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SUMMARY

Length-biased sampling occurs in renewal processes when the probability that an interval is selected is
proportional to the length of the interval. This can occur when intervals are selected because they contain
an event that is independent of the renewal process and occurs with constant hazard. For example, if the
times between donations for repeat blood donors are independent and identically distributed, and if the
donor seroconverts to HIV (develops antibodies that indicate infection with human immunodeficiency
virus), then the interval between the last HIV seronegative and first HIV seropositive test is expected to
be longer than that donor’s previous time intervals between donations. We develop hypothesis tests to
determine if the relationship between the typical and length-biased intervals is as expected, or if there
is departure from length-biased sampling. We further develop a regression method to determine if there
are covariates that explain the departure from length-biased sampling. Our approach is motivated by the
question of whether there is evidence that repeat blood donors who develop antibodies to HIV or other
viral infections change their donation pattern in some way because of seroconversion.

Keywords: Human immunodeficiency virus; Infinite-dimensional nuisance parameter; Length-biased sampling;
Renewal Process.

1. INTRODUCTION

In renewal theory, it is known that an interval that is tagged by the occurrence of another event is
length-biased. For example, the times that a bus passes a certain bus stop may be a renewal process with
inter-arrival times having meanµ and varianceσ 2, but for an individual who arrives at the bus stop at
some random time, the time between the last bus before that individual arrived at the bus stop and the
arrival time of the next bus is longer. If the individual is equally likely to arrive at the bus stop at any time,
then the ‘special’ interval between buses that contains her arrival at the bus stop has meanµ + σ 2/µ,
because it is subject to length-biased sampling. This result follows because the chance that an interval
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between two buses brackets the arrival of the individual at the bus stop is proportional to the length of the
interval (see e.g. Karlin and Taylor, 1975, p. 195).

The relationship between the duration of the special interval and the other intervals assumes
independence between the arrival times of buses and the arrival time of the passenger at the bus stop.
If the bus driver can sense waiting passengers and adjusts the bus arrival time (hopefully to benefit
the passengers!) then the relationship between the duration of the ‘special’ intervalµ + σ 2/µ and the
parameters specifying the distribution of the typical intervals is broken. (This relationship may also be
broken if the rate at which passengers arrive at the bus stop is not uniform, but we assume here that this
is not the case.) If the expected relationship does not hold, then the special interval may in fact be too
special!

In this paper, we consider a methodology to determine if the duration of special intervals, relative
to the duration of typical intervals, shows any evidence of dependence between the renewal process
that generates the intervals and the (constant hazard) Poisson process that selects intervals as special.
This question was motivated by the relationship between times of blood donation (which we assume
follow a renewal process for each donor) and times at which donors become infected with human
immunodeficiency virus (HIV), human T-lymphotropic virus (HTLV) and other viral markers (Schreiber
et al., 2002). Blood bankers and other investigators wanted to know if there was any evidence that repeat
blood donors who become infected with any of these viruses adjust their donation patterns in any way,
for example by returning to make a blood donation sooner than they might have otherwise in order to
determine if they have become infected (blood donations are routinely tested for these and other viruses
and donors are informed if their donations test positive). For this application, it is reasonable to assume
that the hazard for seroconversion is constant over the time of the study. A renewal process is a convenient
way to model repeated event data such as blood donations (Aalen and Husebye, 1991) and a number of
models for the effect of covariates on recurrence times in a renewal process have been proposed (e.g.
Chang and Wang, 1999).

There are three challenges in these data. The first challenge involves the proper adjustment for length-
biased sampling; the time between two blood donations that contains a seroconversion (development of
detectable antibodies to a virus) event is a special interval and hence is subject to length-biased sampling.
The second challenge is that each donor can have unique patterns of donation. While it may be reasonable
to assume times of repeated donations follow a renewal process, the mean and variance are potentially
different for each donor. The third challenge is that only events occurring in some fixed time window (the
study period) are actually observed. Finally, we may also wish to examine the effects of covariates on
any departure in the duration of the special interval from its expected value. In Section 2 we develop our
notation, while our new estimators are presented in Section 3. In Section 4, we consider the effect of the
sampling scheme and in Section 5 we analyze the repeat blood donor data described above.

