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AbstractÐWe describe results obtained from a testbed used to investigate different codings for automatic face recognition. An

eigenface coding of shape-free faces using manually located landmarks was more effective than the corresponding coding of correctly

shaped faces. Configuration also proved an effective method of recognition, with rankings given to incorrect matches relatively

uncorrelated with those from shape-free faces. Both sets of information combine to improve significantly the performance of either

system. The addition of a system, which directly correlated the intensity values of shape-free images, also significantly increased

recognition, suggesting extra information was still available. The recognition advantage for shape-free faces reflected and depended

upon high-quality representation of the natural facial variation via a disjoint ensemble of shape-free faces; if the ensemble was

comprised of nonfaces, a shape-free disadvantage was induced. Manipulation within the shape-free coding to emphasize distinctive

features of the faces, by caricaturing, allowed further increases in performance; this effect was only noticeable when the independent

shape-free and configuration coding was used. Taken together, these results strongly support the suggestion that faces should be

considered as lying in a high-dimensional manifold, which is locally linearly approximated by these shapes and textures, possibly with a

separate system for local features. Principal Components Analysis is then seen as a convenient tool in this local approximation.

Index TermsÐAutomatic face recognition, eigenfaces, face shape, shape-free faces, caricaturing, face manifold.

æ

1 AIMS

IN machine-based face recognition, a gallery of faces is first
enrolled in the system and coded for subsequent

searching. A probe face is then obtained and compared
with each coded face in the gallery; recognition is noted
when a suitable match occurs. The challenge of such a
system is to perform recognition of the face despite
transformations: changes in angle of presentation and
lighting, common problems of machine vision; and changes
also of expression and age, which are more special to faces.
The need is, thus, to find appropriate codings for a face
which can be derived from (one or more) images of it and to
determine in what way, and how well, two such codings
shall match before the faces are declared the same.

A number of face recognition systems have become
available in the laboratory recently which propose solutions
to these problems and a natural concern has been the
overall performance of the system [32], [13], [18], [5], [25],
[19]. Accordingly, test sets have been constructed and a
recognition accuracy computed. In practice, published
recognition results are very good, but notoriously difficult
to compare [30]. Although the choice of coding and
matching strategies differ significantly between systems,

the greatest source of variability is probably the least
relevant: the selection of the particular collection of faces on
which to carry out tests and, in particular, the choice of
transformation between target and probe over which the
system is supposed to perform recognition. The FERET
database may eventually provide a standard, but is only
just becoming widely available and does not claim to test
recognition over a comprehensive set of transformations.

We seek to avoid some of these difficulties by fixing a
matching strategy and a testing regime, and concentrating
on the first of the problems just discussed to find effective
codes for recognition. Our concern is then no longer how
well we can recognize; indeed, for our purposes, a testing
regime with a low recognition rate is of most interest: Our
interest instead is in comparing different coding strategies,
both overall and with regard to specific psychological
manipulations.

2 PRINCIPAL COMPONENT ANALYSIS

Our main concern is to contrast simple image-based
codings with subspace codings, particularly eigenface
codings, derived from Principal Component Analysis
(PCA) and to investigate the effects of content-based
preprocessing on these methods. Eigenface codings were
used to demonstrate pattern completion in a net based
context [17 p. 124], for representing faces economically
[16], and explicitly for recognition [32]. Much subsequent
work has been based on eigenfaces, either directly or after
preprocessing [11], [31], [25], [19].

While undoubtedly successful in some circumstances,
the theoretical foundation for the use of eigenfaces is less
clear. Formally, PCA assumes that face images, usually
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normalized in some way, such as co-locating eyes to make
them comparable, are usefully considered as (raster)
vectors. A given set of such faces (called an ensemble here),
is then analyzed to find the ªbestº ordered basis for their
span. Some psychological theories of face recognition have
such a norm-based coding as their starting point [34]; we
now consider such theories, and the relationship between
an eigenface coding and human face recognition in more
detail.

Aligned, but not distorted, faces have been used [23] to
show that, since the accuracy of an eigenface code will
depend upon the similarity between the face and the
system's knowledge, it is possible to reproduce the well-
known ªother-race effectº (that members of a different race
are notoriously difficult to tell apart) by varying the
proportions of Japanese and Caucasian faces used to make
up the ensemble. Different eigenfaces correlate differen-
tially with the orthogonal human recognition dimensions
ªgeneral familiarityº and ªmemorabilityº [36] so that these
are, respectively, coded by early, global, features and late,
local features [24]. The perceived gender of similar images
may be manipulated by altering their ªweightº on the
second and third eigenfaces derived from an ensemble of
male and female faces [12], which were previously
identified as proving the best gender discrimination [22].

