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ABSTRACT

GCMs are used by many national weather services to produce seasonal outlooks of atmospheric and

oceanic conditions and fluxes. Postprocessing is often a necessary step before GCM forecasts can be

applied in practice. Quantile mapping (QM) is rapidly becoming the method of choice by operational

agencies to postprocess raw GCM outputs. The authors investigate whether QM is appropriate for this

task. Ensemble forecast postprocessing methods should aim to 1) correct bias, 2) ensure forecasts are

reliable in ensemble spread, and 3) guarantee forecasts are at least as skillful as climatology, a property

called ‘‘coherence.’’ This study evaluates the effectiveness of QM in achieving these aims by applying it to

precipitation forecasts from the POAMA model. It is shown that while QM is highly effective in cor-

recting bias, it cannot ensure reliability in forecast ensemble spread or guarantee coherence. This is

because QM ignores the correlation between raw ensemble forecasts and observations. When raw

forecasts are not significantly positively correlated with observations, QM tends to produce negatively

skillful forecasts. Even when there is significant positive correlation, QM cannot ensure reliability and

coherence for postprocessed forecasts. Therefore, QM is not a fully satisfactory method for post-

processing forecasts where the issues of bias, reliability, and coherence pre-exist. Alternative post-

processing methods based on ensemble model output statistics (EMOS) are available that achieve not

only unbiased but also reliable and coherent forecasts. This is shown with one such alternative, the

Bayesian joint probability modeling approach.

1. Introduction

Ensemble forecasts of seasonal precipitation from

coupled ocean–atmosphere general circulation models

(GCMs) have mostly replaced traditional statistical

forecasts as the basis of operational outlooks issued by

many national weather services. For example, the Na-

tional Centers for Environmental Prediction (NCEP) in

the United States has operated its Climate Forecast

System (CFS) since 2004 (Saha et al. 2014), the Euro-

pean Centre for Medium-Range Weather Forecasts

(ECMWF) has operated its Seasonal Forecast System

since 1997 (Molteni et al. 2011), and the Bureau of

Meteorology (BOM) in Australia has operated its Pre-

dictive Ocean and Atmosphere Model for Australia
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(POAMA) since 2002 (Marshall et al. 2014). GCMs are

now widely considered the state-of-the-art ‘‘dynamical’’

method for predicting seasonal atmospheric and oceanic

conditions and fluxes, in that they are beginning to offer

forecast skill that is similar to, or better than, long-

standing empirical, analog, or statistical methods for

climate prediction (Barnston et al. 2012; DelSole et al.

2014; Loikith and Broccoli 2015).

While raw ensemble GCM forecasts are informative,

their usefulness is hampered by three well-known de-

ficiencies: they are usually biased, making them unsuit-

able for use in decision-support tools; the spread of

ensembles can be either too narrow or too wide, leading

to operational risks or overly conservative decisions; and

the forecasts may not always be ‘‘skillful,’’ meaning that

GCM forecasts can be less accurate than the naïve cli-

matology forecasts traditionally used by decision-

makers (Shukla and Lettenmaier 2013; Schepen and

Wang 2014). Postprocessing is thus a necessary step

before GCM forecasts can be practically applied (Wood

et al. 2002, 2005; Gneiting et al. 2005; Wilks and Hamill

2007; Lerch and Thorarinsdottir 2013; Yuan et al. 2015;

Baran and Lerch 2015).

Quantile mapping (QM), also called quantile–quantile

transformation or distribution mapping, is a popular

method for postprocessing ensemble GCM forecasts

(e.g., Wood et al. 2002, 2005; Wood and Lettenmaier

2006;Hopson andWebster 2010; Shukla andLettenmaier

2013; Yuan 2016). One of its first applications for GCM

outputs was to correct seasonal climate forecasts for

streamflow forecasting (Wood et al. 2002). Its popularity

in seasonal forecasting has since grown, in part due to its

extensive use to correct climatological bias in studies

projecting future climate change (e.g., Wood et al. 2004;

Piani et al. 2010; Bürger et al. 2013; Gudmundsson et al.

2012; Lafon et al. 2013; Bennett et al. 2014; Li et al. 2014;

Mehrotra and Sharma 2016; Rajczak et al. 2016).

Seasonal climate forecasts differ from long-range

climate change projections in a crucial way: seasonal

forecasts can be paired with observations. This allows

the estimation of forecast skill and supports a wide

range of strategies for postprocessing that include not

only bias correction but also statistical calibration

(Gneiting et al. 2007). In contrast, long-range GCM

projections are not synchronous with observations

(Hawkins and Sutton 2011), and thus the skill of future

climate projections cannot be ‘‘verified’’ (Maraun

2016). Verification is a key concept for forecasts, in-

cluding the consideration of reliability, which is the

ability of forecast probabilities (or quantiles) to match

their observed frequencies over time (Hagedorn et al.

2005; Doblas-Reyes et al. 2005; Gneiting et al. 2007).

