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Abstract

Reduced representation (RRL) sequencing approaches (e.g., RADSeq, genotyping by

sequencing) require decisions about howmuch to invest in genome coverage and sequenc-

ing depth, as well as choices of values for adjustable bioinformatics parameters. To empiri-

cally explore the importance of these “simple” methodological decisions, we generated two

independent sequencing libraries for the same 142 individual lake whitefish (Coregonus clu-

peaformis) using a nextRAD RRL approach: (1) a larger number of loci at low sequencing

depth based on a 9mer (library A); and (2) fewer loci at higher sequencing depth based on a

10mer (library B). The fish were selected from populations with different levels of expected

genetic subdivision. Each library was analyzed using the STACKS pipeline followed by

three types of population structure assessment (FST, DAPC and ADMIXTURE) with iterative

increases in the stringency of sequencing depth and missing data requirements, as well as

more specific a priori population maps. Library B was always able to resolve strong popula-

tion differentiation in all three types of assessment regardless of the selected parameters,

largely due to retention of more loci in analyses. In contrast, library A produced more vari-

able results; increasing the minimum sequencing depth threshold (-m) resulted in a reduced

number of retained loci, and therefore lost resolution at high -m values for FST and ADMIX-

TURE, but not DAPC. When detecting fine population differentiation, the population map

influenced the number of loci and missing data, which generated artefacts in all downstream

analyses tested. Similarly, when examining fine scale population subdivision, library B was

robust to changing parameters but library A lost resolution depending on the parameter set.

We used library B to examine actual subdivision in our study populations. All three types of

analysis found complete subdivision among populations in Lake Huron, ON and Dore Lake,

SK, Canada using 10,640 SNP loci. Weak population subdivision was detected in Lake

Huron with fish from sites in the north-west, Search Bay, North Point and Hammond Bay,
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showing slight differentiation. Overall, we show that apparently simple decisions about

library construction and bioinformatics parameters can have important impacts on the inter-

pretation of population subdivision. Although potentially more costly on a per-locus basis,

early investment in striking a balance between the number of loci and sequencing effort is

well worth the reduced genomic coverage for population genetics studies. More conserva-

tive stringency settings on STACKS parameters lead to a final dataset that was more consis-

tent and robust when examining both weak and strong population differentiation. Overall,

we recommend that researchers approach “simple” methodological decisions with caution,

especially when working on non-model species for the first time.

Introduction

The field of molecular ecology has experienced a recent increase in the use of reduced repre-

sentation library (RRL) sequencing approaches for population studies. This popularity was

enabled by low cost sequencing platforms and efficient RRL approaches for non-model spe-

cies, which allows for the sequencing of a targeted portion of the genome across a large num-

ber of individuals (reviewed by [1] and [2]; [3]). Several variations of the RRL approach exist,

most using either restriction enzymes or probes to target homologous regions of the genome

across individuals and populations. Popular techniques include restriction site associated

DNA sequencing (RADSeq; [4,5]), double digest RADSeq (ddRADSeq; [6]), genotyping by

sequencing (GBS; [7]), 2bRAD [8], 3RAD [9], Rapture [10], RADcap [11], and Nextera-tag-

mented reductively-amplified DNA sequencing (nextRAD; [12]). Each of these approaches

enable simultaneous sequencing and genotyping of thousands of single nucleotide polymor-

phism (SNP) markers, and they have been used in a wide range of studies including population

structure [13–15], local adaptation and selection [16–20] and phylogenomics [21,22]. RRL

techniques and downstream bioinformatics analyses are evolving rapidly, and consistent guid-

ance when making fairly “simple” methodological decisions on basic elements of study design

may often not be available in the published literature.

Molecular ecologists using RRL approaches are faced with decisions ranging from sequenc-

ing effort to adjustable bioinformatics parameters that can profoundly impact the quality of

SNP data, and thereby the strength of inference in population studies. Targeted genome cover-

age and sequencing depth have a major influence on the cost and the quality of the data gener-

ated [23]. Sequencing a higher proportion of the genome (coverage) provides more data per

individual, and higher sequencing depth increases confidence in base calls and the ability to

identify low frequency variants [24–28]. However, limited research funds force most research-

ers to seek a trade-off between sequencing effort and resolution power. In addition, following

the generation of sequence data, methods for filtering and the identification of variable SNP

sites can profoundly impact the number and quality of loci retained [26,29], and potentially

the power of downstream analyses. Clear explorations of how these methodological decisions

affect the quality and quantity of SNPs, as well as the interpretation of population structure,

are required.

All bioinformatics programs have adjustable parameters influencing the stringency of

requirements for SNP calls that can influence the quantity and quality of loci in the final data-

set. There are several programs designed to perform all steps in de novo SNP detection and

genotyping from RRL data including STACKS [30], UNEAK [31] and pyRAD [32]. In this

study, we chose STACKS because it is one of the most widely used programs for species
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without reference genomes, and there is previous research investigating error rates [26],

parameter optimization [26,29,33,34] and influences on the number of markers in the final

dataset [29] using this pipeline. In STACKS, SNP locus discovery and genotyping is done

using three modules, ustacks, cstacks and sstacks [30,34]. The ustacksmodule first assembles

stacks based on similarity on an individual level and cstacks then merges individual stacks into

a population level catalog [34]. The sstacksmodule is then used to match individual stacks

back to the catalog and the populations script outputs the data into various different formats

[30]. In ustacks and cstacks there are three main parameters that control catalog construction:

(1) minimum sequencing depth to create stacks (-m); (2) maximum number of mismatches

allowed between alleles (-M); and (3) number of mismatches allowed between stacks (-n;

[30,33,34]). In the populationsmodule there are also parameters that affect the output and

potential downstream analyses, including: (1) population map used (-M); (2) minimum per-

centage of individuals required to have the locus genotyped (-r); and (3) the number of popula-

tions required to have the locus genotyped (-p; [30,33,34]). These parameters can drastically

influence the SNP dataset that is generated, but the impacts on downstream analyses and infer-

ences about population subdivision have not been fully investigated.

Previous research has investigated how the parameters in the different STACKS modules

influence SNP datasets generated, but few have examined how these changes actually influence

population differentiation analyses. Paris et al. [33] developed the r80 rule, based on the gener-

ation of polymorphic loci across 80% of the population, to optimize important STACKS

parameters (-m, -M and -n), as these may vary by study organism. Increasing -m and -M val-

ues generates fewer loci in the final dataset as a result of removal of loci lacking minimum

sequencing depth, and over-merging of loci, respectively [26,29]. Studies examining the impact

of sample size, study design, individual sequencing depth, and sequence quality have shown

that fewer individuals (3–5 per site) and moderate sequencing depth (~10X) are often adequate

for the detection of population subdivision and group assignment, even though higher

sequencing depths result in more accurate genotype calls [35–38]. However, many of these

studies are simulations and there is currently no consensus on sequencing depth requirements

for population studies of non-model organisms, such as fish and wildlife.

RRL sequencing often results in missing data (loci, genotypes) in individuals and popula-

tions [39]; this issue may confound population structure analyses and it can be exacerbated by

the selection of bioinformatics parameters. Multiple sources can give rise to missing data

including issues during library preparation, such as size selection, DNA quality and uneven

amplification, and biological sources, such as mutations within restriction or primer binding

sites [39]. Mutations within binding sites, allelic drop out, can result in biased summary statis-

tics and increased error rates [3,40–45]. This increase in allelic drop out has shown to nega-

tively impact linkage mapping studies [46] but does not have significant impacts in RADSeq

studies [3,42]. Shafer et al. [47] showed that increasing missing thresholds in the STACKS

pipeline did not affect the summary statistics generated, such as heterozygosity, inbreeding

coefficient, and the transition to transversion ratio. However, missing data becomes a more

prominent issue at low sequencing depths, and previous research has shown that high-strin-

gency filters can result in too few loci to discern population subdivision [48,49]. Further,

Huang & Knowles [50] found that high stringency filters on missing data thresholds reduced

the amount of missing data but may bias the resulting dataset by limiting the mutation spec-

trum included in downstream analyses. Missing data has also been investigated in phyloge-

netic studies using RRL datasets, in which less stringent thresholds on missing data resulted in

larger datasets, increasing resolution in the phylogenetic analyses [21,39,50–54]. The interac-

tion between library quality (genomic coverage and sequencing depth), bioinformatics param-

eter selection, and missing data, and their potential influences on the interpretation of
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population structure analyses require additional investigation. It is especially important for

groups switching from more traditional markers (e.g., microsatellite DNA) to RRLs and SNPs

to have access to such information to guide study design.

Here, we examine the influence of two different sequencing libraries and adjustment of var-

ious bioinformatics parameters on the resolution of strong and weak population subdivision

in lake whitefish (Coregonus clupeaformis). Our overall objective was to provide an empirical

example that will help molecular ecologists understand important influences on library and

dataset quality, and aid in decision making about bioinformatics parameters. We generated

nextRAD SNP data for 142 lake whitefish individuals from two different lakes: Lake Huron,

Ontario, and Dore Lake, Saskatchewan, Canada. We chose nextRAD sequencing to accommo-

date both low quantity of input DNA and moderate levels of degradation as a result of field

sampling conditions. We chose the lake whitefish as our study species because it is one of the

most commercially harvested freshwater fish in the country, and it has been studied exten-

sively in both population and evolutionary genetics contexts [55–61]. In addition, lake white-

fish are an important component of food webs, facilitating transfer of energy from benthic to

pelagic sources [62–65]. The lake whitefish is also part of a large-scale research program by our

group investigating the influence of thermal effluents from nuclear power generation on devel-

opment and population structure [9,66,67]. The analysis between the two lakes represents

strong population subdivision, as indicated by different mitochondrial haplotypes resulting in

distinct designatable units [60], while multiple sample sites within Lake Huron represent

potential weak population subdivision. Our specific objectives were to: (1) examine how the

trade-off between genomic coverage and sequencing depth influences the number of polymor-

phic loci, missing data, and other quality metrics; and (2) investigate how various bioinformat-

ics parameters affect our interpretation of population subdivision.

Materials andmethods

Study design

We chose to perform an empirical examination of two different sequencing libraries and

adjustable bioinformatics parameters by generating independent data using actual populations

of our study species rather than performing simulations. This approach allowed us to focus on

data generated from “real world” experiences rather than idealized or simulated data. We col-

lected lake whitefish from 9 sites in Lake Huron, Ontario, Canada (44˚48’N 82˚24’ W), and

Dore Lake, Saskatchewan, Canada (54˚46’N 107˚18’W; Fig 1). Fish from both of these lakes

are descendants from the Mississippian refugium during the most recent glaciation event but

have not been able to interbreed for at least several thousand years (strong population subdivi-

sion; [60]). In contrast, lake whitefish in different areas of Lake Huron face no physical barriers

to dispersal and have previously shown only weak within-lake population subdivision using

microsatellite data [68–71]. We designed our study to generate: (a) a library with higher geno-

mic coverage (more loci) and lower sequencing depth based on a 9mer primer (library A); and

(b) a library with lower coverage (fewer loci) but moderate sequencing depth based on a

10mer primer (library B). We then went through filtering and bioinformatics analyses itera-

tively, increasing the stringency of parameters, and compared the performance of datasets gen-

erated from the two libraries side-by-side in discerning whitefish population subdivision. We

expected the signal of the between-lake population subdivision to be persistent across all analy-

ses and used this as a benchmark for understanding when technical or analytical decisions had

major impacts on the outcome. In contrast, we expected fluctuations in the signal from weak

population subdivision within Lake Huron based on the resolving power of each dataset.