It is thus natural to seek a more principled justification
for the use of eigenface or, at least, subspace codings.
Considerations of the transformations over which recogni-
tion must be performed suggest that an appropriate model
may be a ªface manifoldº [10], and the usual normalization
is then seen as a local linear approximation, or chart, for this
manifold. Since a chart is a local diffeomorphism, and has
its range in a linear space, the average of two sufficiently
close normalized faces should also be a face. Clearly, then,
existing normalization techniques approximate this inter-
polation property; it can be argued that, since PCA itself is a
linear theory, this is precisely why they are useful.

Other more elaborate normalization techniques can be
identified which better approximate this interpolation
property and, so, are natural candidates for improved
charts. One such has recently become prominent as the way
in which a ªmorphº between two faces is performed [33].
Landmarks are located on each face to provide a description
of the face shape or configural information; there is a
natural way to average landmark positions and then to map
an average face texture onto the resulting shape. More

details of such a normalization before PCA are available
[11]; we describe it as a decomposition into a shape vector
or configuration and a shape-free, or texture, vector. The
main aim of our paper is to show that this more elaborate
coding can produce significantly better recognition results,
as well as advantages in explaining psychological phenom-
ena, as is seen in [15] which found that ,while memorability
was determined by the texture, general familiarity was
described by the face shape.

A very similar decomposition, also to assist PCA coding,
is given in [6], while [19] also presents results whose
motivation is very like our own. Configuration and texture
are available separately, coded using PCA, and it is shown
that the combination was more effective than either alone.
However, they choose different images of the same faces as
ensemble and, as such, address neither the more general
coding issue, essential for larger collections of images, nor
the problem of recognition from a single example. The use
of larger scale versions of certain face-features in addition to
the whole face as an input to a ªnormalº eigenface-based
system can also be considered as another way of approx-
imating the shape-free transformation.

3 METHODOLOGY

Our methodology starts with face images on which a
collection of landmarks have been located. Our tests are
with manual location; automatic location of landmarks is
possible, most notably using active shape models [7], [8], or
optic flow techniques [35], but, in this study, we avoid the
confusion which would arise if incorrectly located land-
marks were used in subsequent coding. For a given probe,
there is exactly one targetÐanother image of the probe
faceÐin the gallery and our interest is in when the probe
matches the target better than it matches all other members
of the gallery. The restriction to having only one target in
the gallery means we are not concerned with learning,
based on a set of training examples of the face, leading to a
sophisticated matching strategy; here, we concentrate
purely on coding issues.

3.1 Images

We work with images of size 128� 128, writing N for the
number of pixels in each image (so, initially, N � 16; 384)
and n for the number of images in the ensemble; in our case,
n � 50 or n � 100. A total of 14 images of each of 27 people,
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Fig. 1. Conditions 1, 4, 5, 8, and 10.



provide our test material. Each image was acquired under
fairly standardized conditions; we refer to them as Condi-
tion 1 through Condition 14. An initial set of 10 images of
each person was acquired on a single occasion. Those in
Condition 1 through Condition 4 were lit with good flat
controlled lighting, with acquisition times a few seconds
apart. Later conditions have increasingly severe lighting
variations as well. In Fig. 1, we indicate something of the
variability involved.

A subsequent set of four images of each of these 27 faces
was acquired between one and eight weeks afterwards: The
first such, Condition 11, in lighting conditions similar to
those obtaining for Condition 1; subsequent ones in
increasingly different conditions. Condition 14 is the only
image to be lit with a significant amount of natural and, so,
uncontrolled light. In Fig. 2, we show the same subject as in
Fig. 1 in each of these remaining conditions.

The 27 images in Condition 1 provide our gallery,
which remains fixed throughout. The decision to elim-
inate condition variation in the gallery was a deliberate
simplification. The remaining 13 images of each subject
provide our probes; this gives 27� 13 or 351 potential
probes, each with a corresponding target in the gallery.
Using each of the 27 faces as probes avoids the possibility
that faces in the gallery not used as targets may be hard
to recognize: We do this except when calculating
acceptance parameters, when a gallery with no target is
required; in that case, we used a gallery of 26 faces.
Rather than pool results over condition numbers, we keep
the conditions distinct, expecting essentially perfect
recognition from images in Conditions 2 and 3; those in
Condition 14 provide a more varied test.

An additional 50 images of individuals not in the gallery
were collected in Condition 1 alone and are used as
ensemble images. We describe their span as the ªface
subspaceº and use this when we consider subspace
methods. We choose a preferred basis of eigenfaces for this
subspace using PCA; this is described in more detail below.
The ensemble and the gallery and probes are mutually
exclusive, there is no training set per se, and recognition is
based on a single target. This approach differs from that
employed when eigenfaces are used for representation and
reconstruction is done using only a few of the early
eigenfaces. In our tests, we use all the eigenfaces, although,

in Section 6, we discuss the effect of ignoring some.
Examples of images in the ensemble are shown in Fig. 3.

