
How Slow is the k-Means Method?

David Arthur
∗

Stanford University
Stanford, CA

darthur@cs.stanford.edu

Sergei Vassilvitskii
†

Stanford University
Stanford, CA

sergei@cs.stanford.edu

ABSTRACT
The k-means method is an old but popular clustering algo-
rithm known for its observed speed and its simplicity. Until
recently, however, no meaningful theoretical bounds were
known on its running time. In this paper, we demonstrate
that the worst-case running time of k-means is superpolyno-

mial by improving the best known lower bound from Ω(n)

iterations to 2Ω(
√

n).

Categories and Subject Descriptors:
F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems

General Terms:
Algorithms, Theory.

Keywords:
K-means, Local Search, Lower Bounds.

1. INTRODUCTION
The k-means method is a well known geometric clustering

algorithm based on work by Lloyd in 1982 [12]. Given a set
of n data points, the algorithm uses a local search approach
to partition the points into k clusters. A set of k initial clus-
ter centers is chosen arbitrarily. Each point is then assigned
to the center closest to it, and the centers are recomputed
as centers of mass of their assigned points. This is repeated
until the process stabilizes. It can be shown that no parti-
tion occurs twice during the course of the algorithm, and so
the algorithm is guaranteed to terminate.

The k-means method is still very popular today, and it
has been applied in a wide variety of areas ranging from
computational biology to computer graphics (see [1, 6, 8]

∗Supported in part by an NDSEG Fellowship, NSF Grant
ITR-0331640, and grants from Media-X and SNRC.
†Supported in part by NSF Grant ITR-0331640, and grants
from Media-X and SNRC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’06, June 5–7, 2006, Sedona, Arizona, USA.
Copyright 2006 ACM 1-59593-340-9/06/0006 ...$5.00.

for some recent applications). The main attraction of the
algorithm lies in its simplicity and its observed speed.

Indeed, the running time of k-means is well studied ex-
perimentally (see, for example, [7]). In their text on pattern
classification, Duda et al. remark that, “In practice the num-
ber of iterations is generally much less than the number of
points” [5]. However, few meaningful theoretical bounds on
the worst-case running time of k-means are known.

1.1 Related Work
There is a trivial upper bound of O(kn) iterations since

no partition of points into clusters is ever repeated during
the course of the algorithm. In d-dimensional space, this
bound was slightly improved by Inaba et al. [9] to O(nkd)
by counting the number of distinct Voronoi partitions on n
points. More recently, Dasgupta [4] presented some tighter
results for a few special cases. He demonstrated a worst-
case lower bound of Ω(n) iterations, and an upper bound of
O(n) for k < 5 and d = 1.

This work was extended by Har-Peled and Sadri [7] in
2005. Again restricting to d = 1, the authors show an upper
bound of O(n∆2) where ∆ is the spread of the point set (de-
fined as the ratio between the largest pairwise distance and
the smallest pairwise distance). They are unable to bound
the running time of k-means in general, but they suggest a
few modifications that are easier to analyze. For example, if
one reclassifies exactly one point per iteration, then k-means

is guaranteed to converge after O(kn2∆2) iterations in any
dimension.

1.2 Our Results
Our main result is a lower bound construction for which

the running time of k-means is superpolynomial. In particu-
lar, we present a set of n data points and a set of adversar-
ially chosen cluster centers for which the algorithm requires

2Ω(
√

n) iterations. We then expand this to show that even
if the initial cluster centers are chosen uniformly at random
from the data points, the running time is still superpolyno-
mial with high probability. We also show our construction
can be modified to have constant spread, thereby disproving
a recent conjecture of Har-Peled and Sadri [7].

Explaining the running times observed in practice remains
an open problem. As a first step, we show that if the data
points are selected from independent normal distributions
in Ω(n/ log n) dimensions, then k-means will terminate in a
polynomial number of steps with high probability. We also
briefly discuss several other ways in which one might hope
to circumvent the worst-case lower bound.

��

��

����

����

�� ��
��

��

��
��

��

CC

B

P

A

Q

R

C

A

B

Q

R

P

A

B

P
Q

R

C

A

B

P
Q

R

(d)(b) (c)(a)

Figure 1: An idealized “reset widget” that can be used to reset the center of some cluster C after k-means has
finished executing: (a) The configuration right before the signaling begins. (b) P switches to cluster C, and
the center of A moves away from Q and R. (c) Q switches to cluster C, thereby resetting the center of C. In
addition, R switches to cluster B, and the center of B moves towards P and Q. (d) P and Q switch to cluster
B. Now C is completely reset.

2. PRELIMINARIES
The k-means algorithm [12] is a method for partitioning

data points into clusters. Let X = {x1, x2, . . . , xn} be a set
of points in R

d. After being seeded with a set of k centers
c1, c2, . . . , ck in R

d, the algorithm partitions these points into
clusters as follows.