"Simple" methodological decisions in RRLs impact population analyses
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Fig 1. Map of the two lakes sampled (a) and the nine sample sites in Lake Huron (b). Fish were collected from Lake
Huron sites in 2012 and Dore Lake in 2015. Site abbreviations can be found in Table 1.

https://doi.org/10.1371/journal.pone.0226608.g001
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Sample collection and DNA isolation

Adult spawning-phase lake whitefish were sampled from one site in Dore Lake, Saskatchewan

and nine sites in Lake Huron, Ontario via commercial fishermen, fish processing plants and

various management agencies (Table 1). Fish were terminally sampled using gillnetting and a

5 x 1 cm piece of dorsal muscle tissue was collected from 142 individuals and immediately fro-

zen. A 20-mg subsample from each individual was stored in lysis buffer (4.0M urea / 0.2M

NaCl / 0.1M Tris–HCl, pH 8.0 / 0.5% n-laurylsarcosine / 0.1 M 1,2-cyclo- hexanediamine) for

genetic analyses. More detail on sampling can be found in Eberts et al. [66]. All animal

research was approved by the University of Regina President’s Committee on Animal Care,

following the guidelines of the Canadian Council on Animal Care. The approved Animal Use

Protocol was AUP 11–13 "Population and Conservation Genetics of Freshwater Fish".

Genomic DNA was isolated from 20 mg of dorsal muscle tissue following manufacturers

guidelines (Genomic DNA Isolation Kit, Norgen Biotech Corp., Ontario, Canada) except for

extending the proteinase K digestion to 8–12 hours and the addition of 28 U of RNAse A (Qia-

gen Inc., Ontario, Canada). DNA was quantified using a Qubit 2.0 Fluorometer (Life Technol-

ogies Inc., Ontario, Canada) and DNA quality (level of shearing) was assessed using an E-Gel

(Thermo Fisher Scientific, Canada).

NextRAD sequencing

We used an amplification-based RRL approach to accommodate variation in DNA quality

among individuals and low amounts of input DNA for library preparation. Each sample was

sequenced independently in each library with identical input DNA. Genomic DNA was con-

verted into nextRAD genotyping-by-sequencing libraries (SNPsaurus, Oregon, USA) as

described by Russello et al. [12]. Briefly, genomic DNA was first digested with the Nextera

reagent (Illumina, Inc., British Columbia, Canada), which randomly fragments the genome

using a transposase. The Nextera reagent also ligates short adapter sequences to the ends of the

fragments. For high quality (mostly intact, high molecular weight DNA) samples the Nextera

reaction included 20 ng of input DNA; for moderately degraded (sheared; fragments< 5 Kb)

samples we used 40–60 ng of input DNA to compensate for degradation. Fragmented DNA

was then amplified with a primer matching the adaptor sequence and extending either 9

(library A) or 10 (library B) nucleotides into the genomic DNA with the selective sequences

5’-GTGTAGAGC-3’ and 5’-GTGTAGAGCC-3’, respectively. These two primers were

used to create two completely independent libraries with different selectivity. Following

hybridization of the primers, PCR amplification was done with an annealing temperature of

72˚C for 27 cycles. This allowed for selective hybridization and amplification of fragments that

paired with the primer sequence as well as the incorporation of individual barcodes. The nex-

tRAD libraries were then sequenced on an Illumina HiSeq 4000 on a total of six lanes using

single-end 150 bp reads (University of Oregon, Oregon, USA).

Data analysis

Data quality filtering. FASTQ files were first processed using Trimmomatic [72] to

remove the Nextera adaptors (Fig 2). The remaining reads were then visualized in FastQC to

ensure effective adaptor removal [73]. All sequences were analyzed using STACKS 2.0 beta 7

[30,74]. Further quality filtering was done using process_radtags to remove any reads with

uncalled bases, discard reads with an average quality score below Q10 or failed the Illumina

chastity filter and truncate the reads to 150 bps (Fig 2).

SNP genotyping parameters. Following quality filtering, the maximum distance allowed

between stacks (-M in ustacks) and the number of mismatches allowed between sample loci

"Simple" methodological decisions in RRLs impact population analyses
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when building the catalog (-n in cstacks) were optimized as recommended by Paris et al. ([33];

Fig 2). The maximum distance between stacks (-M) parameter was tested from 1–4 as a result

of the highly repetitive nature of the lake whitefish genome. The number of mismatches

allowed between samples when building the catalog was then tested from 0–2. Following

parameter optimization, the denovo_map.pl script was used to run the STACKS pipeline. This

script was run five times on each sequencing library, A and B, with the minimum sequencing

depth (-m) set at 3, 6, 10, 15 and 20 (Fig 2). By filtering for read depth at the ustacks level

instead of the populations level it allows for better performance of the SNP model, which iden-

tifies variable sites in the ustacksmodule [33]. While the -m parameters varied in each itera-

tion, the other parameters were held constant. In ustacks, a maximum distance between stacks

of 1 (-M) was used and the varying–m value as stated above. The removal algorithm was

enabled to eliminate highly-repetitive stacks, which should limit the number of highly repeti-

tive loci included. The catalog was generated in cstacks using a mismatch value between sam-

ples (-n) of 1 as determined above. Finally, individual stacks were then searched against the

catalog using sstacks.

Population genotyping parameters. For each parameter set (m3 –m20), the populations

script was used to export SNPs with a minor allele frequency greater than 0.05. In both

sequencing libraries, a range of the proportion of individuals within the population containing

the locus (-r), the minimum number of defined populations with the locus with sample site

designation (-p), and different population maps (-M) were tested in the populations script (Fig

2). Each of these different values was varied in turn while the other values remained constant.

The minimum percentage of individuals in a population required to process a locus (-r) was

tested from 0.1–0.8 (Fig 2). These -r values were tested with three different population maps:

(1) no specified populations (NoPops), (2) Lake Huron and Dore Lake populations (LHDL),

and (3) sample site designations (Pops; Fig 2). While varying the -r flag in the script, the -p

value was held constant at 1, indicating that the locus only needed to be present at the specified

percentage in 1 population. Different -p values were also tested using the Pops population map

and r30 on the m3 sequencing parameter dataset. The -p value was tested from p1 –p10,

increasing the number of defined populations that were required to contain the loci in greater

than 30% of the individuals (Fig 2). When comparing the different population maps, a value of

p1 was used in order to compare different levels of loci and missing data across the datasets.

All three of these parameters, -p, -r and -popmap, influence the level of missing data included

in the final matrix. By changing the stringency on these parameters iteratively we were able to

Table 1. Collection data for 142 lake whitefish (Coregonus clupeaformis) samples from Lake Huron, ON, Canada, and Dore Lake, SK, Canada.

Site Lake Location Latitude Longitude Collection Date Total (n)

Lake Huron

ET East Tawas 43.906 -83.672 Nov 13, 2012 14

NI North Island 43.878 -83.435 Nov 15, 2012 14

NP North Point 45.395 -83.486 Nov 1, 2012 14

HB Hammond Bay 45.502 -84.033 Nov 4, 2012 14

SB Search Bay 45.981 -84.497 Nov 2, 2012 15

ScB Scougall Bank 44.355 -81.617 Nov 6–18, 2012 17

DP Douglas Point 41.298 -81.609 Nov 6–15, 2012 9

MP McRae Point 44.258 -81.617 Nov 7–18, 2012 17

FI Fishing Islands 44.709 -80.312 Nov 18, 2012 14

Dore Lake

DL Dore Lake 54.767 -107.300 Nov 22, 2015 14

https://doi.org/10.1371/journal.pone.0226608.t001
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examine how missing data influences the final data matrix and the inference of population

subdivision.

The level of missing genotypes per individual was examined using grur [75]. A principal

coordinate analysis was run based on the presence/absence of genotypes within the samples to

create an isolation by missingness (IBM) plot. This IBM plot can be used to determine if sam-

ples are related to each other based on the missing genotypes in the data. Loci were then

checked for conformation to Hardy Weinberg Equilibrium (HWE; P< 0.05) using PLINK

1.07 [76]. Loci that did not conform to HWE in both the Lake Huron and Dore Lake popula-

tions were used to create a blacklist and were omitted from future analyses.

Population differentiation

After filtering, we performed population structure analyses on the SNP data generated from

each parameter set using pairwise fixation indices (FST; GENODIVE; [77,78]), ordination

(DAPC; [79]), and maximum likelihood approaches (ADMIXTURE; [80,81]; Fig 2). The pop-

ulation differentiation values from each analysis were used to compare the outcomes across

the different datasets generated from the modifications listed above. As a result of assumptions

from each analysis, both the pairwise fixation indices (FST) and maximum likelihood analyses

were conducted using only the loci in HWE, while the ordination analysis was conducted with

all loci. We calculated pairwise fixation indices [77] using the program GENODIVE with

5,000 permutations. FST values were evaluated by comparing individual sampling sites. The

program ADMIXTURE was then used to estimate ancestry using a maximum likelihood

approach. ADMIXTURE uses a block relaxation approach coupled with novel Quasi-Newton

acceleration of convergence [80]. In order to determine the correct number of distinct popula-

tions (K), the ADMIXTURE program uses a cross-validation approach. The R package pophel-

per [82] was used to visualize the K = 2 and K = 3 data from ADMIXTURE. Finally, the data

were analysed using discriminant analysis of principle components (DAPC), a multivariate

ordination approach, implemented in adegenet [79]. The DAPC plot was generated using N/3

principle components to avoid over fitting the data and for consistency across all analyses. All

analyses were conducted on a regional super computer (Breezy, Westgrid, Compute Canada,

Canada).

Results

Data analysis

Data quality filtering. The steps to generate libraries A and B were identical, with

the exception of using a different primer to capture loci for sequencing (9mer vs. 10mer).

Correspondingly, the total number of reads generated in each library was very similar, at

296,073,514 and 297,243,177 for library A and B, respectively. The total number of reads per

individual following the removal of the Nextera adapters was also similar at 2,070,281

(SD = 390,050) and 2,078,327 (SD = 742,956) in library A and B, respectively. However, follow-

ing process_radtags, library A had an average of 1,311,336 (SD = 356,212) and library B had an

average of 1,875,843 (SD = 739,513) reads per individual remaining. The difference between

the two datasets resulted from library A losing an average of 758,945 (SD = 114,274) reads per

individual due to low read quality scores during filtering in process_radtags, whereas library B

only lost an average of only 203,279 reads (SD = 25,838). The difference in library quality was

Fig 2. Flow chart of the bioinformatics pipeline and decisions required for analysis. Each arrow indicates different
libraries that were generated in the analysis.

https://doi.org/10.1371/journal.pone.0226608.g002
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due to the 9mer probe hybridizing with many more highly similar regions in the whitefish

genome than the 10mer, which caused a nucleotide diversity issue on the Illumina sequencer.

PhiX DNA in identical quantities was used to offset this diversity issue in both libraries, but

library A was more negatively affected.

SNP genotyping parameters. The r80 rule, the increment with the higher level of poly-

morphic loci present in 80% of the populations, was used to determine that M = 1 (one substi-

tution per stack in ustacks) and n = 1 (one mismatch allowed between loci within the catalog

in cstacks) were optimal for the lake whitefish genome and were used for all following analyses

[33]. Library A and B were filtered with five different sequencing depth (-m) cut-offs, m3, m6,

m10, m15 and m20, in the ustacksmodule of denovo_map.pl. As expected, increasing the strin-

gency of the -m criterion drastically increased the average sequencing depth per locus and

decreased the total number of matched loci in each individual for both library A and B

(Table 2). Even at the m3 threshold, library A generated fewer loci per individual as a result

of only 28.3% (SD = 7.4%) of the reads passing the threshold criteria compared to 58.2%

(SD = 4.0%) in library B. This trend was consistent across all -m values and was likely the result

of high levels of repeats as indicated by the number of blacklisted stacks in ustacks, with an

average of 8071 (SD = 1501) per individual in library A and 4537 (SD = 1498) per individual in

library B. These results indicate that the reduced number of loci in library A resulted from

both a drop in read quality and fewer loci passing the sequencing depth threshold in ustacks.