Certain tests were performed using an ensemble of
nonfacial images. The corresponding eigenimages are,
essentially, psychophysically useful two-dimensional deri-
vative-of-Gaussian filters, which can be used for face-
recognition [1], [26]. A collection of 50 scenes (resembling
holiday snaps) were selected at random. Although the
images here are typically less detailed than the faces, [14]
found that the nature of the principal components was not
affected by the magnification of similar images, which
lacked a consistent scale. In contrast, PCA performed upon
images of text, which did have a consistent scale, produced
components which were magnification-dependent. Thus,
the particular selection of images is relatively arbitrary. A
selection of these images, masked to exclude those regions
not considered as part of the ªfaceº are shown in Fig. 4.

3.2 Processing

Each image is processed in the same way before being used
in the ensemble, gallery, or as a probe. A total of 34
landmarks, both true and deficient (e.g., the edge of the chin
ªhalf wayº between two true landmarks) were found
manually on each image, giving a triangulation, or face
model, part of which can be seen in Fig. 5. A (uniformly)
scaled Euclidean transformation of the image is derived to
minimize the error between the actual positions and the
corresponding points on a reference face, here, the average
of the ensemble faces, retaining the aspect ratio of the face.
Such images are called normalized; this removes the effect of
image variation associated with different camera locations
and orientations and is an alternative to positioning subjects
carefully before the images are acquired. The background
can then be identified and has no further role in the process;
the remaining pixel values are adjusted so the resulting
histogram is as flat as possible. Greater sensitivity is
attained when our data has a zero mean; to give this, the
average image is calculated and subtracted from each
member of the ensemble; in practice, the resulting face
subspace has dimension nÿ 1.

When a face image includes significant portions of the
hair, the available featural information can often give good
short term recognition results. However, the hair is not
invariant over periods of months during which a practical
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system must maintain useful recognition performance. To
avoid this problem, we concentrate on a smaller part of the
face whose appearance is more invariant; the available
landmark data enables such an image, containing ªinner
featuresº only, to be extracted, as in Fig. 5. In the example
given, the mask has been expanded slightly to display the
facial locations and connecting triangulation better; in the
results, the border coincides with the outer black line.
Essentially, all the results we report are for such images in
which the hair has been excluded. These images have N �
2; 557 pixels; in contrast, the full face image (excluding the
background and shoulders) has N � 5; 533.

In order to ensure comparability, our nonface images
were processed in the same way as the face-ensemble. There
is no useful way that these images can be normalized;
however, we randomly associated them with the 50
ensemble models. Since the point-locations are essentially
arbitrary, the resulting distortions caused by normalizing
these images do not change the relationship between the
images, but ensure that they are processed by the same
programs.

3.3 Coding and Matching

The resulting normalized ensemble is subjected to a PCA in
which eigenvalues and unit eigenvectors (or eigenfaces) of
the image cross-correlation matrix are obtained, thus
generating a basis for face space. The orthonormality of
the basis means it is simple to compute the component of
any (normalized) face in the direction of each eigenface and,
hence, obtain an �nÿ 1�-tuple or code. A coded probe
image is then compared with each gallery code to
determine the best match. One way to do this uses nearest
neighbor matching in Rnÿ1, the span of the ensemble, and a
natural choice of metric is the usual Euclidean distance.
Since our basis of Rnÿ1 is orthonormal in RN , this is just the
usual Euclidean metric in RN and such recognition is
effective template matching. Another natural choice of
metric on Rnÿ1 which utilizes the fact that our basis is
derived by PCA is the Mahalanobis distance, in which

d�x; y�2 �
X

�ÿ1
i �xi ÿ yi�2; �1�

where f�ig is the sequence of eigenvalues. This treats
variations along all axes as equally significant by weighting

components corresponding to smaller eigenvalues more
heavily and is arguably appropriate since our aim is
discrimination, rather than representation.

A more robust scheme balances false acceptances with
false rejections and allows the possibility of no match being
acceptable. One such, has a match score cj between each
image in the gallery and the probe image [18]. The best
match corresponds to the lowest score and interest centers
on the sequence fcjg, together, with the lowest value c0 and
the next lowest value c1. The mean � and standard
deviation � of the sequence obtained by removing the
target image from the gallery are calculated and used to
define two inequalities, c0 < c1 ÿ t1� and c0 < �ÿ t2�, for
fixed thresholds t1 and t2, which must both be met to accept
a match.