1. For each i ∈ {1, . . . , k}, set the cluster Ci to be the set
of points in X that are closer to ci than they are to cj

for all j 6= i.

2. For each i ∈ {1, . . . , k}, set ci to be the center of mass
of all points in Ci: ci = 1

|Ci|
P

xj∈Ci
xj .

3. Repeat steps 1 and 2 until ci and Ci no longer change,
at which point return the clusters Ci.

If there are two centers equally close to a point in X, we
break the tie arbitrarily. If a cluster has no data points at
the end of step 2, we eliminate the cluster and continue as
before. Our lower bound construction will not rely on either
of these degeneracies.

During the analysis it will be useful to talk about a means
configuration.

Definition 2.1. A means configuration M = (X, C) is

a set of data points X and a set of cluster centers C =
{ci}i=1,...,k.

Note that a means configuration M defines an intermedi-
ate point in the execution of the algorithm. Given a means
configuration M , let T (M) denote the number of iterations
required by k-means to converge starting at M . We say that
M is non-degenerate if, as the algorithm is run to comple-
tion, (a) no point is ever equidistant from the two closest
cluster centers and (b) no cluster ever has 0 data points.

3. LOWER BOUNDS
In this section, we demonstrate a means configuration

which requires 2Ω(
√

n) iterations. As the construction is
rather involved, we begin with some intuition, and then
proceed with a formal proof. We have also implemented
the construction in C++ [3].

At the end of the section, we consider a couple modifica-
tions to the main construction. First, we show that even if

the starting centers are chosen uniformly at random from
the data points, there exist examples where a superpolyno-
mial number of iterations is still required with high prob-
ability. Finally, we show how to reduce the spread of any
construction at the cost of increasing the dimensionality of
the instance.

3.1 Intuition
The main idea behind the lower bound construction is

that of a “reset widget”. The role of the widget is to rec-
ognize when k-means has run to completion and to then
reset it back into its initial state. We require the widget
to not interfere with the original data points before or after
the reset operation, thereby ensuring that the new k-means

configuration takes twice as long to run to completion. Our
lower bound is obtained by recursively adding reset widgets.
By ensuring each widget has O(k) new points and O(1) new

clusters, we get the bound of 2Ω(
√

n) iterations.
We begin with an idealized description of a reset widget,

illustrated in Figure 1. We then briefly mention a few issues
that this idealized discussion omits.

3.1.1 A Reset Widget
Suppose we are given a means configuration in R

2 and we
are promised that the final center (cx, cy) of some cluster
C never appears as a cluster center in any previous itera-
tion. We call this a “signaling” means configuration. We
can detect when k-means has run to completion by lifting
the original configuration to R

3, and adding a point P =
(cx, cy , D− ǫ) in a new cluster A with center at (cx, cy, 2D).
If D is large and ǫ is small, then P will switch to C after
k-means finishes executing on the original data set, but no
earlier.

This creates a widget that triggers at the right time. The
next step is to make the widget actually reset C. We do this
by augmenting A to also include a point Q = (dx, dy, D(1 +
ǫ′)) while maintaining the center of A at (cx, cy , 2D). Switch-
ing P from A to C causes the center of C to move towards
Q, and the center of A to move away from Q. As long as
D is sufficiently large, Q will follow P into C on the next
iteration, regardless of the values of dx and dy . In particu-
lar, this means we can choose dx and dy so as to reset the
center of C to its initial position (at least in the x and y

coordinates). To avoid changing C’s z coordinate, we make
two symmetric reset widgets, one above the xy-plane, and
one below. See Figure 1, parts (a) through (c).

Unfortunately, this method is not quite sufficient. We
have reset the center of C by adding points to the cluster.
As k-means progresses the second time through, these points
will linger with C and provide a constant drag back to its
original position. To actually make the reset configuration
proceed as the original did, C must lose these new points
immediately after the reset occurs.

To ensure this happens, we add a third point R near the
center of A, and a new cluster B near R. Now B will acquire
R during the reset process, which moves it into position
to recapture the points P and Q. The whole process is
illustrated in Figure 1.

We have now fully reset C. Applying this technique simul-
taneously to each cluster, we can hope to double the running
time of k-means.

3.1.2 Pitfalls
A few additional considerations come into play when for-

malizing this intuition.

1. We can only add a reset widget to a signaling config-
uration. To recursively add reset widgets, we need to
ensure that adding a reset widget maintains the sig-
naling property.

2. We can only reset a cluster if that specific cluster sig-
naled on the final iteration. Thus, we need to be able
to take a signaling configuration and augment it so
that each cluster simultaneously signals.

3. We cannot afford to double the number of clusters by
adding a different reset widget for each cluster. In-
stead, we must have one widget reset all clusters at
the same time. To accomplish this, it is convenient to
have the reset widget cluster centered equally far from
each signal, which requires placing certain cluster cen-
ters on a hypersphere.