Library B consistently had more than 2X as many loci in the catalog and matched loci follow-

ing the cstacks and sstacksmodules regardless of the -m value used (Table 2). Following the

populationsmodule, the total number of polymorphic loci varied depending on the specified

sequencing depth in the ustacksmodule (Table 2). Library B had 1.8–5.4X more polymorphic

loci than library A across all -m values, with the largest loss of polymorphic loci occurring at

m6 in the library A (Fig 3; Table 2).

The resolution of strong (between-lake) population subdivision was affected by the differ-

ent sequencing depth thresholds used to generate the dataset. Mean overall FST values between

Dore Lake and each site in Lake Huron were low in library A and decreased with more strin-

gent sequencing depth values (-m parameter; Fig 4A, 4C, 4E, 4G and 4I): m3 = 0.0776 (SD =

0.0031), m6 = 0.0536 (SD = 0.0078), m10 = 0.0413 (SD = 0.0054), m15 = 0.0337 (SD = 0.0054)

and m20 = 0.01922 (SD = 0.0087). Some sites did not appear differentiated between the two

lakes using the FST approach with high sequencing depth parameters (m20), as a result of the

small number of loci remaining in library A (Fig 4I). Search Bay (SB) was consistently differen-

tiated from the rest of the Lake Huron sites in all datasets and North Point (NP), East Tawas

(ET) and North Island (NI) showed potential differentiation with increasing m values in

library A (Fig 4A, 4C, 4E, 4G and 4I). Mean overall FST values were higher at all sequencing

depth thresholds in library B (Fig 4B, 4D, 4F, 4H and 4J): m3 = 0.1311 (SD = 0.0038), m6 =

0.1289 (SD = 0.0041), m10 = 0.1282 (SD = 0.0034), m15 = 0.1241 (SD = 0.0069) and m20 =

0.1302 (SD = 0.0078), and all comparisons between Dore Lake and Lake Huron resulted in sig-

nificant (P< 0.05) differentiation (data not shown). Library B and higher m values in library

A showed differentiation of Search Bay (SB) from other Lake Huron Sites (S1 Fig). Sites found

on the eastern shores, Scougall Bank (ScB), Douglas Point (DP), McRae Point (MP) and Fish-

ing Islands (FI) also showed slight differentiation in library B (S1B, S1D, S1F, S1H and S1J

Fig). DAPC clearly resolved population differentiation between Lake Huron and Dore Lake in

both library A and B (Fig 5). Assignment proportions ranged from 0.7324 to 0.7606 in library

A, and 0.7676 to 0.7887 in library B. Within Lake Huron, North Point (NP) and Search Bay

(SB) showed weak differentiation in library A until the m15 dataset and North Island (NI)

showed subdivision at m3 (S2A, S2C, S2E, S2G and S2I Fig). In library B, Search Bay (SB) and

North Point (NP) both showed consistent genetic subdivision in all sequencing depth datasets

"Simple" methodological decisions in RRLs impact population analyses

PLOSONE | https://doi.org/10.1371/journal.pone.0226608 January 24, 2020 10 / 35

https://doi.org/10.1371/journal.pone.0226608


(S2B, S2D, S2F, S2H and S2J Fig). ADMIXTURE clearly detected strong population subdivi-

sion at m3 in library A. Two groups representing Dore Lake and Lake Huron were still evident

until m15, but with much less clarity (Fig 6A, 6C and 6E); however, no signal of subdivision

between the lakes remained when the m20 value was applied. In contrast, library B was always

able to resolve population differentiation between the two lakes at all sequencing depth thresh-

olds with high average ancestry fraction values (Fig 6B, 6D and 6F). No differentiation between

sites in Lake Huron was detected in library A, while North Point (NP), Hammond Bay (HB)

and Search Bay (SB) are differentiated in all m datasets in library B (S3 Fig).

Population genotyping and differentiation parameters. There were more polymorphic

loci in library B in every population map and minimum sequencing depth (-m) permutation

tested (Fig 3). Further, the number of polymorphic loci generated was always higher with the

minimum sequencing depth (-m) in ustacks set at three, with ~20X and ~5X more loci in the

m3 datasets compared to m20 in library A and B, respectively. More SNP loci were generated

using the Pops population map from r10-80 compared to both the NoPops and LHDL popula-

tion maps (Fig 3 and Table 3). The NoPops population map resulted in a higher genotyping

rate compared to the LHDL and Pops maps in both library A and B when comparing -m val-

ues, with each locus being genotyped in approximately double the number of individuals (S4

Fig). The high genotyping rate resulted in much less missing data using the NoPops population

map. Missing data can lead to clustering of individuals based on biases in the absence of data

rather than true biological relationships. The IBM plot generated using grur showed that both

the LHDL and Pops population maps generated datasets with biases from missing data (Fig 7).

The NoPops population map resulted in IBM plots with slight Dore Lake differentiation, likely

as a result of biological differences between the populations, while both the LHDL and Pops

population maps generated skewed IBM plots with significant differentiation based on missing

data (Fig 7). Further, although we expect some biological missing data between Lake Huron

Table 2. Summary data from each sequencing library, A and B, with increasing sequencing depth (-m) thresholds in the ustacksmodule of STACKS. The m parame-
ter influences the number of loci generated per individual in the ustacksmodule of STACKS, which influences the total number of loci in the catalog and the matched loci
in the sstacksmodule. The populationsmodule was then run on each library independently using no population differentiation in the population map (NoPops), one popu-
lation required to contain the locus (-p) and 30% of the individuals required to contain the locus (-r). Library A was generated using a 9mer probe, while library B was gen-
erated using a 10mer probe.

Library A

m3 m6 m10 m15 m20

Average depth (per individual) 9.01
(SD = 1.0935)

21.09
(SD = 2.7930)

44.57
(SD = 9.6451)

82.99
(SD = 19.9276)

127.78
(SD = 28.7960)

Total Loci in catalog 1,381,311 467,790 185,070 84,677 47,509

Matched loci
(per individual)

39,112
(SD = 14,653.63)

13,600
(SD = 9,286.50)

5,594
(SD = 5,358.70)

2,677
(SD = 3,045.56)

1,603
(SD = 1,892.85)

Loci post populations (p1r30NoPops) 8,606 2,669 1,193 724 555

Polymorphic loci 5,882 2,029 884 479 337

HWE<0.05 5,613 1,859 744 369 245

Library B

Average depth (per individual) 12.24
(SD = 2.7465)

20.73
(SD = 2.8198)

31.87
(SD = 2.3186)

46.54
(SD = 2.1598)

62.03
(SD = 3.2270)

Total Loci in catalog 3,742,031 1,874,424 987,836 538,722 329,949

Matched loci
(per individual)

84,912
(SD = 21,703.38)

44,473
(SD = 17,336.98)

25,345
(SD = 12,639.20)

15,205
(SD = 8,853.66)

10,179
(SD = 6,423.01)

Loci post populations (p1r30NoPops) 18,857 12,398 8,132 5,484 3,972

Polymorphic loci 10,640 6,955 4,202 2,669 1,834

HWE<0.05 9,942 6,518 3,897 2,438 1,641

https://doi.org/10.1371/journal.pone.0226608.t002
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and Dore Lake, this is exacerbated using both the LHDL and Pops population maps, as a result

of increased missing data (Fig 7). However, in general the divergence among sites based on

missing data in the NoPops population map was small, and likely did not impact our final

interpretations.

The three population maps, NoPops, LHDL and Pops, were also analyzed using three popu-

lation differentiation approaches to examine the effects of missing data and genotyping rate on

downstream analyses. These analyses were done with a minimum depth threshold value of

m3, minimum of 30% individuals containing the locus (-r) and a minimum of one population

containing the locus (-p). FST and DAPC analyses were both able to consistently differentiate

the Dore Lake samples from each of the Lake Huron sample sites regardless of the population

map in both sequencing libraries (S5 and S6 Figs). Regardless of the population map used,

library B resulted in average FST values ~2X larger for the Dore Lake samples than library A

(S5 Fig). Search Bay (SB) showed potential differentiation in the LHDL and Pops population

maps in library A and in all population maps in library B (S5 Fig). When run independently,

Search Bay (SB) showed slight differentiation using the LHDL and Pops population maps in

library A, while it was differentiated using all population maps in library B (S7 Fig). Library B

also showed differentiation of sites in eastern Lake Huron, Fishing Islands (FI), McRae Point

(MP), Douglas Point (DP) and Scougall Bay (ScB; S7B, S7D and S7F Fig). The assignment pro-

portion from the DAPC analysis drastically decreased in both libraries from 0.7324 using the

NoPops population map and 0.7254 with LHDL, to 0.5282 with Pops in library A and from

0.7887 with NoPops and 0.8028 with LHDL to 0.6408 in the Pops population map in library B

(S6 Fig). Fine scale population subdivision was detected with both libraries with Search Bay

(SB), North Island (NI) and North Point (NP) differentiated in library A and Search Bay (SB)

and North Point (NP) in library B in all three population maps (S8 Fig). In contrast, maximum

likelihood analyses using ADMIXTURE was only able to resolve the Dore Lake samples using

the NoPops population map in library A with an average ancestry fraction of 0.9304

(SD = 0.0684), while the LHDL and Pops population maps resulted in average ancestry frac-

tions of 0.8412 (SD = 0.1857) and 0.9747 (SD = 0.0988), respectively (S9A, S9C and S9E Fig).

Comparatively, with library B we could resolve strong population differentiation using all

Fig 3. Total number of polymorphic loci generated with five different levels of sequencing depth (-m) in ustacks
in library A (black) and B (grey).Data were generated using three different population maps in the populations
module, no specified populations (NoPops), Lake Huron and Dore Lake specifications (LHDL) and sample sites
(Pops). Library A was generated using a 9mer probe and library B was generated using a 10mer probe.

https://doi.org/10.1371/journal.pone.0226608.g003

"Simple" methodological decisions in RRLs impact population analyses

PLOSONE | https://doi.org/10.1371/journal.pone.0226608 January 24, 2020 12 / 35

https://doi.org/10.1371/journal.pone.0226608.g003
https://doi.org/10.1371/journal.pone.0226608


"Simple" methodological decisions in RRLs impact population analyses

PLOSONE | https://doi.org/10.1371/journal.pone.0226608 January 24, 2020 13 / 35

https://doi.org/10.1371/journal.pone.0226608


population maps with average ancestry fractions of 0.9755 (SD = 0.0261), 0.9501 (SD = 0.0751)

and 0.9256 (SD = 0.1039) using the NoPops, LHDL and Pops population maps, respectively

(S9B, S9D and S9F Fig). Within Lake Huron, no distinct population subdivision was detected

using library A, while Search Bay (SB) and Hammond Bay (HB) showed differentiation using

the NoPops and LHDL population maps in library B (S10 Fig). Increasing the number of pop-

ulations required to contain the locus (-p) using the Pops population map resulted in a higher

genotyping rate and less clustering based on sample site based on missing data in the IBM plot

(S11 and S12 Fig; S1 File). Clustering based on missing data was apparent in the 9mer library

until p6 (S12 Fig). Similarly, higher p values did not result in increased resolution in either the

DAPC or ADMIXTURE analyses, with optimal resolution occurring using intermediate p val-

ues (S13 and S14 Figs).

