which indicates that a

floor corresponds to 4 meters for most buildings in the world (95% conf. interval = [3.77; 3.87]). We

can then impute heights for the remaining buildings. In the end, we obtain a consistent measure

of heights (m) for 99.6% of buildings. We will nonetheless verify results hold if we only use

architectural height or height not using information on number of floors.

As can be seen in Web Appendix Figure A2 which plots the Kernel distribution of building

heights in the data set, the mode of the distribution is 80 m. Since cities are likely to have more

buildings below 80 m than above 80 m, and since the distribution of buildings is relatively smooth

after 80 m, this suggests that the data set captures buildings above 80 m only. Thus, the data set is

unreliable for buildings below 80 m. We are then left with 14,839 buildings of more than 80 m.

Year of Construction. For most buildings, we know the year of completion and/or the year

construction started and/or the year construction was proposed. We use the year of completion

as our main measure, since it is available for 96.6% of buildings. For the remaining buildings,

we impute the year of completion using information on the year construction started (correlation

with the year of completion = 0.99), then the year construction was proposed (0.97). On average,

a building is completed 5.5 years after construction is proposed and 3.3 years after construction is

started. We then obtain the year of completion for 96.8% of buildings.

Function. The function(s) of the buildings is then available for 98.9% of buildings. Many buildings

have multiple functions. Among buildings for which we know the function, 49.9% of them

are used for residential purposes and 41.8% of them include offices. Other important functions

include hotels (11.8%) and retail (3.9%). Other functions are more marginal.
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Figure A1: EVOLUTION OF THE POPULATION-INCOME RELATIONSHIP, 1960-2015

(a) Unweighted (N = 1,773) (b) Using Population Weights (N = 1,773)

Notes: These figures show for selected years and using population weights or not the relationship between log city

population size and log national per capita GDP (PPP and constant 2011 international $). Data on city population sizes

comes from United Nations (2018). Data on national per capita GDP comes from World Bank (2018).

Figure A2: KERNEL DISTRIBUTION OF BUILDING HEIGHTS

Notes: This figure shows for 19,054 tall buildings in the CTBUH (2018) data set the Kernel distribution of heights (m).

As can be seen, the mode of the distribution is 80 m. Data on building heights comes from CTBUH (2018).
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Figure A3: 1,010 URBAN AGGLOMERATIONS OF THE MAIN SAMPLE

Notes: This figure shows the 1,010 urban agglomerations of the main sample. The 1,010 agglomerations are selected as

follows: (i) We first select 1,773 urban agglomerations of more than 300,000 inhabitants in 2015 (source: United Nations

(2018)). These are urban agglomerations, so they include both the central city and peripheral areas, and should thus

be thought as commuting zones; (ii) Among these 1,773 urban agglomerations, we know area for only 1,010 of them

(source: Demographia (2017), which focuses on urban agglomerations of more than 500,000 inhabitants circa 2017).

Figure A4: EVOLUTION OF THE LAND AREA-INCOME RELATIONSHIP, 1975-2015

(a) Source: AUE (2016) (b) Source: European Commission (2018)

Notes: This figure shows for selected years the relationship between log city land area and log national per capita GDP

(PPP and constant 2011 international $), using two different sources for city land areas: AUE (2016) and European

Commission (2018). Data on national per capita GDP comes from World Bank (2018).
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Figure A5: EVOLUTION OF THE HEIGHT-INCOME RELATIONSHIP, 1975-2015

(a) Source: Demographia (2017) (b) Source: European Commission (2018)

Notes: This figure shows for selected years the relationship between log city avg. building height and log national per
capita GDP (PPP and constant 2011 international $). City avg. building height is constructed as the sum of heights
(m) divided by land area (sq km). We use CTBUH (2018) for building heights and Demographia (2017) and European
Commission (2018) for land areas. Data on national per capita GDP comes from World Bank (2018).

Figure A6: EVOLUTION OF THE HEIGHT-INCOME RELATIONSHIP FOR LARGER CITIES

(a) Source: Demographia (2017) (b) Source: European Commission (2018)

Notes: This figure shows for selected years the relationship between log city avg. building height and log national per
cap. GDP (PPP and cst 2011 intl $). Populations in t are used as weights. Avg. building height is constructed as the sum
of heights (m) divided by land area (sq km). We use CTBUH (2018) for heights and Demographia (2017) and European
Commission (2018) for land areas. Data on national per capita GDP comes from World Bank (2018).

Figure A7: EVOLUTION OF THE OCCUPANT DENSITY-INCOME RELATIONSHIP

(a) Unweighted (b) Using City Pop. Size in t as Weights

Notes: This figure shows for selected years the relationship between log city occupant density and log national per
cap. GDP (PPP and cst 2011 intl $). City occupant density is constructed as city total population (000s inhabitants)
divided by the city sum of building heights (m). We use United Nations (2018) for city populations and CTBUH (2018)
for city building heights. Data on national per capita GDP comes from World Bank (2018).
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Figure A8: ECONOMIC DEVELOPMENT AND CITY VOLUMES, 2015

Notes: This figure shows for 1,010 urban agglomerations of more than 500,000 inhabitants the relationship between their

log volume (m) in 2015 and log mean national per capita GDP (PPP and constant 2011 international $) for all available

years in 2013-2017 (Y = -3.25*** + 0.86*** X; R2 = 0.19; N = 1,010). Volume is calculated as the sum of tall building

heights. Data on heights comes from CTBUH (2018). Data on national per capita GDP comes from World Bank (2018).

Figure A9: ECONOMIC DEVELOPMENT AND CITY FLOOR AREA PER PERSON, 1993

Notes: This figure shows for 181 urban agglomerations the relationship between floor area per person (sq m) in 1993

and log national per cap. GDP (PPP and cst 2011 intl $): Y = -39.82*** + 6.54*** X (N = 181; R2 = 0.56). Data on floor area

per person comes from UN-Habitat (1993). Data on per capita GDP comes from World Bank (2018).
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