3.2 The Formal Construction
We now formally present the reset widget. This requires

a careful placement of points and cluster centers, but the
intuition is exactly the one described above.

We first state our main results.

Definition 3.1. A means configuration is said to be sig-
naling if at least one final cluster center is distinct from

every cluster center arising in previous iterations.

Theorem 3.1. Let M be a signaling, non-degenerate means

configuration on n data points with k clusters. Then there

exists a signaling, non-degenerate means configuration N
on n + O(k) data points with k + O(1) clusters such that

T (N) ≥ 2T (M).

Starting with an arbitrary configuration, we can apply
this construction t times to obtain a means configuration
with O(t2) points and O(t) clusters for which T (M) ≥ 2t.
The superpolynomial complexity of k-means follows imme-
diately.

Corollary 3.2. The worst-case complexity of k-means

on n data points is 2Ω(
√

n).

We prove Theorem 3.1 in two parts. First, we show that
particular types of means configurations, called super-signa-
ling configurations, can be slightly enlarged to create non-
degenerate, signaling means configurations with twice the
complexity. We then show how to slightly enlarge non-de-
generate, signaling means configurations to obtain super-
signaling configurations, thereby establishing the recursion.

Definition 3.2. A means configurations M is said to be

super-signaling if it has the following properties.

1. The final positions of all cluster centers lie on a hy-

persphere.

2. The final positions of all cluster centers are distinct

from all cluster centers arising in previous iterations.

3. There exists a means configuration M ′ with the same

set of data points as M and with the same number of

clusters as M . Furthermore, T (M ′) = T (M) and at

least one final cluster center in M ′ is distinct from any

other cluster center arising in all iterations starting

from M and M ′.

Lemma 3.3. Let M be a super-signaling, non-degenerate

means configuration on n data points with k clusters. Then

there exists a signaling, non-degenerate means configuration

N on n + O(k) data points with k + O(1) clusters such that

T (N) ≥ 2T (M).

Proof. We begin with a formal definition of our con-
struction, and then trace the execution of k-means in Table
1 and Figures 3 - 7.

Let M ′ be given as in Definition 3.2. Label the clusters in
M and M ′ with 1 through k, and let xi,t (respectively yi,t)
denote the center of cluster i in M (respectively M ′) after
t iterations. Also let x̃i denote the final center of cluster
i in M and let ni denote the final number of data points
in cluster i. Since M is super-signaling, we may assume
without loss of generality that ‖x̃i‖ is independent of i (e.g.
the center of the hypersphere passing through the xi’s lies
at the origin). Finally, let zi = 1

2
((ni + 4)yi,0 − (ni + 2)x̃i).

Let V (M) denote the data points in M and let ℓ denote
the diameter of {0, zi, V (M)}. Let d, r and ǫ be such that
d ≫ r ≫ ℓ ≫ ǫ > 0 and let d′ be such that (d′)2 = d2 +
‖x̃i‖2 − ǫ. Finally, let u1, u2, . . . , uk and v1, v2, . . . , vk be
vectors in R

2 such that (a) ‖ui‖ = ni+2
2

, (b) vi = ui
‖ui‖ , and

(c) vi 6= vj for all i, j.
Now consider the following points in Span(V (M)) × R ×

R
2 × R,

Pi = (x̃i, d
′, rui, 0) for i ≤ k,

P ′
i = (−x̃i, d

′ + 2d,−rui, 0) for i ≤ k,

Qi = (zi, d
′ + 0.001d, rvi, 0) for i ≤ k,

Q′
i = (−zi, d

′ + 1.999d,−rvi, 0) for i ≤ k,

A = (0, d′ + 0.99d, 0, 0),

A′ = (0, d′ + 1.01d, 0, 0),

X = (0, d′ + 0.99d, 0, 0.2d),

X ′ = (0, d′ + 1.01d, 0, 0.2d).

For each such point Z, we define Z to be the reflection of P
about the hyperplane Span(V (M))×{0}×R

2 ×R — i.e. Pi

has coordinates (x̃i,−d′, rui, 0). Let V (N) denote the set of
all these points along with the natural embedding of V (M)

V (M)

Θ(ℓ)

0.02d0.02d

0.99d 0.989d 0.989d

Θ(r)

0.001d 0.02d 0.001d d′
≈ d d′

≈ d 0.001d 0.02d 0.001d

0.99d

A′ A

Qi

X′

P ′

i Q′

i Pi

X

A

Qi Pi

A′

X X′

Q′

i P ′

i

Figure 2: The data points constructed in Lemma 3.3 (Figure not to scale). Note d ≫ r ≫ ℓ.