The minimum percentage of individuals required to contain a locus within a population

(-r) was tested from 0.1–0.8, corresponding to 10–80%, referred to here as r10-r80. The num-

ber of polymorphic loci generated after the populationsmodule was 107.4X and 16.7X higher

using r10 compared to r80 in library A and B, respectively (S15A Fig). The proportion of loci

genotyped per individual was higher using library B at all -r values compared to library A with

65.06% (SD = 19.60%) and 17.90% (SD = 6.58%), respectively (S15B Fig). The GENODIVE

analysis was able to resolve differentiation between the two lakes in both sequencing libraries

regardless of the -r value (S16 Fig). The Dore Lake samples in library A had decreasing average

FST values of 0.091 (SD = 0.004), 0.078 (SD = 0.003), 0.056 (SD = 0.002) and 0.038

(SD = 0.002) for r10, r30, r50 and r70, respectively (S16A, S16C, S16E and S16G Fig). Con-

versely, the FST values in library B were consistently high with average values of 0.124

(SD = 0.006), 0.131 (SD = 0.004), 0.131 (SD = 0.005) and 0.127 (SD = 0.003) for r10, r30, r50

and r70, respectively (S16B, S16D, S16F and S16H Fig). In all -r values in library B Search Bay

(SB) showed slight differentiation within the Lake Huron samples, while this was not detect-

able in library A until very slight differentiation at r70 (S17 Fig). Both sequencing libraries

were able to fully resolve Dore Lake in the DAPC analysis at all r values (S18 Fig). In library A,

North Point (NP), North Island (NI) and Search Bay (SB) showed slight differentiation within

Lake Huron in the r10 and r30 libraries and slightly in r50, while Search Bay (SB) and North

Point (NP) showed consistent strong differentiation in library B (S19 Fig). Bayesian analyses

using ADMIXTURE were clearly able to resolve Dore Lake in library A in the r10 and r30

libraries, while this signal was lost in the r50 and r70 datasets (S20A, S20C, S20E and S20G

Fig). In contrast, library B was able to resolve strong differentiation at all -r values (S20B,

S20D, S20F and S20H Fig). Library A was unable to resolve fine population differentiation

using ADMIXTURE in Lake Huron with all -r values, m values and population maps, while

Hammond Bay (HB) and Search Bay (SB) showed differentiation in library B (S21 Fig).

Population differentiation

As a result of the higher number of loci and increased sequencing depth, library B was used to

determine actual population differentiation. The m3 dataset was used as it resulted in the same

level of differentiation in all three analyses, while retaining the most polymorphic loci (S4 Fig).

The NoPops population map was used to maximize the genotyping rate (S4B Fig) and because

there was very little population differentiation by missing data in the IBM analysis (Fig 3).

Fig 4. Heatmap representing the pairwise fixation indices (FST) estimated using GENODIVE across all sample sites with
increasing sequencing depth (-m) in the ustacksmodule with m3 (a, b), m6 (c, d), m10 (e, f), m15 (g, h) and m20 (i, j) in
library A (a, c, e, g, i) and B (b, d, f, h, j). Larger FST values represent larger population differentiation. Site abbreviations can be
found in Table 1.

https://doi.org/10.1371/journal.pone.0226608.g004

"Simple" methodological decisions in RRLs impact population analyses

PLOSONE | https://doi.org/10.1371/journal.pone.0226608 January 24, 2020 14 / 35

https://doi.org/10.1371/journal.pone.0226608.g004
https://doi.org/10.1371/journal.pone.0226608


"Simple" methodological decisions in RRLs impact population analyses

PLOSONE | https://doi.org/10.1371/journal.pone.0226608 January 24, 2020 15 / 35

https://doi.org/10.1371/journal.pone.0226608


Finally, an -r value of 30% was used in the following analyses as it resulted in a moderate level

of loci with relatively low levels of missing data (S14 Fig).

We used GENODIVE to determine pairwise FST values between lakes and each sample site

(Fig 8). Dore Lake and Lake Huron showed significant differentiation with an FST value of

0.118 (P� 0.001). Each sample site was then run in a pairwise FST analysis (Table 4; Fig 8A).

Within the samples from Lake Huron, the average FST value was 0.038 (SD = 0.138; Table 3;

Fig 8B). Within Lake Huron, Search Bay (SB) and North Island (NI) showed differentiation

from the other sample sites as well as the sites in eastern Lake Huron, Fishing Island (FI),

McRae Point (MP), Douglas Point (DP) and Scougall Bay (ScB; Fig 8B). DAPC was run using

46 and 40 principle components (N/3) in the analysis with all sample sites and the Lake Huron

sites, respectively (Fig 9). The assignment proportion when analyzing all of the sample sites

was 0.7887 (Fig 9A) and 0.7344 for the sample sites in Lake Huron (Fig 9B). Dore Lake showed

strong differentiation, while North Point (NP) and Search Bay (SB) showed differentiation

within Lake Huron (Fig 9). ADMIXTURE was run using all of the sample sites (Fig 10A) and

only the individuals from Lake Huron (Fig 10B). In both cases, K = 2 resulted in the lowest

value using the cross-validation approach post hoc. The analysis resulted in an average ancestry

proportion of 0.9755 (SD = 0.0261) in the Dore Lake analysis (Fig 10A) and 0.7773

(SD = 0.1919) when analysing only Lake Huron, where Search Bay (SB) and Hammond Bay

(HB) showed potential differentiation (Fig 10B).

Discussion

Library content and sequencing effort have a profound influence on the quality and potential

power of inference of SNP datasets generated via RRLs. Technical aspects of study design can

therefore impact downstream population structure analysis, especially when assessing fine

scale population subdivision. Overall, we found that both libraries were able to resolve large

scale population subdivision, but when examining fine scale differentiation library B produced

more consistent and reliable results. Library A was able to differentiate strong population dif-

ferentiation between Dore Lake and Lake Huron with low stringency on bioinformatic param-

eters, but increasing the stringency resulted in fewer loci leading to decreased resolution. This

trend was clear in library A where large scale population subdivision between lakes was

detected using low-stringency bioinformatics parameters, both -m and -r, and the signal was

not lost until high stringencies. Compared to published population structure studies, the loss

of signal we observed occurred at much higher -m values (m15 or m20) and within the range

of commonly used -r values (r70), where common cut-offs range from m3 –m5 and r35 –r75,

respectively [13,14,16,18,19,29,33,83–85].

All three population analyses resulted in greater differentiation between samples from Dore

Lake and Lake Huron in library B for all parameters tested, with an average FST value consis-

tently double, and both ancestry coefficients and assignment proportions ~10% higher than

for library A. In contrast, when trying to detect fine scale population subdivision within Lake

Huron, library A was either unable to detect subdivision, or yielded inconsistent results across

analyses and with changing parameters; library B was much more consistent. Although the

average sequencing depth in both libraries was relatively similar in the m3 datasets, the

increased depth in library B resulted in higher genotype accuracy with more loci, generating a

higher quality dataset [3,27,28,35,86]. Fountain et al. [37] investigated sequencing depth in

Fig 5. Discriminant analysis of principle components (DAPC) of all sample sites with increasing sequencing depth (-m) in the ustacksmodule
with m3 (a, b), m6 (c, d), m10 (e, f), m15 (g, h) and m20 (i, j) in library A (a, c, e, g, i) and B (b, d, f, h, j). The DAPC analysis was run with 46
principle components (N/3) for the analysis. Distinct ellipses indicate population differentiation. Site abbreviations can be found in Table 1.

https://doi.org/10.1371/journal.pone.0226608.g005

"Simple" methodological decisions in RRLs impact population analyses

PLOSONE | https://doi.org/10.1371/journal.pone.0226608 January 24, 2020 16 / 35

https://doi.org/10.1371/journal.pone.0226608.g005
https://doi.org/10.1371/journal.pone.0226608


"Simple" methodological decisions in RRLs impact population analyses

PLOSONE | https://doi.org/10.1371/journal.pone.0226608 January 24, 2020 17 / 35

https://doi.org/10.1371/journal.pone.0226608


parentage analyses and found that low-depth sequencing libraries resulted in higher genotyp-

ing error rates and increasing bioinformatic thresholds lead to large losses of loci. Here, we

saw that the small decrease in depth of sequencing in library A lead to large losses of loci when

increasing the sequencing depth parameter and also lower genotyping rates, which resulted in

a loss of detection power for fine-scale population subdivision. These results indicate that

when investigating population differentiation, it is not possible to rescue poor sequencing

effort by increasing the stringency of bioinformatic parameters. In general, we found that

detection of large scale differentiation was more robust to the effects of sequencing library

quality and varying bioinformatic parameters, while the impacts on fine scale subdivision was

more profound and generated inconsistent results.

Population designation (popmap) at the end of the bioinformatic pipeline influenced the

amount of missing data introduced into the final dataset and also had significant impacts on

the ability to differentiate strong subdivision. Similar to increasing the stringency on other

parameters, changing the population specifications of individuals within the population map

in the populationsmodule lead to a loss of strong population differentiation and inconsistent

results in the fine scale analyses in library A. In contrast, library B was always able to detect

strong population subdivision and produced consistent results in the fine scale analysis. This

difference is likely a result of the decrease in genotyping rate in library A combined with an

overall decrease in the number of loci in the final dataset. Even though changing the popula-

tion map to lake or site-specific labels lead to an increased number of loci in both libraries,

these loci had large amounts of missing data that resulted in clustering based on similarities in

the lack of a genotype, rather than true population structure. This is visible in the IBM plot

and also DAPC where the sample sites become more defined by changing the population

maps (Figs 7 and S3). This trend is also present when only one population was required to con-

tain the locus using a population map with sample site designations in library A, where we see

a large number of loci (>20,000) but the low genotyping rate drowns out the signal for strong

differentiation in the maximum likelihood analysis (S13 Fig).

The impacts of missing data have been investigated in phylogenomic studies, which showed

increased resolution with loosened thresholds and correspondingly reduced stringency

[21,39,50–54]. However, studies investigating the influence of missing data have been limited

to the impacts of various parameters on the final dataset [48,49], genotyping error rates [37]

and different bioinformatic pipelines [47], with few studies investigating downstream popula-

tion analyses. We found that the amount and distribution of missing data were influenced by

multiple bioinformatics parameters acting together in ways that might not seem immediately

obvious. Use of more specific population maps and low values for locus presence parameters

(-p and -r) will result in a larger dataset with more loci. However, these same settings also

resulted in more missing data and a decreased genotyping rate, which generated artifacts

affecting the interpretation of downstream clustering and differentiation analyses. For exam-

ple, missing data ultimately caused the loss of differentiation between Dore Lake and Lake

Huron in our datasets based on library A. Importantly, in our study we held the number of

populations requiring a locus (-p) at 1, and the percentage of individuals within that popula-

tion (-r) at 30% as we made the applied population maps more specific. These settings create a

very biased scenario that is unlikely to be used because they allow retention of all population-

specific SNPs, thereby generating more and more discordance among datasets as the

Fig 6. ADMIXTURE analysis of all sample sites with increasing sequencing depth (-m) in the ustacksmodule with m3 (a, b), m6 (c, d), m10 (e, f), m15
(g, h) and m20 (i, j) in library A (a, c, e, g, i) and B (b, d, f, h, j). K2 was used as it had the lowest cross-validation value post-hoc. Each line represents an
individual from the corresponding sample site. Site abbreviations can be found in Table 1.

https://doi.org/10.1371/journal.pone.0226608.g006
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Table 3. Summary data from each sequencing library, A and B, with varying sequencing depth (-m), genotyped percentage (-r) and number of populations (-p) val-
ues and population maps. The m parameter influences the number of loci generated per individual in the ustacksmodule of STACKS, which influences the total number
of loci in the catalog and the matched loci in the sstacksmodule. The populationsmodule was then run on each library independently using either no population differenti-
ation (NoPops), lake population differentiation (LHDL) or sample site differentiation (Pops) in the population map. Both the number of populations required to have the
locus genotyped (p) and the percentage of individuals required to have the locus (-r) were also varied in the populationsmodule. Library A was generated using a 9mer
probe, while library B was generated using a 10mer probe.

mValue Population Map r Value p Value Loci Missing (Proportion) Loci Missing (Proportion)