We adopt this, reporting a correct match as a clear hit if
the target passes this acceptance or separation criterion, and
just a hit otherwise, with a similar terminology for misses.
To set thresholds, the distances between the probes in
Condition 2 and a reduced gallery, from which the target
had been deleted, were found. The two parameters t1 and t2
were then calculated for each probe and the largest values
independently chosen as the fixed t1 and t2 to be used in
subsequent tests. This procedure ensured that, in the best
base condition, there was not a false recognition; although
particularly conservative, there are cases (e.g., the ªShape-
onlyº results in Table 1), where ªclear missesº do occur.

4 RECOGNITION

We group Conditions 2, 3, and 4 together, and describe this
as ªImmediateº recognition. Conditions 5, 6, and 7 form a
very similar set with a small change in lighting and position
and these are described as the ªVariantº group. More
fundamental lighting changes distinguish Conditions 8, 9,
and 10, and these are combined as the ªLightingº group.
Finally, the four conditions in which the images were
acquired after a delay are grouped together as the ªLaterº
set. To give a feel for the overall performance, a weighted
average is given as the ªOverallº value. Although more
images are available in the sets with low condition
numbers, greater interest attaches to the more difficult
conditions. Accordingly, while the ªLightingº group has a
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Fig. 3. Ensemble images before processing.



weight twice that of the ªImmediateº and ªVariantº groups,
ªLaterº has four times the weight.

Our main interest is in the comparison between (scaled)
Euclidean normalization and the more intrusive shape-free
form and the contrast between these two and a pure
correlation approach. However, we first discuss other
choices which make up our testing regime.

4.1 Subspace Coding?

The use of subspace coding and subsequent PCA means
that only the information in the relevant images, which is
preserved when projected onto the ªface subspaceº is used
during matching. In this projection, idiosyncratic informa-
tion, which could aid recognition, may be lost. An
appropriate baseline to asses the effects of such manipula-
tions should use the whole of the relevant image informa-
tion. To investigate this, a template-based recognition
procedure was implemented using the whole of the
(masked) face image, excluding the hair. Matching was
done on the basis of the best correlation between the probe
and gallery, both normalized by a (scaled) Euclidean
transformation derived from the landmarks. Pixel value
normalization, as throughout, is by histogram equalization.
This yields recognition performance given in the ªCorrela-
tionº section of Table 1. Clearly, the probe images are
sufficiently different from the gallery that recognition
occurs with a notably low frequency.

4.2 Ensemble Size

Initial testing was done using the ensemble of 50 faces
described above. It is not clear that an ensemble of 50
faces is adequate and we borrowed an idea [16], making
use of vertical symmetry, or rather the lack of it, in
individual faces, by creating 50 ªmirrorº faces whose
images and landmarks were created by reflection about
the vertical facial midline. The resulting improvement in
recognition shown in Table 2 was sufficiently noticeable
to suggest that this enlargement of the ensemble was
worthwhile and all subsequent tests are reported with
this ªdoubledº ensemble.

4.3 Mahalanobis or Euclidean Distance?

Our ªbaselineº recognition in the Euclidean part of Table 1
gives results against which subsequent performance is to be
compared. Each normalized image is projected onto the
subspace spanned by this enlarged ensemble and matching

simply uses the Euclidean metric in this subspace, and so is
effectively template matching. Pixel values were processed
by histogram equalization to give a crude correction for
lighting. Other pixel value normalization methods were
tested, including just setting the length of the image vector
to be constant (more useful when the average was not
subtracted, which can, in effect, negate this preprocessing,
but still with a total of 15 fewer hits than histogram
equalization), using an edge image, an H-transform [37],
and restricting to psychologically important spatial fre-
quencies [9]; these last three gave significantly worse
results.

Our first comparison is between the ªCorrelationº
section of Table 1 and the ªEuclideanº section in which
recognition uses only the projection of the faces onto the
face subspace. It is clear that a significant amount of
information has been lost by this process. In contrast, our
second comparison uses the same set of tests in which the
match is based on Mahalanobis distance (1), given in the
ªMahalanobisº section of Table 1. Scaling the metric in
accordance with the variance within the ensemble ensures
that matching is in terms of expected variations rather than
absolute values.

The use of the Mahalanobis distance is clearly more
effective than either straight matching, or projection using
Euclidean distance. This confirms that the eigenface
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Fig. 4. Masked nonface ensemble images before processing.

Fig. 5. Inner face showing the facial locations.



formulation, with its variance properties, is worthwhile
here even though we are not truncating the representation,
and that we are not simply using the orthogonality
properties of the basis. Note also that the advantage is least
evident in the ªImmediateº group, where naive template
matching is expected to perform well; but that, even in this
case, the effect on the separation of weighting the later
components is noticeable. The comparison is very similar
when the hair is included in the image area.