2. DEFINITIONS AND NOTATION

Suppose for each ofm persons we observeni + 2 events from a renewal process for 1� i � m.
Theseni + 2 events defineni + 1 inter-event intervals, of which one is special in the sense described in
the introduction. LetXi j , 1 � j � ni denote the duration of the typical intervals and letYi denote the
duration of the special interval. For the blood donation example,ni + 2 is the total number of donations
made by thei th donor during the study period,Xi j are the time intervals between donations at which
the donor tested negative for viral antibodies, andYi is the time interval between the last negative and
first positive donation. In the blood donor example the special interval is always the last interval, but we
assume that the process would have continued uninterrupted if no seroconversion had taken place, so there
is no significance attached to the special interval always being the last interval. Finally, suppose that we
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observe a column vector of covariateszi for each person that may explain whether or not the duration
of the special intervalYi is longer than expected given the values of theXi j . We assume that for thei th
person the mean renewal time isµi and the expected value of the square of the renewal time isνi . We
assume thatφi ≡ (µi , νi , ni , zi ) are iid from some unspecified distribution. Then we have

E[Xi j |φi ] = µi

E[X2
i j |φi ] = νi .

AssumingYi is subject to length-biased sampling, we would expect

E[Yi |φi ] = νi

µi
. (1)

Wespecify departures from (1) by writing

E[Yi |φi ] = νi

µi
(ψT · zi ) (2)

whereψ is a column vector of parameters that specifies deviations from the expected relationship (1).
We assume that the first component ofz is always 1, so that (1) holds for every donor whenψ = ψ0 ≡
(1, 0, . . . , 0)T. (Weassume that ifz has dimensiond then values ofzi do not have lower dimension in the
sense that there is not somed-dimensional vectorτ �= 0 such thatτT · zi = 0 for everyi .)

3. INFERENCE ON THE DURATION OF THE SPECIAL INTERVAL

To make inference on whether model (1) holds, defineSi (τ ) by

Si (τ ) = Yi Xi − (τT · zi )X2
i

where τ is an arbitrary column vector withd components,Xi = n−1
i

∑ni
j =1 Xi j , and X2

i =
n−1

i

∑ni
j =1 X2

i j . Note that whenτ = ψ,

E[Si (ψ)|φi ] = νi

µi
(ψT · zi )µi − (ψT · zi )νi = 0 (3)

where we have used (2) and the definition ofνi . As aresult,Si (·) is an estimating function forψ, andcan
be used to construct tests about and estimators ofψ.

A test of the simple hypothesisH0 : ψ = ψ0 can be constructed by noting that under the
null hypothesis,S(ψ0) := m−1 ∑

i Si (ψ0)zi has an asymptotically multivariate normal distribution
with variance–covariance matrixm−1Σ0. We may estimateΣ0 by Σ̂0 = 1

m

∑m
i =1 S2

i (ψ0)zi zT
i

−S(ψ0)ST(ψ0). A global test of the simple null hypothesisψ = ψ0 can then be constructed by comparing

G ≡ mST(ψ0)Σ̂
−1
0 S(ψ0) (4)

to the appropriate quantile of a chi-square test with d degrees of freedom.
The parameter vectorψ can also be estimated by solving the estimating equations∑

i

Si (ψ̂)zi = 0 (5)
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that correspond to minimizing
∑

i S2
i (τ ) with respect toτ . The solution to (5) is given by

ψ̂ =
(∑

i

X2
i zi zT

i

)−1

·
(∑

i

Yi Xi zi

)
(6)

which gives a closed-form estimator ofψ so long as
∑

i X2
i zi zT

i is invertable. Standard theory for M-
estimators (see e.g. Sen and Singer, 1993) shows that

√
m(ψ̂ − ψ) has, asymptotically, a multivariate

normal distribution with variance–covariance matrixΣ, which can be estimated bŷΣ given by

Σ̂ =
(

1

m

∑
i

X2
i zi zT

i

)−1

·
(

1

m

∑
i

S2
i (ψ̂)zi zT

i

)
·
(

1

m

∑
i

X2
i zi zT

i

)−1

. (7)

Tests of composite hypotheses can be constructed using Wald-like statistics. For example, testing whether
k linear combinations of the components ofψ̂ (denotedC · ψ̂ whereC is ak × d matrix of coefficients)
are equal to somek-dimensional vectorψ0k can be accomplished using the statistic

G′ = m(C · ψ̂ − ψ0k)
T{CT · Σ̂ · C}−1(C · ψ̂ − ψ0k) (8)

which has an (asymptotic)χ2 distribution withk degrees of freedom. Whenk = d the statisticG′ is
asymptotically equivalent toG given in equation (4).