Library A Library B

3 NoPops 10 1 25664 0.77 29810 0.69

20 11276 0.65 15827 0.54

30 5882 0.55 10640 0.44

40 3027 0.45 7673 0.35

50 1649 0.35 5756 0.29

60 911 0.27 4078 0.22

70 513 0.20 2789 0.16

80 239 0.13 1781 0.11

LHDL 10 1 34832 0.82 43268 0.78

20 19420 0.78 26919 0.72

30 9781 0.72 16554 0.63

40 6650 0.73 13244 0.61

50 4692 0.74 10999 0.60

60 2268 0.66 7158 0.52

70 1446 0.67 5512 0.54

80 497 0.55 2664 0.38

Pops 10 1 74515 0.90 94841 0.88

20 43172 0.87 52450 0.83

30 20829 0.84 27494 0.75

40 14755 0.82 21311 0.72

50 10324 0.82 16502 0.69

60 5444 0.80 11893 0.67

70 3308 0.78 8812 0.64

80 1381 0.75 5750 0.64

Pops 30 1 20829 0.84 27494 0.75

30 2 13329 0.76 15415 0.61

30 3 9658 0.70 11031 0.52

30 4 7431 0.65 10970 0.49

30 5 5915 0.60 5826 0.41

30 6 4776 0.56 5864 0.38

30 7 3793 0.51 5923 0.35

30 8 2943 0.46 5949 0.33

30 9 2201 0.41 5938 0.31

30 10 1439 0.34 4973 0.27

6 NoPops 30 1 2029 0.53 6955 0.46

LHDL 30 1 3696 0.73 11663 0.67

Pops 30 1 7815 0.84 16542 0.75

10 NoPops 30 1 884 0.51 4202 0.46

LHDL 30 1 1635 0.72 8725 0.73

Pops 30 1 3379 0.83 11485 0.77

15 NoPops 30 1 479 0.48 2669 0.46

LHDL 30 1 811 0.68 6007 0.75

(Continued)
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population map is adjusted. However, the analyses we present highlight just how important it

is to understand the potential influence selection of these parameters can have on population

structure studies. Common practice is to select arbitrary -p and -r values (e.g., often 50 to 70%

Table 3. (Continued)

mValue Population Map r Value p Value Loci Missing (Proportion) Loci Missing (Proportion)

Library A Library B

Pops 30 1 1613 0.81 7915 0.78

20 NoPops 30 1 337 0.48 1834 0.47

LHDL 30 1 524 0.66 4196 0.75

Pops 30 1 929 0.79 5489 0.79

https://doi.org/10.1371/journal.pone.0226608.t003

Fig 7. Identity-by-missingness (IBM) plot generated using grur with 3 different population maps in the populationmodule of STACKS: (1) no
population designation (NoPops; a, b), (2) Lake Huron and Dore Lake designations (LHDL; c, d) and (3) sample site designations (Pops; e, f) in library A
(a, c, e) and B (b, d, f). Site abbreviations can be found in Table 1. The IBM analysis is conducted using a Principal Coordinates Analysis (PCoA) to determine
clustering based on missing data. The x and y axes represent the first and second principal coordinate, respectively.

https://doi.org/10.1371/journal.pone.0226608.g007
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Fig 8. Heatmap representing the pairwise fixation indices (FST) estimated using GENODIVE across all sample sites (a) and
only Lake Huron sites (b) in library B. Larger FST values represent larger population differentiation. Site abbreviations can be
found in Table 1.

https://doi.org/10.1371/journal.pone.0226608.g008
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for both parameters), which may still generate potential issues with missing data and biased

population structure assessments based on the same concept we have illustrated here. The

application of user-defined population maps and the setting for the p- and r-parameters need

to be approached with care to strike the right balance between retaining more loci and generat-

ing confounding levels of missing data.

Increasing the stringency of various bioinformatic parameters reduces the number of loci

present in the final dataset, which impacts population differentiation analyses. Specifically,

increasing the sequencing depth threshold (-m) and proportion of individuals genotyped (-r)

removes loci early in the pipeline with too few reads per individual. The remaining loci have

higher average sequencing depth and genotyping rates, but many fewer loci remain with each

iterative increase. The incorporation of high parameters early in the pipeline limits the final

dataset of library A to loci with high sequencing depth, which are likely repetitive regions in

the genome that are potentially less informative for examining population differentiation. The

whole genome duplication event in the teleost genome exacerbates this issue in salmonids, cre-

ating many paralogous regions throughout the genome [25,87–90]. Further, setting the

sequencing threshold parameter (-m) too high in a low sequencing depth library can lead to

allelic dropout and incorrect genotyping calls [26]. Allelic dropout, where only one allele is

sequenced within an individual, is an inherent issue in RRL studies and leads to overestimation

of population differentiation parameters such as FST and Hexp [3,44,49]. In this study we found

that fewer loci with high sequencing depth and genotyping rates were unable to resolve strong

population subdivision in library A, even with less missing data present in the final dataset.

Conversely, the higher initial sequencing depth of library B allowed for more loci to remain

with increased stringency, resulting in no loss of inference. The differences between libraries

indicates that the main factor influencing the ability to detect population subdivision is the

sequencing effort at the front end of a project, as this impacts the amount missing data and

total loci in the final dataset. We found that library B with more loci sequenced at a higher

depth was more robust to increasing stringency of the parameters, while library A lost the

power of inference as a result of too few loci.

The different population differentiation analysis programs had varying sensitivities to miss-

ing data and other changes resulting from changing the bioinformatic parameters. Analyses

using fixation indices and maximum likelihood approaches were unable to resolve strong pop-

ulation differentiation with increasing stringency of bioinformatic parameters in library A. In

contrast, the ordination analysis using DAPC was always able to resolve between lake

Table 4. Pairwise FST estimates from GENODIVE using library B. FST estimates are above the diagonal and corresponding p-values are below for each sample site. The
bolded numbers represent significant FST values (P� 0.05). The minimum sequencing depth (-m) was set to 3 and minimum percentage of individuals required to contain
the locus (-r) was 30% using the NoPops population map.

ET NI NP HB SB ScB DP MP FI DL

ET -- 0.013 0.008 0.005 0.011 0.006 0.003 0.005 0.003 0.136

NI 0 -- 0.005 0.012 0.022 0.008 0.006 0.005 0.008 0.135

NP 0.001 0.009 -- 0.003 0.008 0.004 0.003 0.004 0.004 0.132

HB 0.035 0 0.063 -- 0.005 0.006 0.005 0.005 0.004 0.126

SB 0 0 0 0.004 -- 0.008 0.009 0.007 0.009 0.128

ScB 0.004 0 0.014 0.001 0 -- 0.002 -0.001 -0.002 0.13

DP 0.236 0.021 0.142 0.041 0 0.155 -- -0.001 -0.001 0.136

MP 0.035 0.01 0.027 0.01 0 0.783 0.7 -- -0.001 0.129

FI 0.118 0.001 0.033 0.04 0 0.797 0.699 0.747 -- 0.128

DL 0 0 0 0 0 0 0 0 0 --

https://doi.org/10.1371/journal.pone.0226608.t004
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Fig 9. Discriminant analysis of principle components (DAPC) of all sample sites (a) and only Lake Huron sites (b) using library B. The DAPC
analysis was run with 46 and 40 principle components (N/3) for the analysis with all sample sites and Lake Huron sites, respectively. Distinct ellipses
indicate population differentiation. Site abbreviations can be found in Table 1.

https://doi.org/10.1371/journal.pone.0226608.g009

Fig 10. ADMIXTURE analysis of all sample sites (a) and sites in Lake Huron (b) in library B. K2 was used as it had the lowest cross-
validation value post-hoc. Each line represents an individual from the corresponding sample site.

https://doi.org/10.1371/journal.pone.0226608.g010
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subdivision in library A. Similarly, Jombart et al. [79] found that DAPC was more consistent

than Bayesian analyses at characterizing population differentiation. This difference in the

power of inference in population subdivision may be a result of the removal of loci that are out

of HWE, which is not an assumption for the DAPC analysis, unlike ADMIXTURE and GEN-

ODIVE. Loci out of HWE are potentially produced by selection occurring within a population,

unlike outlier loci which results from selection pressures across multiple populations and gen-

erations [91]. The removal of loci that deviate from HWE could result in the loss of important

biological information [92]. Further, each analysis program treats missing data differently,

with DAPC inferring genotypes based on the global average [79] and ADMIXTURE ignoring

missing data [93], while GENODIVE employs pairwise comparisons where only genotypes

present in the two populations are evaluated [78]. Overall, we found that each analysis has

advantages and pitfalls that may be influenced by the removal of loci and missing data, and we

recommend that biological inference be evaluated based on multiple approaches.

Population differentiation

Strong population differentiation was detected between Lake Huron and Dore Lake in all

three analyses using our best SNP dataset. These populations were physically separated several

thousand years ago following dispersal after the Wisconsin glaciation, [60,94–96]. Within Lake

Huron, all three analyses showed relatively strong differentiation of Search Bay from the rest

of the sites, while North Point and Hammond Bay showed slight differentiation in the ordina-

tion and Bayesian approaches. This result is similar to previous microsatellite studies that

found spawning populations near Lake Michigan were slightly genetically differentiated from

the rest of the main basin in Lake Huron [69,70]. Further, Ebener et al. [97] performed a tag-

recapture study that found evidence of movement of lake whitefish between Lake Huron and

Lake Michigan, which was confirmed by a microsatellite study from Stott et al. [69] who found

evidence of gene flow between the two lakes. Previous work in our lab using δC13 and δN15 sta-

ble isotopes also found that the individuals from the Search Bay and Hammond Bay spawning

aggregations showed differentiation from the other western main basin samples [66]. How-

ever, in contrast to the results obtained here, these samples also clustered with the sites on the

eastern main basin, including Fishing Islands, Scougall Bay, Douglas Point and McRae Point

[66].

Conclusion

In this study we show the importance of investing in an appropriate DNA library and sequenc-

ing effort at the beginning of a study to ensure the best possible population structure inference.

Specifically, we recommend investing in extra sequencing depth at a moderate amount of loci

to address the expected level of population differentiation, with more sequencing effort

required for fine scale studies. Despite the added cost per locus sequenced, it is better to err on

the side of excess sequencing effort (number of loci and sequencing depth) and trim datasets,

rather than be forced to use smaller or suboptimal datasets in analyses. The required sequenc-

ing depth is a consistent matter of debate in next-generation DNA sequencing studies. Unfor-

tunately, there is no one-size-fits-all formula for this critical sequencing target. Generally,

more loci and higher sequencing depth is better for population structure studies to maintain

genotyping accuracy and resolution power. Based on loci lost during quality control and bioin-

formatics filtering, a good general target at the outset of a study is to aim for 8-10X more loci

than required after filtering [14,20,98,99]. Here, library B generated ~8.5X more loci than was

present in the final dataset at 12X sequencing depth. Following sequencing, we show the

importance of testing for optimal bioinformatic values and avoiding the use of overly-stringent
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bioinformatic parameters, which may excessively reduce datasets, and are not capable of rescu-

ing poor sequencing efforts. Similar to previous studies, we found that correct filtering of data

has a large impact on data interpretation and the quality of the final dataset, especially with

low sequencing effort [49,92]. The quality of the sequence data and the stringency of the bioin-

formatic parameters has a drastic influence on the number of informative loci in the final data-

set and the downstream population analyses and therefore should be examined to allow for

confidence in biological inference.

Supporting information

S1 File. Investigating the impacts of the minimum number of populations required to con-

tain a locus (-p) with a predefined population map (Pops).