4.4 Shape-Free Normalization

The theoretical considerations in Section 2 suggest that the
decomposition of a face into a shape-free or texture vector
and the configuration or shape vector of landmark locations
may provide more effective coding for recognition. We
discuss first the case in which only the shape-free face is
used, deliberately ignoring configuration. Thus, our nor-
malization, rather than using a (scaled) Euclidean transfor-

mation, involves texture mapping each face to a standard
shape; in this case, the average shape of the set of ensemble
images. We used linear interpolation based on the model in
Fig. 5; although simpler than Bookstein's thin plate spline
warps [19], we found the procedure more effective. As
usual, the pixel values are then normalized by histogram
equalization. The results given in ªShape-freeº (part of
Table 1) are directly comparable to the ªMahalanobisº
section; only the method of the image normalization is
different.

The comparison suggests that shape-free normalization
appears to be slightly better than the (scaled) Euclidean
version, despite the fact that the shape information has been
deliberately ignored. It may be that we have implemented
the (scaled) Euclidean normalization inappropriately, but
other procedures, including one in which an appropriate
ellipse was generated to mask the exterior features of the
face and subsequently scaled to a fixed size, were tested and
proved less effective.

4.5 Shape-Free instance-Based Codes?

These tests show that there is a real advantage in
representing faces in terms of shape-free texture variation.
We are thus led to ask if it is also an advantage for instance-
based recognition, in which matches are performed on the
images themselves, avoiding the need for an ensemble. We
thus seek the analog for shape-free faces of ªCorrelationº
section of Table 1. Because our normalization methods use a
relatively small number of points, the quality of the match
between images may be underestimated; to compensate, the
correlation between a probe and each gallery image was
optimized separately by choosing the (scaled) Euclidean
transform (assumed already very close to the identity),
which maximized the image correlation. We found a
significant effect of the type of image-processing used;
there was a very noticeable advantage for preprocessing
using a Laplacian transformation, a 3� 3 matrix with a
positive center and zero corners, often thought of as a
sharpening operator.

The complete recognition rates for the shape-free
Laplacian images are given in the ªLaplacianº section of
Table 1, showing very good and constant recognition. It
should, however, be noted that this is very slow, even with
the relatively small gallery used here; optimizing the match
meant that each image was compared with each gallery
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TABLE 1
Match Percentages from 351 Trials

Scaled Euclidean normalized, matching by correlation of the images, or
with Euclidean or Mahalanobis distance in the face subspace. Shape-
free normalized, matching with Mahalanobis distance, or by full
correlation of Laplacian images. Shape only, matching with Mahalanobis
distance on the 20 eigenvectors with the largest variance. Hair has been
excluded from the matches.

TABLE 2
Hit percentages from 351 Trials

Scaled Euclidean normalized, matching with Mahalanobis distance. Hair
has been excluded from the match. Comparison between an ensemble
with 50 faces, the first 50 eigenfaces from the ªdoubledº ensemble of
100 images (50 faces and their mirrors), and the full ªdoubledº
ensemble.



member 50 times. In contrast, the Laplacian preprocessing
is not useful when first projecting onto the face subspace;
the shape-free transformation yields a correct hit-rate
overall of 26.7 percent.

These results again show the advantage of using a
shape-free representation; in this case, it ensures that all
sections of the Laplacian-processed images can be aligned
at once. In contrast, when the images retain their natural
shape, different sections of the probe face compete to
match corresponding sections of the gallery images and
the effect on the ratio between the distances to the target
and distractors is reduced. However, this ªshape-free
advantageº is dependent on appropriate preprocessing to
allow the matching; indeed, the effect is reversed when
histogram equalization, our ªstandardº method is used
instead. Table 3 shows these differential effects of
optimizing the correlations when subjected to Laplacian
and histogram equalization transformations, both for
shape-free images and those retaining their natural shape.

We suggest below that the shape-free advantage for PCA
appears to reflect better representation, rather than superior
matching; thus, we would not expect it to remain in a
matching task. Certainly, the shape-free manipulation
removes information; the emergence of a shape-free
matching advantage following a Laplacian preprocessing
has a different basis and serves to emphasize again that
notably different operations are occurring in PCA and in
correlation.

4.6 Shape Data

Since the shape-free normalization discards information on
the shape of the face, recognition may be enhanced by
independent consideration of the shape, performing a PCA
on the landmark locations. This was done as already
described, first applying a (scaled) Euclidean transforma-
tion to remove accidental position effects and then, if
necessary, removing the points relating to the hair. The
shapes of the ensemble images then provided suitable
principal components (or eigenshapes, we reserve ªeigen-
faceº for texture components) as descriptors.