t Clusters of N

0, . . . , T(M) Ci = Mi,t with center = (xi,t, 0, 0, 0)
G = {Pi, P

′
i , Qi, Q

′
i, A, A′} with center = (0, d′ + d, 0, 0)

H = {X} with center = (0, d′ + 0.99d, 0, 0.2d)
H′ = {X ′} with center = (0, d′ + 1.01d, 0, 0.2d)

T(M)+1 Ci = M̃i ∪ {Pi, Pi} with center = (x̃i, 0, rvi, 0)
G = {P ′

i , Qi, Q
′
i, A, A′} with center (O(ℓ), d′ + αd, O(rn), 0) with 1.25 ≤ α ≤ 4/3

H = {X} with center = (0, d′ + 0.99d, 0, 0.2d)
H′ = {X ′} with center = (0, d′ + 1.01d, 0, 0.2d)

T(M)+2 Ci = M̃i ∪ {Pi, Qi, Pi, Qi} with center = (yi,0, 0, rvi, 0)
G = {P ′

i , Q
′
i} with center = (O(ℓ), d′ + 1.9995d, O(rn), 0)

H = {A, X} with center = (0, d′ + 0.99d, 0, 0.1d)
H′ = {A′, X ′} with center = (0, d′ + 1.01d, 0, 0.1d)

T(M)+3 Ci = M′
i,1 with center = (yi,1, 0, 0, 0)

G = {P ′
i , Q

′
i} with center = (O(ℓ), d′ + 1.9995d, O(rn), 0)

H = {A, X, Pi, Qi} with center = (O(ℓ), d′ + 0.0005d + 0.9895
k+1

d, O(rn), d
2k+2

)

H′ = {A′, X ′} with center = (0, d′ + 1.01d, 0, 0.1d)

T(M)+4, . . . , Ci = M′
i,t−T (M)−2 with center = (yi,t−T (M)−2, 0, 0, 0)

2T(M)+2 G = {P ′
i , Q

′
i} with center = (O(ℓ), d′ + 1.9995d, O(rn), 0)

H = {Pi, Qi} with center = (O(ℓ), d′ + 0.0005d, O(rn), 0)
H′ = {A, A′, X, X ′} with center = (0, d′ + d, 0, 0.1d)

Table 1: The clusters of N after t iterations of k-means (see Lemma 3.3). Mi,t (respectively M′
i,t) denotes

the points in cluster of i of M (respectively M ′) after t iterations, and M̃i denotes the final points in cluster
i of M . All table entries describe clusters immediately after the centers are recomputed. Rather than going
though every calculation, we discuss the key elements in the following figures.

H H
′

GG

HH′

Ci

Figure 3: Clustering at 0 ≤ t ≤ T (M) (see Lemma 3.3). The clusters contained within V (M) proceed indepen-
dently of the other points. The remaining clusters are precarious but temporarily stable. For example, to see
that Pi does not switch from cluster G to Cj, note that the distance squared from Pi to the center of Cj minus the
distance squared from Pi to the center of G is (‖x̃i−xj,t‖2+(d′)2+‖rui‖2)−(‖x̃i‖2+d2+‖rui‖2) = ‖xi−xj,t‖2−ǫ > 0.
The last inequality follows from the fact that ℓ ≫ ǫ and that, since M is super-signaling, x̃i 6= xj,t.

H
′

G

H

G

H′

Ci

H

Figure 4: Clustering at t = T (M) + 1 (see Lemma 3.3). We now have xi,t = x̃i for all i, and thus by the
calculation in the previous step, each Pi switches to cluster Ci. Clearly, this will result in a substantial shift of
the center of G (and similarly of G). Furthermore, the ui’s have been chosen so that the center of Ci becomes
(x̃i, 0, rvi, 0).

H HH′

Ci

GG

H
′

Figure 5: Clustering at t = T (M) + 2 (see Lemma 3.3). First consider V (M). These points continue to be
closer to the Ci’s than to other clusters. Each Ci center has moved since the previous iteration, but they have
all moved by a constant amount (namely r‖vi‖ = r) in a direction orthogonal to Span(V (M)). Therefore, the
closest center to each point in V (M) has not changed, and thus these points remain in their current clusters.
On the other hand, since the center of G moved away, A, A′, and Qi all switch to different clusters. The first
two clearly switch to H and H′, but Qi could reasonably switch to either H or any Cj . The distance squared
from Qi to the center of Cj is (1.001d)2 + r2‖vi − vj‖2 + O(ℓ2), which is minimized when i = j. The distance
squared from Qi to the center of H is (0.989d)2 +(0.2d)2 +O(r2). Since 0.9892 +0.22 > 1.0012 and d ≫ r, ℓ, it follows
that Qi will in fact switch to Ci.
Note that the analysis so far does not depend on the V (M)-coordinate of any Qi, so we may choose those to
make the V (M)-coordinate of each Ci equal to yi,0 at the end of this step.