(DOCX)

S1 Fig. Heatmap representing the pairwise fixation indices (FST) estimated using GENOD-

IVE across sample sites found in Lake Huron with 5 sequencing depth thresholds (m) in

the ustacksmodule of STACKS with m3 (a, b), m6 (c, d), m10 (e, f), m15 (g, h) and m20 (i,

j) in library A (a, c, e, g, i) and library B (b, d, f, h, j). No population designations were used

(NoPops)in the populationsmodule and a and minimum of 30% of individuals were required

to contain the locus (-r). Larger FST values represent larger population differentiation. Sites

sampled in Lake Huron were Fishing Islands (FI), McRae Point (MP), Douglas Point (DP),

Scougall Bay (ScB), Search Bay (SB), Hammond Bay (HB), North Point (NP), North Island

(NI) and East Tawas (ET).

(EPS)

S2 Fig. Discriminant analysis of principle components (DAPC) of Lake Huron sample

sites with increasing sequencing depth (m) in the ustacksmodule with m3 (a, b), m6 (c, d),

m10 (e, f), m15 (g, h) and m20 (i, j) in library A (a, c, e, g, i) and library B (b, d, f, h, j). The

DAPC analysis was run with 40 principle components (N/3). No population designations were

used (NoPops)in the populationsmodule and a and minimum of 30% of individuals were

required to contain the locus (-r). Distinct ellipses indicate population differentiation. Sites

sampled in Lake Huron were Fishing Islands (FI), McRae Point (MP), Douglas Point (DP),

Scougall Bay (ScB), Search Bay (SB), Hammond Bay (HB), North Point (NP), North Island

(NI) and East Tawas (ET).

(EPS)

S3 Fig. ADMIXTURE analysis of the Lake Huron sample sites with increasing sequencing

depth (m) in the ustacksmodule with m3 (a, b), m6 (c, d), m10 (e, f), m15 (g, h) and m20

(i, j) in library A (a, c, e, g, i) and library B (b, d, f, h, j). K2 was used as it had the lowest

cross-validation value post-hoc. Each line represents an individual from the corresponding

sample site. Sites sampled in Lake Huron were Fishing Islands (FI), McRae Point (MP), Doug-

las Point (DP), Scougall Bay (ScB), Search Bay (SB), Hammond Bay (HB), North Point (NP),

North Island (NI) and East Tawas (ET).

(EPS)

S4 Fig. The proportion of loci genotyped in each individual in library (a) A and (b) B with

increasing sequencing depth values (-m) in ustacks.Data were generated using three differ-

ent population maps in the populationsmodule of STACKS, no specified populations

(NoPops), Lake Huron and Dore Lake samples (LHDL) or sample sites (Pops). The

box represents the interquartile range of the data, the line in the middle is the median, and the
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lines above and below represent the maximum and minimum, respectively.

(TIFF)

S5 Fig. Heatmap representing the pairwise fixation indices (FST) estimated using GENOD-

IVE across all sample sites with 3 different population maps in the populationsmodule: (1)

no population differentiation (NoPops; a, b), (2) Dore Lake and Lake Huron designations

(LHDL; c, d) and (3) sample site designations (Pops; e, f) in both library A (a, c, e) and B

(b, d, f). The minimum sequencing depth (-m) was set at 3 and minimum percentage of indi-

viduals required to contain the locus (-r) was 30%. Larger FST values represent larger popula-

tion differentiation. Sites were sampled in Dore Lake (DL) and nine locations in Lake Huron:

Fishing Islands (FI), McRae Point (MP), Douglas Point (DP), Scougall Bay (ScB), Search Bay

(SB), Hammond Bay (HB), North Point (NP), North Island (NI) and East Tawas (ET).

(EPS)

S6 Fig. Discriminant analysis of principle components (DAPC) of all sample sites with 3

different population maps in the populationsmodule: (1) no population differentiation

(NoPops; a, b), (2) Dore Lake and Lake Huron designations (LHDL; c, d) and (3) sample

site designations (Pops; e, f) in both library A (a, c, e) and B (b, d, f). The minimum

sequencing depth (-m) was set at 3 and minimum percentage of individuals required to con-

tain the locus (-r) was 30%. The DAPC analysis was run with 46 principle components (N/3)

for the analysis. Distinct ellipses indicate population differentiation. Sites were sampled in

Dore Lake (DL) and nine locations in Lake Huron: Fishing Islands (FI), McRae Point (MP),

Douglas Point (DP), Scougall Bay (ScB), Search Bay (SB), Hammond Bay (HB), North Point

(NP), North Island (NI) and East Tawas (ET).

(EPS)

S7 Fig. Heatmap representing the pairwise fixation indices (FST) estimated using GENOD-

IVE across Lake Huron sample sites with 3 different population maps in the populations

module: (1) no population differentiation (NoPops; a, b), (2) Dore Lake and Lake Huron

designations (LHDL; c, d) and (3) sample site designations (Pops; e, f) in both library A (a,

c, e) and B (b, d, f). The minimum sequencing depth (-m) was set at 3 and minimum percent-

age of individuals required to contain the locus (-r) was 30%. Larger FST values represent larger

population differentiation. Sites sampled in Lake Huron were Fishing Islands (FI), McRae

Point (MP), Douglas Point (DP), Scougall Bay (ScB), Search Bay (SB), Hammond Bay (HB),

North Point (NP), North Island (NI) and East Tawas (ET).

(EPS)

S8 Fig. Discriminant analysis of principle components (DAPC) of Lake Huron sites with 3

different population maps in the populationsmodule: (1) no population differentiation

(NoPops; a, b), (2) Dore Lake and Lake Huron designations (LHDL; c, d) and (3) sample

site designations (Pops; e, f) in both library A (a, c, e) and B (b, d, f). The minimum

sequencing depth (-m) was set at 3 and minimum percentage of individuals required to con-

tain the locus (-r) was 30%. The DAPC analysis was run with 46 principle components (N/3)

for the analysis. Distinct ellipses indicate population differentiation. Sites sampled in Lake

Huron were Fishing Islands (FI), McRae Point (MP), Douglas Point (DP), Scougall Bay (ScB),

Search Bay (SB), Hammond Bay (HB), North Point (NP), North Island (NI) and East Tawas

(ET).

(EPS)

S9 Fig. ADMIXTURE analysis of all sample sites with 3 different population maps in the

populationsmodule: (1) no population differentiation (NoPops; a, b), (2) Dore Lake and
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Lake Huron designations (LHDL; c, d) and (3) sample site designations (Pops; e, f) in both

library A (a, c, e) and B (b, d, f). The minimum sequencing depth (-m) was set at 3 and mini-

mum percentage of individuals required to contain the locus (-r) was 30%. K2 was used as it

had the lowest cross-validation value post-hoc. Each line represents an individual from the

corresponding sample site. Sites were sampled in Dore Lake (DL) and nine locations in Lake

Huron: Fishing Islands (FI), McRae Point (MP), Douglas Point (DP), Scougall Bay (ScB),

Search Bay (SB), Hammond Bay (HB), North Point (NP), North Island (NI) and East Tawas

(ET).

(TIFF)

S10 Fig. ADMIXTURE analysis of the Lake Huron sample sites with 3 different popula-

tion maps in the populationsmodule: (1) no population differentiation (NoPops; a, b), (2)

Dore Lake and Lake Huron designations (LHDL; c, d) and (3) sample site designations

(Pops; e, f) in both library A (a, c, e) and B (b, d, f). The minimum sequencing depth (-m)

was set at 3 and minimum percentage of individuals required to contain the locus (-r) was

30%. K2 was used as it had the lowest cross-validation value post-hoc. Each line represents an

individual from the corresponding sample site. Sites sampled in Lake Huron were Fishing

Islands (FI), McRae Point (MP), Douglas Point (DP), Scougall Bay (ScB), Search Bay (SB),

Hammond Bay (HB), North Point (NP), North Island (NI) and East Tawas (ET).

(EPS)

S11 Fig. The number of polymorphic loci (a) and the proportion of loci genotyped (b)

with increasing minimum numbers of populations required to contain the locus. The

box represents the interquartile range of the data, the line in the middle is the median, and the

lines above and below represent the maximum and minimum, respectively.

(EPS)

S12 Fig. Identity-by-missingness (IBM) plot generated using grur with increasing p values

in library A using the Pops population map in the populationmodule of STACKS: p1 (a),

p2 (b), p3 (c), p4 (d), p5 (e), p6 (f), p7 (g), p8 (h), p9 (i), p10 (j). The minimum sequencing

depth (-m) was set at 3 and minimum percentage of individuals required to contain the locus

(-r) was 30%. The IBM analysis is conducted using a Principal Coordinates Analysis (PCoA)

to determine clustering based on missing data. The x and y axes represent the first and second

principal coordinate, respectively. Sites were sampled in Dore Lake (DL) and nine locations in

Lake Huron: Fishing Islands (FI), McRae Point (MP), Douglas Point (DP), Scougall Bay (ScB),

Search Bay (SB), Hammond Bay (HB), North Point (NP), North Island (NI) and East Tawas

(ET).

(EPS)

S13 Fig. Discriminant analysis of principle components (DAPC) plots of lake whitefish

from Dore Lake (DL) and Lake Huron with a minimum number of populations containing

the locus of (a) 1, (b) 5 and (c) 10 in library A and (d) 1, (e) 5 and (f) 10 in library B. The

minimum sequencing depth (-m) was set at 3, the minimum percentage of individuals

required to contain the locus (-r) was 30% and sample site designations (Pops) were used in

the population map. Non-overlapping ellipses indicate population differentiation. Sites were

sampled in Dore Lake (DL) and nine locations in Lake Huron: Fishing Islands (FI), McRae

Point (MP), Douglas Point (DP), Scougall Bay (ScB), Search Bay (SB), Hammond Bay (HB),

North Point (NP), North Island (NI) and East Tawas (ET).

(EPS)
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S14 Fig. ADMIXTURE plots of lake whitefish from Dore Lake (DL) and Lake Huron (LH)

using (a) library A (b) B with K = 2. Each plot shows increasing numbers of populations

required to contain the locus with p1, p5 and p10. The minimum sequencing depth (-m) was

set at 3, the minimum percentage of individuals required to contain the locus (-r) was 30% and

sample site designations (Pops) were used in the population map. Each bar represents a single

individual with the colour corresponding to the ancestry fraction to each group. Sites were

sampled in Dore Lake (DL) and nine locations in Lake Huron: Fishing Islands (FI), McRae

Point (MP), Douglas Point (DP), Scougall Bay (ScB), Search Bay (SB), Hammond Bay (HB),

North Point (NP), North Island (NI) and East Tawas (ET).

(TIFF)

S15 Fig. The number of polymorphic loci (a) and the proportion of genotyped loci (b)

with increasing minimum percentage of individuals within a population required to have

a locus in library A (black) and library B (gray). The box represents the interquartile range

of the data, the line in the middle is the median, and the lines above and below represent the

maximum and minimum, respectively.

(EPS)

S16 Fig. Heatmap representing the pairwise fixation indices (FST) estimated using GEN-

ODIVE across all sample sites increasing the minimum percentage of individuals required

to contain a locus (r) in the populationsmodule with r10 (a, b), r30 (c, d), r50 (e, f) and r70

(g, h) in both library A (a, c, e, g) and B (b, d, f, h). The minimum sequencing depth (-m)

was set at 3 and no sample site designations (NoPops) were used in the population map. Larger

FST values represent larger population differentiation. Sites were sampled in Dore Lake (DL)

and nine locations in Lake Huron: Fishing Islands (FI), McRae Point (MP), Douglas Point

(DP), Scougall Bay (ScB), Search Bay (SB), Hammond Bay (HB), North Point (NP), North

Island (NI) and East Tawas (ET).

(EPS)

S17 Fig. Heatmap representing the pairwise fixation indices (FST) estimated using GEN-

ODIVE across Lake Huron sample sites increasing the minimum percentage of individuals

required to contain a locus (r) in the populationsmodule with r10 (a, b), r30 (c, d), r50 (e,

f) and r70 (g, h) in both library A (a, c, e, g) and B (b, d, f, h). The minimum sequencing

depth (-m) was set at 3 and no sample site designations (NoPops) were used in the population

map. Larger FST values represent larger population differentiation. Sites sampled in Lake

Huron were Fishing Islands (FI), McRae Point (MP), Douglas Point (DP), Scougall Bay (ScB),

Search Bay (SB), Hammond Bay (HB), North Point (NP), North Island (NI) and East Tawas

(ET).