There are a maximum of 46 degrees of freedom in the
shape data derived from the 34 landmarks, as some are at
fixed angles to an axis defined by the eyes. However, it is to
be expected that these data are highly correlated. This was
born out during the PCA, when the eigenvalues became
small after the first 15 or 20 eigenshapes had been derived.
The number of principal components used to code the
shape vector was thus varied and the associated hit rates
are shown in Fig. 6 for the doubled ensemble with and
without hair. These show that, in both cases, recognition
peaks when 20 components are included in the analysis; the
with-hair images are better than the no-hair images with
more than 20 components. The decline in recognition
performance when more components are used reflects the
undue influence of low-variance noise components on the
Mahalanobis distance.

The summary statistics for the doubled ensemble with 20
components used to code the shape are shown in the
ªShape onlyº section of Table 1. Some of the recognition
may be a result of variation in camera optics, which were
unfortunately not controlled between subjects, but the
relatively good ªLaterº performance argues against this.
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TABLE 3
Recognition by Correlation of Laplacian-Transformed and Histogram-Equalized Images.

Hit rates for Euclidean-normalized and shape-free images, with and without correlation-optimization. Recognition with different standardization
methods for ensemble and gallery and probes: hit rates for Euclidean-normalized and shape-free images. Using an ensemble of faces or a nonface
ensemble.

Fig. 6. Variation in correct classification from shape with available
principal components.



4.7 Shape and Texture

Coding using shape-free faces and coding using just the
face shape each give reasonable recognition. If these two
measures are relatively independent, an appropriate com-
bination may be more effective than either. This was
investigated by applying PCA separately to the shape and
shape-free images, using the 20 most variable shape
components but all the texture eigenfaces derived from
histogram-equalized images. Independence was assessed
by measuring correlations of the ranks of the distances
between each probe and the other images in the gallery (this
helped to avoid outliers effects). The distances were pooled
across the different probes, to give a single set of distances
for each lighting condition. The average Spearman rank
correlations for the four groups of conditions ranged from
0:10320 (for ªLightingº) to 0:2049 (for ªImmediateº). These
differ little from the Pearson correlations, which include the
magnitude of differences as well as the order. This suggests
that shape and texture describe dissimilar properties; the
positive correlation may reflect a tendency for faces to be
extreme in both measures. Such a tendency may be an
artifact; slightly inaccurate location of some landmarks,
would produce distinctive, badly coded, faces on both
shape (the shape would be unusual) and texture (from bad
normalization).

The shape and texture distances for each probe were
combined using a root mean square, having first rescaled
the individual distances so the sum of each set was unity.
The results shown in Table 4, Shape-and-Texture are thus
comparable with our (Euclidean) baseline in Table 1, but
combine locally linearized shape with (shape-free) texture
information.

Obviously, the combination of incompatible types of
information is arbitrary. Three other methods were used;

combining at the level of eigenface spectra so that a single
distance was derived on the basis of a vector of 119 values,
multiplying the pairs of distances, and excluding the worse
half of the shape matches before matching on texture; each
gave slightly worse performance. The number and range of
texture-eigenfaces included in the coding was also varied,
but this showed no clear pattern; variations in hit-rates were
1-2 percent.

4.8 Shape, Texture and Shape-Free Correlation

We conclude the section with a final result in which all
three matching methods, shape, texture, and shape-free
correlation, are combined. Thus, we recognize by combin-
ing (again using a root mean square) the evidence which led
to the ªShape-free,º ªShape-only,º and ªLaplacianº sections
of Table 1. We work with images with the hair portion
removed and combine PCA-based representations derived
separately from shape and shape-free texture, each matched
using Mahalanobis with an optimized correlation between
shape-free images preprocessed with a Laplacian filter. The
results in Table 4 suggest there remains relevant informa-
tion which we have been unable to code using PCA
techniques; but we again emphasize that the optimized
correlation takes impractically long and, unlike PCA-based
methods, does not scale well for larger gallery sizes.

5 REPRESENTATIONAL ISSUES

5.1 Matching or Representing?

We now present comparative recognition tests in which the
shape-free advantage, seen in Table 1, is probed a little more
deeply. For example, our argument for coding faces in
terms of naturally occurring facial variation by using an
ensemble of faces was based on an implied psychological
model suggesting that coding occurs after the faces have
been recognized as such. Thus, we would hope only to get
an advantage for shape-free faces when they are coded in
terms of faces. This was addressed by coding also in terms
of the nonface ensemble described in Section 3. Such a
vocabulary has been previously considered [1], showing
that the Principal Components of natural images approx-
imate tuning curves in early vision, while showing that
such tuning curves can be used quite effectively for face
recognition [26], even without correction for facial shape.
The nonface ensemble was processed in exactly the same
way as the face ensemble; thus, any differences in coding
effectiveness should arise because of the content of the
ensemble, rather than for more trivial image-based reasons.