G

H′

Ci

GH

H
′

H

Figure 6: Clustering at t = T (M) + 3 (see Lemma 3.3). By acquiring A, cluster H has moved closer to the
other points. In fact, the distance squared from Pi to the center of H is now (0.99d)2 + (0.1d)2 + O(r2) < d2.
Thus, each Pi switches to H, and a similar calculation shows each Qi also switches to H.
Now consider V (M). As in the previous step, we may ignore the rvi component of each Ci center. The V (M)
component of each Ci center is now yi,0, which means the clustering proceeds according to M ′, and the points
in V (M) associated with Ci at the end of this step are M′

i,1.

H
′

H

H′

G

Ci

H G

Figure 7: Clustering at T (M) + 4 ≤ t ≤ 2T (M) + 2 (see Lemma 3.3). The center of H moves because Pi and Qi

have been absorbed into H. Also A and X switch to H′. Beyond that, the configuration is now very stable,
and the clustering on V (M) will proceed normally according to M ′.

in Span(V (M))×{0}×{0, 0}×{0}. This setup is illustrated
in Figure 2.

We also define clusters with initial centers in Span(V (M))×
R × R

2 × R as follows.

Ci with center = (xi,0, 0, 0, 0) for i ≤ k,

G with center = (0, d′ + d, 0, 0),

H with center = (0, d′ + 0.99d, 0, 0.2d),

H′ with center = (0, d′ + 1.01d, 0, 0.2d).

For each such cluster C other than the Ci’s, we define C to
be a cluster whose initial center is obtained by reflecting the
initial center of C about the hyperplane Span(V (M))×{0}×
R

2 × R.
Let N denote the means configuration with all these clus-

ter centers and with data points V (N). We trace the evolu-
tion of k-means on N via Table 1 and Figures 3 - 7. Based
upon this, we see that T (N) ≥ T (M) + T (M ′) = 2T (M),
and that N is non-degenerate and signaling. Since N has
n + O(k) data points and k + O(1) clusters, the result fol-
lows.

This completes the first half of our construction, in which
we transform a super-signaling configuration into a signaling
configuration with twice the complexity. We now show how
to transform a signaling configuration into a super-signaling
configuration with equal complexity.

Lemma 3.4. Let N be a signaling, non-degenerate means

configuration on n data points with k clusters. Then there

exists a super-signaling, non-degenerate means configuration

M on n + O(k) data points with k + O(1) clusters such that

T (M) ≥ T (N).

Proof. Let xi,t denote the center of cluster i in N after
t iterations and let x̃i denote the final center of cluster i
in N . Since N is signaling, we may assume without loss of
generality that x̃1 is distinct from all other xi,t. Let V (N)
denote the set of data points in N and let ℓ denote the
diameter of V (N). Let d and ǫ be such that d ≫ ℓ ≫ ǫ
and let d′ be such that (d′)2 = d2 − ǫ. Also, let a, b and
c be points in V (N) such that b = a+c

2
and such that the

distance from a to V (N) is much larger than both ℓ and
‖c − a‖.

Now, take α = 1
3k+9

, and consider the following points in

Span(V (N)) × R,

P = (x̃1, d
′),

Xi = (x̃i, d
′ + αd) for i ≤ k,

A, B, C = (a, 0), (b, 0), (c, 0),

A′, B′, C′ = (a, d′ + αd), (b, d′ + αd), (c, d′ + αd),

Q =
“

(k + 4)x̃1 −
X

x̃i − 3b, d′ + (k + 14/3)d
”

.

For each such point Z 6∈ {A, B, C}, we also define Z to be
the reflection of Z about the hyperplane Span(V (N))×{0}.
Let V (M) denote the set of all these points as well as the
natural embedding of V (N) in Span(V (N)) × {0}. This is
illustrated in Figure 8.

We also define clusters with centers in Span(V (N)) × R

as follows.

Ci with center = (xi,0, 0) for i ≤ k,

H with center = ((a + b)/2, 0) ,

H′ with center = (c, 0),

J with center = (x1, d
′ + d),

J with center = (x1,−d′ − d).

Let M denote the means configuration with all these clus-
ter centers and with data points V (M). We trace the evo-
lution of k-means on M via Table 2 and Figures 9 - 11.
Based upon this, we see that T (M) ≥ T (N), that M is
non-degenerate, and also that the final cluster sets of M are
distinct from all cluster sets arising in previous configura-
tions.

Also let M ′ denote the means configuration with data
points V (M) and with cluster centers as above except with
H centered at (a, 0) and H′ centered at ((b+ c)/2, 0). Then,
the same calculation shows that T (M ′) = T (M) and that
the final cluster set for H is distinct from all other cluster
sets arising in M or M ′.