(EPS)

S18 Fig. Discriminant analysis of principle components (DAPC) plots of lake whitefish

from Dore Lake (DL) and Lake Huron increasing the minimum percentage of individuals

required to contain a locus (r) in the populationsmodule with r10 (a, b), r30 (c, d), r50 (e,

f) and r70 (g, h) in both library A (a, c, e, g) and B (b, d, f, h). The minimum sequencing

depth (-m) was set at 3 and no sample site designations (NoPops) were used in the population

map. Non-overlapping ellipses indicate population differentiation. Sites were sampled in Dore

Lake (DL) and nine locations in Lake Huron: Fishing Islands (FI), McRae Point (MP), Douglas

Point (DP), Scougall Bay (ScB), Search Bay (SB), Hammond Bay (HB), North Point (NP),

North Island (NI) and East Tawas (ET).

(EPS)
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S19 Fig. Discriminant analysis of principle components (DAPC) plots of lake whitefish

from Lake Huron sample sites increasing the minimum percentage of individuals

required to contain a locus (r) in the populationsmodule with r10 (a, b), r30 (c, d), r50 (e,

f) and r70 (g, h) in both library A (a, c, e, g) and B (b, d, f, h). The minimum sequencing

depth (-m) was set at 3 and no sample site designations (NoPops) were used in the population

map. Non-overlapping ellipses indicate population differentiation. Sites sampled in Lake

Huron were Fishing Islands (FI), McRae Point (MP), Douglas Point (DP), Scougall Bay (ScB),

Search Bay (SB), Hammond Bay (HB), North Point (NP), North Island (NI) and East Tawas

(ET).

(EPS)

S20 Fig. ADMIXTURE plots of lake whitefish from Dore Lake (DL) and Lake Huron (LH)

increasing the minimum percentage of individuals required to contain a locus (r) in the

populationsmodule with r10 (a, b), r30 (c, d), r50 (e, f) and r70 (g, h) in both library A (a,

c, e, g) and B (b, d, f, h). K2 was used as it had the lowest cross-validation value post-hoc. The

minimum sequencing depth (-m) was set at 3 and no sample site designations (NoPops) were

used in the population map. Each bar represents a single individual with the colour corre-

sponding to the ancestry fraction to each group. Sites were sampled in Dore Lake (DL) and

nine locations in Lake Huron: Fishing Islands (FI), McRae Point (MP), Douglas Point (DP),

Scougall Bay (ScB), Search Bay (SB), Hammond Bay (HB), North Point (NP), North Island

(NI) and East Tawas (ET).

(TIFF)

S21 Fig. ADMIXTURE plots of lake whitefish from Lake Huron (LH) increasing the mini-

mum percentage of individuals required to contain a locus (r) in the populationsmodule

with r10 (a, b), r30 (c, d), r50 (e, f) and r70 (g, h) in both library A (a, c, e, g) and B (b, d, f,

h). K2 was used as it had the lowest cross-validation value post-hoc. The minimum

sequencing depth (-m) was set at 3 and no sample site designations (NoPops) were used in the

population map. Each bar represents a single individual with the colour corresponding to the

ancestry fraction to each group. Sites sampled in Lake Huron were Fishing Islands (FI),

McRae Point (MP), Douglas Point (DP), Scougall Bay (ScB), Search Bay (SB), Hammond Bay

(HB), North Point (NP), North Island (NI) and East Tawas (ET).

(EPS)
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on the estimation of genetic variation within and between populations. Mol Ecol. 2013; 22(11):3165–78.
https://doi.org/10.1111/mec.12089 PMID: 23110526

45. Cooke TF, Yee MC, Muzzio M, Sockell A, Bell R, Cornejo OE, et al. GBStools: A statistical method for
estimating allelic dropout in reduced representation sequencing data. PLoS Genet. 2016; 12(2):1–18.

46. Henning F, Lee HJ, Franchini P, Meyer A. Genetic mapping of horizontal stripes in Lake Victoria cichlid
fishes: Benefits and pitfalls of using RADmarkers for dense linkagemapping. Mol Ecol. 2014; 23
(21):5224–40. https://doi.org/10.1111/mec.12860 PMID: 25039588

47. Shafer ABA, Peart CR, Tusso S, Maayan I, Brelsford A, Wheat CW, et al. Bioinformatic processing of
RAD-seq data dramatically impacts downstream population genetic inference. Methods Ecol Evol.
2016;1–11.

48. Chattopadhyay B, Garg KM, Ramakrishnan U. Effect of diversity and missing data on genetic assign-
ment with RAD-Seqmarkers. BMCRes Notes. 2014; 7:841. https://doi.org/10.1186/1756-0500-7-841
PMID: 25424532

49. O’Leary SJ, Puritz JB, Willis SC, Hollenbeck CM, Portnoy DS. These aren’t the loci you’e looking for:
Principles of effective SNP filtering for molecular ecologists. Mol Ecol. 2018; 27(16):3193–206.

50. Huang H, Lacey Knowles L. Unforeseen consequences of excluding missing data from next-generation
sequences: Simulation study of rad sequences. Syst Biol. 2016; 65(3):357–65. https://doi.org/10.1093/
sysbio/syu046 PMID: 24996413

51. Wagner CE, Keller I, Wittwer S, Selz OM, Mwaiko S, Greuter L, et al. Genome-wide RAD sequence
data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria
cichlid adaptive radiation. Mol Ecol. 2013; 22(3):787–98. https://doi.org/10.1111/mec.12023 PMID:
23057853

52. Wessinger CA, Freeman CC, Mort ME, Rausher MD, Hileman LC. Multiplexed shotgun genotyping
resolves species relationships within the North American genus Penstemon. Am J Bot. 2016; 103
(5):912–22. https://doi.org/10.3732/ajb.1500519 PMID: 27208359

53. Hodel RGJ, Chen S, Payton AC, McDaniel SF, Soltis P, Soltis DE. Adding loci improves phylogeo-
graphic resolution in red mangroves despite increasedmissing data: Comparing microsatellites and
RAD-Seq and investigating loci filtering. Sci Rep. 2017; 7(1):1–14. https://doi.org/10.1038/s41598-016-
0028-x

54. Tripp EA, Tsai YHE, Zhuang Y, Dexter KG. RADseq dataset with 90%missing data fully resolves recent
radiation of Petalidium (Acanthaceae) in the ultra-arid deserts of Namibia. Ecol Evol. 2017; 7(19):7920–
36. https://doi.org/10.1002/ece3.3274 PMID: 29043045

55. Rogers SM, Bernatchez L. The genetic architecture of ecological speciation and the association with
signatures of selection in natural lake whitefish (Coregonus sp. Salmonidae) species pairs. Mol Biol
Evol. 2007; 24(6):1423–38. https://doi.org/10.1093/molbev/msm066 PMID: 17404398

56. VanDeHey J a., Sloss BL, Peeters PJ, Sutton TM. Genetic structure of lake whitefish (Coregonus clu-
peaformis) in Lake Michigan. Can J Fish Aquat Sci. 2009; 66(3):382–93.

"Simple" methodological decisions in RRLs impact population analyses

PLOSONE | https://doi.org/10.1371/journal.pone.0226608 January 24, 2020 33 / 35

https://doi.org/10.1111/1755-0998.12519
http://www.ncbi.nlm.nih.gov/pubmed/26946083
https://doi.org/10.1093/sysbio/syw092
https://doi.org/10.1093/sysbio/syw092
http://www.ncbi.nlm.nih.gov/pubmed/27798402
https://doi.org/10.1111/mec.12084
https://doi.org/10.1111/mec.12084
http://www.ncbi.nlm.nih.gov/pubmed/23110438
https://doi.org/10.1111/mec.12276
https://doi.org/10.1111/mec.12276
http://www.ncbi.nlm.nih.gov/pubmed/23551379
https://doi.org/10.1111/1755-0998.12734
https://doi.org/10.1111/1755-0998.12734
http://www.ncbi.nlm.nih.gov/pubmed/29120082
https://doi.org/10.1111/mec.12089
http://www.ncbi.nlm.nih.gov/pubmed/23110526
https://doi.org/10.1111/mec.12860
http://www.ncbi.nlm.nih.gov/pubmed/25039588
https://doi.org/10.1186/1756-0500-7-841
http://www.ncbi.nlm.nih.gov/pubmed/25424532
https://doi.org/10.1093/sysbio/syu046
https://doi.org/10.1093/sysbio/syu046
http://www.ncbi.nlm.nih.gov/pubmed/24996413
https://doi.org/10.1111/mec.12023
http://www.ncbi.nlm.nih.gov/pubmed/23057853
https://doi.org/10.3732/ajb.1500519
http://www.ncbi.nlm.nih.gov/pubmed/27208359
https://doi.org/10.1038/s41598-016-0028-x
https://doi.org/10.1038/s41598-016-0028-x
https://doi.org/10.1002/ece3.3274
http://www.ncbi.nlm.nih.gov/pubmed/29043045
https://doi.org/10.1093/molbev/msm066
http://www.ncbi.nlm.nih.gov/pubmed/17404398
https://doi.org/10.1371/journal.pone.0226608


57. Evans ML, Prïbel K, Peruzzi S, Bernatchez L. Parallelism in the oxygen transport system of the lake
whitefish: The role of physiological divergence in ecological speciation. Mol Ecol. 2012; 21(16):4038–
50. https://doi.org/10.1111/j.1365-294X.2012.05682.x PMID: 22724454

58. Renaut S, Nolte AW, Rogers SM, Derome N, Bernatchez L. SNP signatures of selection on standing
genetic variation and their association with adaptive phenotypes along gradients of ecological specia-
tion in lake whitefish species pairs (Coregonus spp.). Mol Ecol. 2011; 20(3):545–59. https://doi.org/10.
1111/j.1365-294X.2010.04952.x PMID: 21143332

59. Gagnaire PA, Normandeau E, Pavey SA, Bernatchez L. Mapping phenotypic, expression and transmis-
sion ratio distortion QTL using RADmarkers in the LakeWhitefish (Coregonus clupeaformis). Mol Ecol.
2013; 22(11):3036–48. https://doi.org/10.1111/mec.12127 PMID: 23181719

60. Mee JA, Bernatchez L, Reist JD, Rogers SM, Taylor EB. Identifying designatable units for intraspecific
conservation prioritization: A hierarchical approach applied to the lake whitefish species complex (Core-
gonus spp.). Evol Appl. 2015; 8(5):423–41. https://doi.org/10.1111/eva.12247 PMID: 26029257

61. Dion-Cote A-M, Symonova R, Lamaze FC, Pelikanova S, Rab P, Bernatchez L. Standing chromosomal
variation in LakeWhitefish species pairs: The role of historical contingency and relevance for speciation.
Mol Ecol. 2017; 26(1):178–92. https://doi.org/10.1111/mec.13816 PMID: 27545583

62. Nalepa TF, Mohr LC, Henderson B, Madenjian CP, Schneeberger PJ. LakeWhitefish and Diporeia spp.
in the Great Lakes: An Overview. Proc aWork Dyn lake whitefish (Coregonus clupeaformis) amphipod
Diporeia spp Gt Lakes. 2005;Technical Report 66.

63. Loftus BH, Hulsman PF. Predation of larval lake whitefish (Coregonus clupeaformis) and lake hering (C.
artedii) by adult rainbow smelt (Osmerus mordax). Can J Fish Aquat Sci. 1986; 43:812–8.