4. A NOTE ON SAMPLING

In many studies (including the blood donor study), only those events that occur within a certain time
interval are observed. We will refer to this situation as ‘conditional sampling’. We show here that the
results in Section 3, corresponding to unconditional sampling, are also valid for conditional sampling.
Suppose that only intervals between renewal events that occur within some time interval[0, T ] are
observed. Further, suppose that the first renewal event after time 0 for thei th individual occurs at time
τ0i . Then, treatingτi 0 as the zero of time for thei th individual, only those events that occur before time
Ti = T − τ0i are seen. In particular, if only persons with ‘special’ intervals are included in the analysis,
the special interval must have concluded before timeTi . For the blood donation example, donors are
enrolled at their first donation after time 0 (timeτi 0) and only donations made before the termination of
the study (timeT ) are included. The interval between the last donation andT is not included because
HIV serostatus is not observed at timeT . The interval between 0 andτ0i is also not used even though
serostatus at time 0 can be inferred from a negative HIV test at timeτ0i , as astationarity assumption is
required to use this interval and its mean duration is not the same as the typical intervals.

To proceed, we first condition onni + 1, the number of intervals observed by timeTi . Among persons
who have experiencedni standard intervals and one special interval, the joint distribution of these intervals
X1, X2, . . . , Xni , Y is given by

f (x1, x2, . . . , xni , y) =
[∏ni

k=1 g(xk)
]

y g(y) I
[

y + ∑ni
k=1 xk < Ti

]
D(Ti )

whereg is the density function for the renewal process and

D(Ti ) =
∫

. . .

∫ [ ni∏
k=1

g(xk)
]

y g(y) I
[

y +
ni∑

k=1

xk < Ti

]
dx1 dx2 . . . dxni dy.
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Table 1.Results of analysis of blood donor data from REDS study: evidence for a departure
in length of the seroconversion interval from its expected value for two viral diseases

Virus Mean, median Mean of Mean of G ψ

(seroconverters) (Range) ofni Xi (days) Yi (days) (p-value) (95% confidence interval)
HIV 4.73, 4 209 450 6.95 1.42
(49) (2 − 38) (0.008) (1.05, 1.79)

HTLV 3.5, 3 341 440 1.00 0.61
(32) (2 − 17) (0.32) (0.18, 1.05)

Note that theX j and Y are no longer independent due to the termI
[

y + ∑ni
j =1 xi < Ti

]
, and

that E(X j |ni , Ti ) will not be the same as in the unconditional renewal process. However, note that
E(X j |ni , Ti ) = E(Xk|ni , Ti ). Further,

E(X j Y|ni , Ti ) =
∫

. . .
∫

xj y2
[∏ni

k=1 g(xk)
]

g(y) I
[

y + ∑ni
k=1 xk < Ti

]
dx1 dx2 . . . dxni dy

D(Ti )

and

E(X2
j |ni , Ti ) =

∫
. . .

∫
x2

j y
[∏ni

k=1 g(xk)
]

g(y) I
[

y + ∑ni
k=1 xk < Ti

]
dx1 dx2 . . . dxni dy

D(Ti )

and henceE(X j Y − X2
j |ni , Ti ) = 0 under conditional sampling. Taking further expectation with respect

to the distribution ofni |Ti gives E(X j Y − X2
j |Ti ) = 0. If we redefineφi ≡ (µi , νi , ni , zi , Ti ) it is

easy to see that conditional sampling inherits the iid structure onφi assumed in Section 3. As a result,
the inference procedures presented in Section 3 are applicable to studies conducted using a conditional
sampling scheme without further modification.

5. THE RETROVIRUS EPIDEMIOLOGY DONOR STUDY

The retrovirus epidemiology donor study (REDS) has collected a database of information on 6.8
million non-autologous (i.e. not for the subsequent use of the donor) blood donations made between 1991
and 1997 at five blood centers (Schreiberet al., 2002). Up to seven years of follow-up data is available for
each donor, including data on times of donations, donor demographics and results from routine laboratory
screening for HIV, HTLV and other viruses. Only donations made during the course of the REDS study are
included in the study, corresponding to the conditional sampling scheme discussed in Section 4. Although
repeat blood donors are a very low-risk population (Lackritzet al., 1995) and persons acknowledging risk
factors for HIV and other viral diseases are deferred from making donations, a small number of donors do
become infected with one or more of these viruses. It is of interest to know if seroconversion, which occurs
on average about 20–35 days after infection (Lackritzet al., 1995; Busch and Satten, 1997; Sternberg and
Satten, 1999), has any effect on donation patterns. These effects could be conscious (e.g. donors making
more frequent donations at times they engage in risk behaviors in order to obtain serologic test results
routinely performed on all blood donations) or unconscious (e.g. delay of donations due to development
of flu-like symptoms of primary HIV infection which occur just before seroconversion (Busch and Satten,
1997)).