A related question is whether the shape-free advantage
simply reflects superior matching of distorted images,
rather than superior coding using an apposite vocabulary.
These are confounded since, in Section 4, coding and
normalization were performed together. To investigate
further, coding and normalization procedures were con-
trasted by separating the processing of the ensemble from
that of the probe and gallery images. Thus, in addition to
tests comparing shape-free normalization with (scaled)
Euclidean normalization of all the images involved, we
also combine a shape-free normalization of the ensemble
with a (scaled) Euclidean normalization of the gallery and
probes and vice-versa. The results for this set of four tests
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TABLE 4
Match Percentages from 351 Trials

Combined shape and texture measures, matching with Mahalanobis
distance. Shape and texture alone, with the images caricatured to 156
percent of their original value and veridical images combined with
Laplacian preprocessed optimized correlation. Hair has been excluded
from the match.



are shown in Table 3, where they are compared with the
results from the same set of four tests based on a nonface
ensemble.

It is clear that, for the ensemble of faces, the determining
factor is the ensemble standardization method, with
improved recognition following the use of a shape-free
ensemble for coding. In contrast, as would be expected, the
nonface ensemble only shows an effect of the probe
standardization method with a notable advantage for
(scaled) Euclidean normalization. In both cases, there is
evidence of an interaction between the two factors,
reflecting slight differences in the pixel gray-level inter-
polation algorithms for transforming the images.

The dependence on the method used to standardize the
ensemble in these results, suggests that the advantage for
shape-free-faces reflects superior representation of the
faces. The very different pattern seen when nonfaces are
used as a vocabulary suggest that these latter recognition
results should be thought of as picture-based, rather than
face-based.

5.2 Caricaturing

It thus appears clear that there is a significant advantage in
terms of overall recognition rates when the faces are
represented in term of other faces. It is also worth
considering whether it will respond to manipulations which
alter human performance. One such uses the technique of
caricaturing. We code face shape as a set of position vectors,
each of which is the displacement of a landmark from the
location of the corresponding landmark in the average face.
Scaling the set of displacements uniformly by an amount k
gives a caricatured shape, with k � 100 percent represent-
ing the veridical; a caricatured face is then created by
texture mapping the face image to this shape. When shown
to humans, familiar faces are recognized better with modest
caricatures for line-drawings [27], [29], [28] and, also,
warped gray-scale images [3], [2]. In both cases, recognition
is better for caricatures of about 150 percent if a naming or
identification paradigm is used. Such a paradigm is
plausibly similar to the one here. Image texture can be
caricatured similarly by displacing the gray levels in a
shape-free face away from the mean gray-level for that pixel
and yields better human recognition for 140 percent,
caricatures [20]. An example in which both the shape and
texture of the image have been caricatured is shown in Fig 7.

Certain techniques automatically extract caricatures;
modest caricatures are extracted in a Radial Basis Function
network operating on feature-distances, [4]. Typically the
representations were about 110 percent caricatures, as RBFs

extract the most distinctive set of features. However, it is

not clear that this is the most effective caricature for

recognition; we now use the control given by our explicit

veridical representation to investigate this further.
Our first tests explore the existence of a caricature effect

within our machine-based paradigm. Each probe was

preprocessed as before to remove lighting effects; the shape

was then caricatured away from the shape of the ensemble

mean and the texture caricatured away from the texture

mean. The results, shown in Table 4, give a strong caricature

effect peaking at around 150 percent; the proportion of

confident hits is also increased.
Following [21], we conjecture that this effect may simply

be a consequence of our naive nearest-neighbor matching

strategy and that caricaturing, in moving the representation

of the probe away from the position of the mean, is more

likely to move into, rather than out of, the region within

which it will be correctly recognized. This effect is shown

geometrically in Fig. 8 and holds under the reasonable

assumption that the distribution of faces in the gallery is

peaked about the mean.
Our second tests on caricaturing seek to mimic more

closely the conditions under which the human caricature

effect is observed. Thus, the probe itself, rather than a

preprocessed version, is caricatured; and the caricature

center, from which the image is displaced, is taken to be the

mean of an ensemble disjoint from that used for subsequent

coding and is similarly not preprocessed. This distinction is

made since, for humans, we reject the assumption of a

unique absolute ªaverageº face and, thus, use different

versions for the processes of caricaturing and coding. And,

avoiding the preprocessing stage ensures that a 100 percent

caricature is precisely the veridical, as is the case with

human studies. We repeat the tests that led to Table 1, based

on a (scaled) Euclidean normalization, and to Table 4, in

which shape and shape-free texture are combined, using

these caricatured probes. The comparison between this and

the combined shape and shape-free texture case is shown in

Fig. 9 for confident recognition; the overall hit-rate shows a

similar, but rather less extreme, pattern. Only the shape and

texture case shows a significant caricature effect, as

expected if this codes facial, rather than image, variation.
Note that in passing to a more realistic comparison with

the human results on the caricature effect, we have reduced

the absolute recognition rate, although the effect remained.
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Fig. 7. Effects of caricaturing an image at 41, 64, 100, 156, and 244 percent.