In forecasting, the term ‘‘skill’’ is usually used to mean

the degree to which a forecast outperforms a bench-

mark or reference forecast, which for climate vari-

ables is typically defined as the climatology of

observations (Murphy 1993; Hersbach 2000; Wilks

and Hamill 2007).

Here, we present a case study to illustrate the

strengths and weaknesses of QM in the context of

seasonal GCM forecasts and facilitate discussion of the

extent to which quantile-mapped GCM ensemble

forecasts may or may not be ‘‘better’’ than climatology

forecasts. Specifically, we examine the ability of QM to

1) remove bias from raw GCM forecasts, 2) make the

forecast ensemble spread reliable, and 3) yield fore-

casts that are equivalent to climatology where there is

no evident skill in raw GCM forecasts, a property

termed ‘‘coherence’’ (Krzysztofowicz 1999). To this

end, we use QM to postprocess raw ensemble pre-

cipitation forecasts from one GCM for the Australian

continent. We identify where QM works well and

where it does not, and describe which factors influence

the performance of QM. We also compare the perfor-

mance of QM to a full statistical forecast calibration

using the Bayesian joint probability (BJP) modeling

approach (Wang and Robertson 2011; Hawthorne et al.

2013; Schepen and Wang 2014).

2. Methods

a. Quantile mapping

QM matches the cumulative distribution function

(CDF) of raw forecasts to the CDF of observations. For

ensemble forecasts, the matching takes place at the level

of individual ensemble members. Let x and x 0 denote

raw and postprocessed forecasts, respectively, and FX( )

and FO( ) denote the CDFs of raw forecasts and ob-

servations. QM is formulated as

x0
5F21

O [F
X
(x)] . (1)

Applying FO( ) to the left- and right-hand sides of

Eq. (1) yields

F
O
(x0)5F

X
(x) . (2)

According to Eqs. (1) and (2), a new raw forecast value

is postprocessed in two steps. First, a quantile fraction

(or cumulative probability) is determined for the raw

forecast by its position in the CDF of (preceding) fore-

casts. Second, a new postprocessed value of the forecast

ensemble member is generated by ‘‘looking up’’ that

quantile in the CDF of the observations.

QM is conceptually simple and can be implemented

relatively easily: FX( ) and FO( ) can be derived
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parametrically by fitting a distribution to the data

(Piani et al. 2010; Gudmundsson et al. 2012) or non-

parametrically through an empirical distribution func-

tion, ‘‘lookup table,’’ or kernel density estimation

(Wood et al. 2002, 2004; Bennett et al. 2014). Para-

metric distributions have the advantage of being less

influenced by sampling errors, particularly with small

samples, and generally produce mapping functions that

are more stable (Lafon et al. 2013). They also provide a

ready means for extrapolation when new forecast

values are beyond the limits of the sample data used to

form the CDFs. In this study, we use the setup of QM as

described by Piani et al. (2010). The CDFs take the

form of a mixed Bernoulli–gamma distribution: the

Bernoulli distribution handles the probability of pre-

cipitation, while the gamma distribution characterizes

precipitation amounts greater than zero. In cases where

there exist a substantial number of outliers and the

mixed distribution cannot be fitted, a nonparametric

empirical cumulative distribution function is derived

from the data (Gudmundsson et al. 2012).

b. Full statistical calibration using BJP

Numerous methods are available to statistically

calibrate GCM climate forecasts; that is, to correct bias

and unreliable ensemble spread, and to ensure co-

herence. Calibration methods typically use techniques

that are more mathematically complex than QM to

consider more explicitly the relationship between raw

forecasts and observations (Gneiting et al. 2005; Wilks

and Hamill 2007; Voisin et al. 2010). These include

methods akin to model output statistics (MOS; Glahn

and Lowry 1972) and more recently the extension of

MOS to ensemble predictions (EMOS; Gneiting et al.

2005). Here the terms MOS and EMOS refer to

methods that recognize that the correlation between

ensemble forecasts and observations is imperfect, and

thus that postprocessing requires a random compo-

nent. We note that the termMOS has also been used in

the climate projection literature to refer to any statis-

tical postprocessing methods that relate model output

to observations (Maraun et al. 2010). This more gen-

eral use of MOS encompasses QM. However, the

meaning of MOS is much narrower in the forecasting

literature, where MOS refers to regression methods

that account for the correlation between forecasts and

observations (Glahn and Lowry 1972; Gneiting et al.

2005; Wilks and Hamill 2007). In this study, we use this

narrower definition.

We apply BJP, an EMOS-type method. BJP

formulates a joint probability distribution to charac-

terize the relationship between the rawGCM ensemble

mean and observations (Wang and Robertson 2011).