In Table 1, we show data from 49 donors who seroconverted to HIV and 32 donors who seroconverted
to HTLV (Schreiberet al., 2002). Donors seroconverting to either virus have negative-to-positive
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Table 2.Effect of covariates on HIV seroconversion interval, REDS study

Covariate G′ (ψ2 = 0) p-value ψ̂1 ψ̂2
(d.f.) (95% C.I.) (95% C.I.)

Number of Prior Donations 2.70 0.10 1.56 −0.08
(1) (1.09, 2.03) (−0.17, 0.02)

Acknowledged Risk Factor 1.38 0.24 1.35 0.58
(1) (0.97, 1.74) (−0.39, 1.55)

interdonation intervals (Yi ) that are longer than their average negative-to-negative interdonation intervals
(Xi ) and hence would naively appear to be examples of seroconversion resulting in a delay of the post-
seroconversion donation. However, the interdonation interval that contains the seroconversion is ‘special’,
and hence is expected to be longer. When we analyze the data for persons seroconverting to each virus
using the chi-square testG given in equation (4) (conducting separate analyses for each virus and with no
additional covariates, i.e.d = 1), we discover that only donors seroconverting to HIV appear to delay their
post-seroconversion donation (p-values were calculated using the tail area of a chi-square distribution with
one degree of freedom). In fact, we estimateψ < 1 for donors seroconverting to HTLV, meaning that they
actually may return somewhat sooner than expected (although the 95% confidence interval includes the
null value 1).

We were also interested in testing the effect of two covariates on the length of the interdonation
interval containing the seroconversion. These two covariates are the number of prior negative donations
made during the study period, and whether the donor acknowledges a risk factor for HIV at the
counseling session where the donor is informed of their HIV-positive test result. Because there are so
few seroconverters, we considered each covariate separately. For each analysisd = 2, ψ = (ψ1, ψ2)

T

andzi = (1, zi 2)
T, wherezi 2 waseither the number of previous negative–negative interdonation intervals

available for thei th seroconverter minus 1 or an indicator of denial of a risk factor (0 if risk was
acknowledged, 1 if risk factors were denied). Thus, for the first analysis,ψ1 corresponds to the departure
from expected length for a person who has made only three blood donations in the study period, while for
the second analysisψ1 corresponds to the departure from expected length for persons who acknowledge
HIV risk factors. We testedψ2 = 0 using G′ given in equation (8) withk = 1, C = (0, 1) and
ψ0k = 0. These results are shown in Table 2, along with point estimates ofψ1 andψ2 and 95% confidence
intervals forψ1 andψ2 obtained using (7). From Table 2, we see that the number of previous seronegative
donations does not explain the increased length of time between the last negative and first positive blood
donations for donors who seroconvert to HIV, but whether donors acknowledge a risk factor for HIV
has a larger (although non-significant) effect. In particular, donors who deny risk have only a slightly
longer seroconversion interval than expected (the 95% confidence interval forψ1 includes 1); whileψ2,
the increase in duration due to persons who acknowledge a risk factor at their post-HIV-positive donation
interview is not significant, it should be recalled that in the overall analysis there was a significant increase
in HIV seroconversion interval, and that the sample size for this analysis is very small. Finally, it is also
worth noting that all donors have denied risk factors for HIV prior to donation.

6. CONCLUSION

An interval in a renewal process is ‘special’ if it has been tagged by the occurrence of another event.
If this second event occurs with constant hazard, then the duration of the ‘special’ interval is length
biased. We have developed a simple approach to determining if the relationship between the duration of
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the ‘special’ interval and previous ‘typical’ intervals departs from what is expected under length-biased
sampling.

We have additionally shown that our new approach is applicable even if sampling is conditional on
events seen in a finite time period. This result may seem unexpected initially, as the duration of renewal
events is distorted by conditional sampling. Further, the expected value of a single renewal interval under
conditional sampling is a function of the total number of observed events. However, conditional on the
number of observed events, we have shown that each interval (including the special interval) is ‘squeezed’
in such a way that the relationship between special and typical interval durations is preserved.

Finally, assuming that interdonation intervals of repeat blood donors in the REDS study follow a
renewal process, we have determined that repeat blood donors that become infected with HIV (but not
HTLV) appear to delay their first HIV-positive donation. Further, regression analysis shows that there is
evidence that this effect is restricted to persons who are aware that they have factors that may have put
them at risk for acquiring HIV infection.
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