Finally, since M and M ′ are non-degenerate, there exists
a δ > 0 such that we may move each data point by up to δ
without altering the k-means execution. Taking advantage
of this, we can ensure that the centers of distinct cluster sets
are distinct, and that the final cluster centers of M ′ lie on a
hypersphere. This makes M super-signaling, and the result
follows.

Theorem 3.1 follows immediately from Lemma 3.3 and
Lemma 3.4.

Xi

≈ d(k + 5)
d

3k+9 d′
≈ d d′

≈ d
d

3k+9 ≈ d(k + 5)

Θ(ℓ)

V (N) Xi

A

B

C

P

B′

C′

Q
P

Q

B′

A′

C′

A′

Figure 8: The data points constructed in Lemma 3.4. Note d ≫ ℓ.

t Clusters of M

0, . . . , T(N) Ci = Ni,t with center = (xi,t, 0) for 1 ≤ i ≤ k
H = {A, B} with center = (a+b

2
, 0)

H′ = {C} with center = (c, 0)
J = {P, Xi, A

′, B′, C′, Q} with center = (x̃1, d
′ + d)

T(N)+1 C1 = Ñ1 ∪ {P, P} with center = (x̃1, 0)

Ci = Ñi with center = (x̃i, 0) for 2 ≤ i ≤ k
H = {A, B} with center = (a+b

2
, 0)

H′ = {C} with center = (c, 0)
J = {Xi, A

′, B′, C′, Q} with center = (x̃1, d
′ + d + d

k+4
)

T(N)+2 C1 = Ñ1 ∪ {P, X1, P , X1} with center = (x̃1, 0)

Ci = Ñi ∪ {Xi, Xi} with center = (x̃i, 0) for 2 ≤ i ≤ k
H = {A, B, A′, B′, A′, B′} with center = (a+b

2
, 0)

H′ = {C, C′, C′} with center = (c, 0)
J = {Q} with center = ((k + 4)x̃1 −

P

x̃i − 3b, d′ + (k + 14/3)d)

Table 2: The clusters of M after t iterations of k-means (see Lemma 3.4). Ni,t denotes the points in cluster of

i of N after t iterations, and Ñi denotes the final points in cluster i of N . All table entries describe clusters
immediately after the centers are recomputed. Rather than going though every calculation, we discuss the
key elements in the following pictures.

J J

H

H
′

Ci

Figure 9: Clustering at 0 ≤ t ≤ T (N) (see Lemma 3.4). As with the first part of the construction for Lemma
3.3, the clusters contained within V (N) proceed independently of the other points. The remaining clusters
are precarious but temporarily stable. For example, to see that P does not switch from cluster J to Ci, note
that the distance squared from P to the center of Ci minus the distance squared from P to the center of J is
‖x̃1 − xi,t‖2 + (d′)2 − d2 = ‖x1 − xi,t‖2 − ǫ > 0. The last inequality follows from the fact that ℓ ≫ ǫ and that, since
N is signaling, x̃1 6= xi,t.

H
′

J

Ci

H

J

Figure 10: Clustering at t = T (N) + 1 (see Lemma 3.4). We now have x1,t = x̃1, and thus by the calculation
in the previous step, P switches to cluster C1. Since P also switches to cluster C1, the center of C1 does not
change. However, the centers of J and J ′ both move slightly further away from the other points.

H

H
′

J

Ci

J

Figure 11: Clustering at t = T (N) + 2 (see Lemma 3.4). The points Xi, A
′, B′, C′ were all chosen to be only

barely stable within J . Thus, after the center of J moves, these points switch to the closest clusters in V (N).
For example, the distance from Xi to the center of Ci is approximately d + d

3k+9
, and the distance from Xi to

the center of J is approximately d + d
k+4

− d
3k+9

> d + d
3k+9

Again, only the centers of J and J move as a result
of this, and it is easy to check the new configuration is stable.

3.3 Probability Boosting
The construction used to prove Theorem 3.1 requires both

a specific set of data points and a specific set of cluster cen-
ters. In practice, however, only the data points are specified
and the initial cluster centers are chosen by the algorithm.
Typically, the initial centers are chosen uniformly at ran-
dom from the data points. Given this, one might ask if the
superpolynomial lower bound can actually arise with non-
vanishing probability.

In this section, we show how to modify our lower bound
construction to apply with high probability even if the clus-
ter centers are chosen randomly from the existing data points.
It follows that k-means can still be very slow for certain sets
of data points, even accounting for the random choice of
cluster centers.

Proposition 3.5. Let M be a means configuration on n
points. Then, there exists a set of O(n3 log n) points such

that if a means configuration N is constructed with these

data points and with 4n log n cluster centers chosen ran-

domly from the set of data points, then T (N) ≥ T (M) with

probability 1 − O(1
n
).