64. HarfordW, Latremouille D, Crawford S. A Bayesian stock assessment of lake whitefish (Coregonus clu-
peaformis) in Lake Huron and evaluation of total allowable catch options for 2007 Saugeen Ojibway
Nations commercial harvest. Chippewas of Nawash Unceded First Nation & Saugeen First Nation.
2007.

65. Ebener MP, Kinnunen RE, Schneeberger PJ, Mohr LC, Hoyle JA, Peeters P. Management of commer-
cial fisheries for lake whitefish in the Laurentian Great Lakes of North America. Int Gov Fish Ecosyst
Learn from Past, Find Solut Futur. 2008;99–143.

66. Eberts RL, Wissel B, Simpson GL, Crawford SS, Stott W, Hanner RH, et al. Isotopic Structure of Lake
Whitefish in Lake Huron: Evidence for Regional and Local Populations Based on Resource Use. North
Am J Fish Manag. 2017; 37(1):133–48.

67. Thome C, Mitz C, Sreetharan S, Mitz C, Somers CM, Manzon RG, et al. Developmental effects of the
industrial cooling water additives morpholine and sodium hypochlorite on lake whitefish (Coregonus clu-
peaformis). Environ Toxicol Chem. 2017; 36(7):1955–65. https://doi.org/10.1002/etc.3727 PMID:
28036109

68. Stott W, Ebener MP, Mohr L, Schaeffer J, Roseman EF, HarfordWJ, et al. Genetic structure of lake
whitefi sh, Coregonus clupeaformis, populations in the northern main basin of Lake Huron. Adv Limnol.
2008;63(c):241–60.

69. Stott W, VanDeHey JA, Justin JA. Genetic diversity of lake whitefish in lakes Michigan and Huron; sam-
pling, standardization, and research priorities. J Great Lakes Res. 2010; 36(SUPPL. 1):59–65.

70. Stott W, Ebener MP, Mohr L, Hartman T, Johnson J, Roseman EF. Spatial and temporal genetic diver-
sity of lake whitefish (Coregonus clupeaformis (Mitchill)) from Lake Huron and Lake Erie. Adv Limnol.
2013; 64:205–22.

71. GrahamCF, Eberts RL, Morgan TD, BorehamDR, Lance SL, Manzon RG, et al. Fine-Scale Ecological
and Genetic Population Structure of TwoWhitefish (Coregoninae) Species in the Vicinity of Industrial
Thermal Emissions. PLoS One. 2016; 11(1):e0146656. https://doi.org/10.1371/journal.pone.0146656
PMID: 26807722

72. Bolger AM, LohseM, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinfor-
matics. 2014; 30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170 PMID: 24695404

73. Andrews S. FastQC: A quality control tool for high throughput sequence data [online]. Babraham Bioin-
formatics. 2010.

74. Catchen JM, Amores A, Hohenlohe P, CreskoW, Postlethwait JH. Stacks: building and genotyping Loci
de novo from short-read sequences. G3 (Bethesda). 2011; 1(3):171–82.

75. Gosselin T. grur: an R package tailored for RADseq data imputations. 2018.

76. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A tool set for
whole-genome association and population-based linkage analyses. Am J HumGenet. 2007; 81
(3):559–75. https://doi.org/10.1086/519795 PMID: 17701901

77. Weir BS, CockerhamCC. Estimating F-Statistics for the Analysis of Population Structure Evolution.
1984; 38(6):1358–70. https://doi.org/10.1111/j.1558-5646.1984.tb05657.x PMID: 28563791

"Simple" methodological decisions in RRLs impact population analyses

PLOSONE | https://doi.org/10.1371/journal.pone.0226608 January 24, 2020 34 / 35

https://doi.org/10.1111/j.1365-294X.2012.05682.x
http://www.ncbi.nlm.nih.gov/pubmed/22724454
https://doi.org/10.1111/j.1365-294X.2010.04952.x
https://doi.org/10.1111/j.1365-294X.2010.04952.x
http://www.ncbi.nlm.nih.gov/pubmed/21143332
https://doi.org/10.1111/mec.12127
http://www.ncbi.nlm.nih.gov/pubmed/23181719
https://doi.org/10.1111/eva.12247
http://www.ncbi.nlm.nih.gov/pubmed/26029257
https://doi.org/10.1111/mec.13816
http://www.ncbi.nlm.nih.gov/pubmed/27545583
https://doi.org/10.1002/etc.3727
http://www.ncbi.nlm.nih.gov/pubmed/28036109
https://doi.org/10.1371/journal.pone.0146656
http://www.ncbi.nlm.nih.gov/pubmed/26807722
https://doi.org/10.1093/bioinformatics/btu170
http://www.ncbi.nlm.nih.gov/pubmed/24695404
https://doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pubmed/17701901
https://doi.org/10.1111/j.1558-5646.1984.tb05657.x
http://www.ncbi.nlm.nih.gov/pubmed/28563791
https://doi.org/10.1371/journal.pone.0226608


78. Meirmans PG, van Tienderen PH. GENOTYPE and GENODIVE: two programs for the analysis of
genetic diversity of asexual organisms. Mol Ecol Notes. 2004; 4:792–4.

79. Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a newmethod for the
analysis of genetically structured populations. BMCGenet. 2010; 11:94. https://doi.org/10.1186/1471-
2156-11-94 PMID: 20950446

80. Alexander DH, Novembre J. Fast model-based estimation of ancestry in unrelated individuals.
2009;1655–64.

81. Zhou H, Alexander D, Lange K. A quasi-Newton acceleration for high-dimensional optimization algo-
rithms. Stat Comput. 2011; 21(2):261–73. https://doi.org/10.1007/s11222-009-9166-3 PMID: 21359052

82. Francis RM. Pophelper: an R package and web app to analyse and visualize population structure. Mol
Ecol Resour. 2017; 17(1):27–32. https://doi.org/10.1111/1755-0998.12509 PMID: 26850166

83. Puebla O, Bermingham E, McMillanWO. Genomic atolls of differentiation in coral reef fishes (Hypoplec-
trus spp., Serranidae). 2014;5291–303.

84. Lah L, Trense D, Benke H, Berggren P, Gunnlaugsson P, Lockyer C, et al. Spatially explicit analysis of
genome-wide SNPs detects subtle population structure in a mobile marine mammal, the harbor por-
poise. PLoS One. 2016; 11(10):1–23.

85. Maroso F, Franch R, Dalla G, Arculeo M, Bargelloni L. Marine Genomics RAD SNPmarkers as a tool
for conservation of dolphin fish Coryphaena hippurus in the Mediterranean Sea: Identification of subtle
genetic structure and assessment of populations sex-ratios. Mar Genomics. 2016; 28:57–62. https://
doi.org/10.1016/j.margen.2016.07.003 PMID: 27450636

86. Xu P, Xu S, Wu X, Tao Y, Wang B, Wang S, et al. Population genomic analyses from low-coverage
RAD-Seq data: a case study on the non-model cucurbit bottle gourd. Plant J. 2014; 77(30):430–42.

87. Allendorf FW, Danzmann RG. Secondary tetrasomic segregation of MDH-B and preferential pairing of
homeologues in rainbow trout. Genetics. 1997; 145(4):1083–92. PMID: 9093860

88. Seeb JE, Pascal CE, Grau ED, Seeb LW, Templin WD, Harkins T, et al. Transcriptome sequencing and
high-resolution melt analysis advance single nucleotide polymorphism discovery in duplicated salmo-
nids. Mol Ecol Resour. 2011; 11(2):335–48. https://doi.org/10.1111/j.1755-0998.2010.02936.x PMID:
21429141

89. Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwait JH. Genome evolution and meiotic maps by
massively parallel DNA sequencing: Spotted gar, an outgroup for the teleost genome duplication.
Genetics. 2011; 188(4):799–808. https://doi.org/10.1534/genetics.111.127324 PMID: 21828280

90. Hohenlohe PA, Day MD, Amish SJ, Miller MR, Kamps-Hughes N, Boyer MC, et al. Genomic patterns of
introgression in rainbow and westslope cutthroat trout illuminated by overlapping paired-end RAD
sequencing. Mol Ecol. 2013; 22(11):3002–13. https://doi.org/10.1111/mec.12239 PMID: 23432212

91. Waples RS. Testing for Hardy-Weinberg Proportions: HaveWe Lost the Plot? J Hered. 2014; 106(1):1–
19. https://doi.org/10.1093/jhered/esu062 PMID: 25425676

92. Andrews KR, Luikart G. Recent novel approaches for population genomics data analysis. Mol Ecol.
2014; 23(7):1661–7. https://doi.org/10.1111/mec.12686 PMID: 24495199

93. Alexander DH, Lange K. Enhancements to the ADMIXTURE algorithm for individual ancestry estima-
tion. BMC Bioinformatics. 2011; 12(1):246.

94. McPhail J, Lindsey C. Freshwater fishes of Northwestern Canada and Alaska. Bulletin 173. Fish Res
Board Canada. 1970;

95. Pielou EC. After the ice age the return of life to glaciated North America. Chicago: University of Chi-
cago Press; 1991.

96. Dawson A. Ice Age Earth. Routledge, London; 1992.

97. Ebener MP, Brenden TO,Wright GM, Jones ML, Faisal M. Spatial and temporal distributions of lake
white fish spawning stocks in Northern lakes Michigan and Huron, 2003–2008. J Great Lakes Res.
2010; 36:38–51.

98. Benestan L, Quinn BK, Maaroufi H, Laporte M, Clark FK, Greenwood SJ, et al. Seascape genomics
provides evidence for thermal adaptation and current-mediated population structure in American lobster
(Homarus americanus). Mol Ecol. 2016; 25(20):5073–92. https://doi.org/10.1111/mec.13811 PMID:
27543860

99. Xuereb A, Daigle M, Eric LB, Curtis JMR, Bernatchez L. Asymmetric oceanographic processesmediate
connectivity and population genetic structure, as revealed by RADseq, in a highly dispersive marine
invertebrate (Parastichopus californicus). Mol Ecol. 2018; 27(10):2347–64. https://doi.org/10.1111/
mec.14589 PMID: 29654703

"Simple" methodological decisions in RRLs impact population analyses

PLOSONE | https://doi.org/10.1371/journal.pone.0226608 January 24, 2020 35 / 35

https://doi.org/10.1186/1471-2156-11-94
https://doi.org/10.1186/1471-2156-11-94
http://www.ncbi.nlm.nih.gov/pubmed/20950446
https://doi.org/10.1007/s11222-009-9166-3
http://www.ncbi.nlm.nih.gov/pubmed/21359052
https://doi.org/10.1111/1755-0998.12509
http://www.ncbi.nlm.nih.gov/pubmed/26850166
https://doi.org/10.1016/j.margen.2016.07.003
https://doi.org/10.1016/j.margen.2016.07.003
http://www.ncbi.nlm.nih.gov/pubmed/27450636
http://www.ncbi.nlm.nih.gov/pubmed/9093860
https://doi.org/10.1111/j.1755-0998.2010.02936.x
http://www.ncbi.nlm.nih.gov/pubmed/21429141
https://doi.org/10.1534/genetics.111.127324
http://www.ncbi.nlm.nih.gov/pubmed/21828280
https://doi.org/10.1111/mec.12239
http://www.ncbi.nlm.nih.gov/pubmed/23432212
https://doi.org/10.1093/jhered/esu062
http://www.ncbi.nlm.nih.gov/pubmed/25425676
https://doi.org/10.1111/mec.12686
http://www.ncbi.nlm.nih.gov/pubmed/24495199
https://doi.org/10.1111/mec.13811
http://www.ncbi.nlm.nih.gov/pubmed/27543860
https://doi.org/10.1111/mec.14589
https://doi.org/10.1111/mec.14589
http://www.ncbi.nlm.nih.gov/pubmed/29654703
https://doi.org/10.1371/journal.pone.0226608