6 CONCLUSIONS

This paper has explored the utility of a form of subspace
coding which involves significant content-based preproces-
sing, dependent on the identification of the objects to be
represented as belonging to a particular class. Thus, the
subspace is not spanned by real images, but rather by
distorted versions (shape-free faces) chosen for their
expressive power in terms of intraclass discrimination.

This coding was derived from abstract mathematical
principles and, in particular, a consideration of the
appropriate structures to express the invariances needed
for recognition purposes. This led to a manifold-based
model of ªface spaceº in which configural and textural
information are separated. Although of interest theoreti-
cally, we have discussed it here purely in terms of
effectiveness, comparing the performance on a fixed set of
recognition tests with other codings.

During testing, we have used many images of each
individual, but each separate test involves a cue, a single
target, and a gallery containing a single image of each other
face. In this simple form, appropriate perhaps for mugshot
retrieval, there is no scope for training nor for sophisticated
matching strategies based on learning, which ensures we
concentrate solely on the effects of our coding methods.
There is also no overlap between the ensemble and any of
the images used for testing. Such an overlap would result in
a perfect (to within machine accuracy) description of the
corresponding image. More generally, we have avoided
using the same faces in the ensemble as in our testing, even
though this may be more appropriate if interested in, say,
verification of a cue as being from a small fixed population;
again, our choice allows concentration on the coding
effectiveness with an ªabstractº face vocabulary.

Our main result, that the shape-free transformation gives
improved coding for recognition, is valid in this context, but
a further improvement comes from adopting a preferred
basis of shape-free eigenfaces for the face subspace, namely,
that obtained by using PCA. The traditional advantage of
PCA, allowing a maximally expressive truncated represen-
tation, only holds for images in the ensemble and this is of
no direct concern here. However, the variances associated
with eigenfaces allow the use of Mahalanobis distance in
matching, which does give a worthwhile improvement in
recognition rate.

Overall, the move from matching images normalized
with a (scaled) Euclidean transformation to the combined
configuration and texture images produces a three-fold
reduction in misses without adding extra information.
Rather, the configural information, which appears to
overshadow the texture in the (scaled) Euclidean normal-
ized images by requiring that facial features be approxi-
mated by a combination of different features from the
different eigenfaces, has been treated separately so that it
can have a positive effect. The corresponding number of
clear hits has increased, but not to the same degree.
Caricaturing the images can improve this by distorting
them to emphasize their already atypical aspects. This
may not change the ordering of matches, but it does
increase the separation; thus, these two changes produce
complementary improvements.

The clear advantage for Mahalanobis distance over
Euclidean distance, consistent across conditions, provides
evidence that PCA is a more appropriate method of coding
faces than simply using raw images; and that something
more sophisticated than simple template matching is
occurring. Since the Mahalanobis distance aims to pay
equal attention to all components, we expect no particular
band of eigenfaces to best code the images; once variability
is taken into account, the eigenfaces should all have the
same importance. Within reasonable limits, this was found;
for this reason, we have used all the eigenfaces in the tests
described here.

Notably, this advantage for shape-free Principal Compo-
nents remains even if the probe is not itself shape-free,
reinforcing the conclusion that this is a representational
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Fig. 8. Nearest neighbor matching is determined by the Voronoi
tessellation shown; caricaturing the probe P changes the match from
A to B.

Fig. 9. Confident hit rates for shape-and-texture caricatured faces,
recognized by a scaled Euclidean-normalised PCA, and by independent
shape and texture PCA s Hair has been excluded from the match.



advance. Conversely, if the image has not been identified as
a face (or potentially a member of some other class of
objects sharing a configuration), such a manipulation is not
useful. The processing and, thus, the representation are
dependent upon the task at hand, changing from a general-
purpose, spatial-frequency selective coding to a special-
purpose, nonfrequency-selective coding as knowledge of
facial shape increases. This observation is reinforced by the
finding that, unlike the (scaled) Euclidean normalization,
the shape and shape-free normalization allow equivalent
transformations in a human face-space and that provided
by the PCA.

Overall, we believe we have shown that coding using
PCA, implemented under the influence of a manifold model
of ªface space,º separating configural and textural informa-
tion, has proven to be of value for recognition, and that this
could be of relevance when constructing psychological
models of face recognition. We are not advocating it as a
universal code; the very high levels of recognition by shape-
free contour matching and the increase in recognition when
this is combined with the shape-and-texture output show
that not all the facial information has been captured. This
suggests that psychological implications of this work are
late in the processing chain, when the face is being
considered as a whole. One possible model has indepen-
dent shape and texture derived from our local chart to select
a small group of possible matches, with an ultimate
recognition decision based on contour correlation.
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