Proof. Let k be the number of clusters in M . For i ≤ k
and j ≤ m, let ui,j denote orthogonal unit vectors in R

mk.
Let V (M) denote the set of data points in M and let ℓ
denote the diameter of V (M). Let d, r and ǫ be such that
d ≫ r ≫ ℓ ≫ ǫ. Also, let ni denote the number of points
in cluster i in M after one iteration. Replacing M with two
identical overlapping copies if necessary, we may assume that
ni > 1. Finally, let xi,t denote the center of cluster i in M
after t iterations.

Let m be a positive integer to be fixed later and consider
the point set in Span(V (M)) × R

km × R obtained by first
embedding two copies of V (M) at Span(V (M))×{0}× {0}
and then adding the following points.

1. Pi,j = (xi,0,
P

(i′,j′) 6=(i,j) rui′,j′ , d + jǫ) for i ≤ k, j ≤
m.

2. Qi,ℓ = (
nixi,1−xi,0

ni−1
,
P

i′ 6=i

P

j′
rui′,j′ , d − ℓǫ) for i ≤ k

and ℓ ≤ ni − 1.

3. Oj = (0,
P

i′

P

j′
rui′,j′ , d + jǫ) for j ≤ m.

Consider a means configuration N with these data points
and with 4n log n cluster centers chosen from these points
at random. Let Γ0 = {O1, O2, . . . , Om} and for i > 0, let
Γi = {Pi,1, Pi,2 . . . , Pi,m}. Suppose that N begins with all
of its cluster centers in Γ = ∪iΓi and that each Γi has at
least one cluster center. One can check that T (N) ≥ T (M)
in this case.

Now, let m = n3 log n

k
. Then, each cluster center will be

in some Γi with probability 1 − O(1
n2 log n

). Since there are

4n log n clusters, all clusters will be in Γ with probability 1−
O(1

n
). Furthermore, the probability that no cluster center

is chosen in a fixed Γi is at most (1 − 1
2k

)4n log n ≤ 1
n2 .

Thus, each Γi has at least one cluster center with probability
1 − O(1

n
). The result now follows.

3.4 Low spread
Recall the spread ∆ of a point set is the ratio of the largest

pairwise distance to the smallest pairwise distance. Har-
Peled and Sadri [7] conjectured that k-means might run in

time polynomial in n and ∆. In this section, however, we
show that the spread can be reduced to O(1) without de-
creasing the number of iterations required.

Proposition 3.6. Let M be a means configuration on n
points. Then, there exists a means configuration N on 2n
points such that N has O(1) spread and such that T (N) =
T (M).

Proof. Let V (M) denote the points in M , and choose
an arbitrary set of vectors, u1, u2, . . . , un. For each vi ∈
V (M), we replace vi with xi = (vi, ui) and yi = (vi,−ui)
in Span(V (M)) × Span(u1, u2, . . . , un). Let N denote the
means configuration with these data points and with centers
(cj , 0) for each center cj in M . It is easy to check that cluster
C in N contains xi and yi after t iterations if and only if
cluster C in M contains vi after t iterations. It follows that
T (N) = T (M).

Taking ui to be orthogonal and of length d ≫ 0, we can
make N have spread arbitrarily close to

√
2.

More generally, there is a tradeoff between the extra di-
mensionality and the reduction of ∆. For example, by adding
one extra dimension, and taking ui = di, we can make the
spread linear in n.

4. DISCUSSION

4.1 Smoothed Analysis
We have shown k-means can have a superpolynomial run-

ning time in the worst case. However, we know the algo-
rithm runs efficiently in practice. It is natural to ask how
this discrepancy can be formalized. One natural approach
is that of smoothed analysis, which was used by Spielman
and Teng [13] to explain the running time of the Simplex
algorithm.

Towards that end, assume that the data points are chosen
from independent, normal distributions with variance σ2.
Letting D denote the diameter of the resulting point set, we
ask whether k-means is likely to run in time polynomial in
n and D

σ
.

4.1.1 High Dimension
This question appears to be difficult in general, but a

positive result is relatively easy to prove in high dimensions.
In this section, we sketch a proof of this fact.

Proposition 4.1. Given data points chosen from inde-

pendent normal distributions with variance σ2 and with di-

mension d = Ω(n/ log n), k-means will execute in polynomial

time with high probability.

We analyze the standard k-means potential function. For
a means configuration M = (X, C), let φ(M) =

Pn

i=1 ‖xi −
ci‖2, where ci ∈ C is the cluster center closest to xi. Clearly,
0 ≤ φ ≤ nD2, and one can also check that φ is non-
increasing throughout an execution of k-means. Therefore,
it suffices to show that the potential decreases by a non-
trivial amount during each iteration.

On the one hand, it is known that if a cluster center moves
by a distance δ during a k-means step and if the cluster has
m points at the end of the step, then φ decreases by at least
δ2m (see [7] and [11]). On the other hand, if our data points
are random, no two possible centers can be too close. This
can be formalized as follows.

Definition 4.1. We say a set of data points X is “ǫ-
separated” if for any non-identical subsets S and T , the cen-

ters of mass c(S) and c(T) satisfy ‖c(S)−c(T)‖ ≥ ǫ
2 min(|S|,|T |) .

Lemma 4.2. If X is a set of n data points chosen from

independent normal distributions with variance σ2, then X

is ǫ-separated with probability at least 1 − 22n
`

ǫ
σ

´d
.

We omit the proof of the Lemma. Proposition 4.1 follows
by choosing ǫ = σ

n1/d22n/d .

4.1.2 The General Case
Proposition 4.1 shows that k-means runs in polynomial

time with high probability in smoothed high-dimensional
settings. A similar result holds when d = 1 based on the
spread analysis of [7] and the fact that a smoothed point set
is likely to have polynomial spread.

A much more subtle analysis seems to be required for
other values of d. We have recently proven an upper bound
of nO(k)· poly(n, D

σ
) [2], but it remains a major open problem

to find a bound polynomial in n, k and D
σ

in the general case.

4.2 Variants
Smoothed analysis provides one very explicit way of cir-

cumventing the worst-case performance of k-means. Namely,
given an arbitrary data set, we can perturb each point ac-
cording to an independent normal distribution and then run
k-means. Even our simple analysis in high dimensions can
be harnessed here by first lifting to n-dimensional space, and
then perturbing.

Two other methods also suggest themselves. First of all,
k-means is often run in a relatively small number of dimen-
sions, and regardless, one can always reduce d to O(log n)
with small distortion [10]. Thus, it is natural to ask how
k-means performs for small d. We conjecture that k-means

is worst-case superpolynomial iff d > 1. Even when d = 1,
no strongly polynomial upper bounds are known.

Finally, Har-Peled and Sadri [7] suggested a simple vari-
ant of k-means where only one data point is reassigned each
iteration. This variant has running time polynomial in n
and the spread ∆, which we know is not true for stan-
dard k-means. Given this qualitative improvement, a fur-
ther study of this variant could prove fruitful.

5. REFERENCES
[1] Pankaj K. Agarwal and Nabil H. Mustafa. k-means

projective clustering. In PODS ’04: Proceedings of the

twenty-third ACM SIGMOD-SIGACT-SIGART

symposium on Principles of database systems, pages
155–165, New York, NY, USA, 2004. ACM Press.

[2] David Arthur and Sergei Vassilvitskii. Improved
smoothed analysis for the k-means method.
Manuscript, 2006.

[3] David Arthur and Sergei Vassilvitskii. k-means lower
bound implementation. http://www.stanford.edu/
~darthur/kMeansLbTest.zip, 2006.

[4] Sanjoy Dasgupta. How fast is k -means? In COLT

Computational Learning Theory, volume 2777, page
735, 2003.

[5] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern

Classification. Wiley-Interscience Publication, 2000.

[6] Frédéric Gibou and Ronald Fedkiw. A fast hybrid
k-means level set algorithm for segmentation. In 4th

Annual Hawaii International Conference on Statistics

and Mathematics, pages 281–291, 2005.

[7] Sariel Har-Peled and Bardia Sadri. How fast is the
k-means method? Algorithmica, 41(3):185–202, 2005.

[8] R. Herwig, A.J. Poustka, C. Muller, C. Bull,
H. Lehrach, and J O’Brien. Large-scale clustering of
cdna-fingerprinting data. Genome Research,
9:1093–1105, 1999.

[9] Mary Inaba, Naoki Katoh, and Hiroshi Imai.
Applications of weighted voronoi diagrams and
randomization to variance-based k-clustering:
(extended abstract). In SCG ’94: Proceedings of the

tenth annual symposium on Computational geometry,
pages 332–339, New York, NY, USA, 1994. ACM
Press.

[10] W. Johnson and J. Lindenstrauss. Extensions of
lipschitz maps into a hilbert space. Contemporary

Mathematics, 26:189–206, 1984.

[11] Tapas Kanungo, David M. Mount, Nathan S.
Netanyahu, Christine D. Piatko, Ruth Silverman, and
Angela Y. Wu. A local search approximation
algorithm for k-means clustering. In SCG ’02:

Proceedings of the eighteenth annual symposium on

Computational geometry, pages 10–18, New York, NY,
USA, 2002. ACM Press.

[12] Stuart P. Lloyd. Least squares quantization in pcm.
IEEE Transactions on Information Theory,
28(2):129–136, 1982.

[13] Daniel A. Spielman and Shang-Hua Teng. Smoothed
analysis of algorithms: Why the simplex algorithm
usually takes polynomial time. J. ACM,
51(3):385–463, 2004.