The log-sinh transformation is employed to normalize

the precipitation variables:

8
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, (3)

where x̂ and ŷ respectively represent transformed fore-

casts and observations; ax, bx, ay, and by are trans-

formation parameters. The transformation also ensures

that themarginal distributions are homoscedastic so that

the joint distribution can be used (Wang et al. 2012). The

joint probability distribution is assumed to take the form

of a bivariate normal distribution:

p(x̂, ŷ);N(m,S), (4)

where m and S are respectively the mean vector and

the covariance matrix; that is, m5
mx̂

mŷ

� �

(mx̂ and mŷ

are respectively the mean of x̂ and ŷ) and S 5

s2
x̂ rx̂ŷsx̂sŷ

rx̂ŷsx̂sŷ s2
ŷ

� �

(sx̂ and sŷ are respectively the

standard deviation of x̂ and ŷ, and rx̂ŷ is the correlation

between x̂ and ŷ).

In BJP, we obtain the transformation parameters

using the maximum a posteriori probability (MAP)

estimation and sample the parameters of the joint dis-

tribution with a Bayesian Markov chain Monte Carlo

(MCMC) algorithm. A crucial feature of BJP is the

covariance matrix, which explicitly describes how well

transformed raw GCM forecasts are correlated with

transformed observations. The presence of zero values,

which is typical of precipitation in dry regions, is handled

using data censoring. Zero values are treated as unknown

values less than or equal to zero, which facilitates the use

of the continuous bivariate normal distribution. The pa-

rameters of the BJP are estimated using past forecasts and

observations as training samples. When given a new raw

forecast, a univariate normal conditional distribution can

be derived from the joint bivariate normal distribution. To

generate a postprocessed forecast, random samples are

drawn from the univariate conditional distribution and

then back-transformed.

The mathematical techniques of data transformation,

joint probability, and data censoring efficiently deal with

heteroscedastic data, and with zero and missing values.

They make BJP flexible for climatic and hydrologic

modeling. BJP was originally developed for seasonal

streamflow forecasting for the Australian Bureau of

Meteorology (http://www.bom.gov.au/water/ssf). In

recent years, this method has also been applied to
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postprocess seasonal climate forecasts (Hawthorne et al.

2013; Peng et al. 2014; Schepen and Wang 2014) and

subdaily numerical weather predictions (Robertson

et al. 2013; Shrestha et al. 2015). Inferring BJP param-

eters is reasonably fast (less than 1 minute per grid

cell), and forecast sampling takes only a few seconds

per grid cell (Bennett et al. 2016). Therefore, compared

to QM, BJP does not incur a prominent computational

cost.

3. Data and experiment

a. GCM forecasts and observations

GCM precipitation forecasts are obtained from

POAMA, the operational seasonal forecasting GCM run

by the Bureau of Meteorology. POAMA couples the

AustralianCommunityOceanModel version 2 (ACOM2)

and the Bureau of Meteorology’s atmospheric model

version 3 (BAM3) (Marshall et al. 2014).ACOM2 is based

on the Geophysical Fluid Dynamics Laboratory modular

ocean model version 2 and has 25 vertical levels. BAM3

is a spectral transformmodel with triangular truncation 47

and 17 vertical sigma levels. POAMA uses perturbed

initial conditions and differing model physics to produce a

33-member ensemble. The forecasts are available at a

daily time step, but we choose to use monthly forecasts

here. This has the advantage of removing much of the

noise in the data, which can confound predictions of

monthly or seasonal variables. The horizontal resolution

of forecasts is 2.58 3 2.58, approximately 250km3 250km.

Monthly POAMA reforecasts are available for 1981–

2011, which provides a means of training and assessing the

postprocessingmethods. POAMA forecasts are initialized

on the first day of each calendar month and run for

9 months into the future.

Precipitation observations are obtained from the

Australian Water Availability Project (AWAP; http://

www.bom.gov.au/jsp/awap/). AWAP integrates in situ

precipitation observations from up to 7000 stations

across Australia and provides high-quality monthly

spatial precipitation datasets from 1900 until now. The

dataset is at a spatial resolution of 0.058 3 0.058, ap-

proximately 5 km 3 5 km. For this study, we regrid

AWAP precipitation to match the POAMA horizontal

grid resolution.

b. Experimental design

QM and BJP are applied to postprocess POAMA

monthly precipitation reforecasts for 12 target months

from 1981 to 2011. The QM and BJP methods are de-

veloped for each target month and lead time. For each

lead time, there are 1464 cases (122 grid cells3 12 target

months). Here we only present detailed results for

0-month lead time forecasts—that is, forecasts for the

month that immediately follows the issue time. Limited

commentary is provided on results for lead times of

1–8 months, because the performance of postprocess-

ing methods at the 0-month lead time is consistent

with all other lead times. All 33 ensemble members

are used to fit the CDFs for QM, while BJP is trained

using the ensemble mean. POAMA forecasts are

postprocessed through leave-one-year-out cross-vali-

dation. Specifically, when postprocessing a forecast in

one year, QM and BJP are trained with forecasts and

observations from the other years. Then, the cross-

validated forecasts are pooled in verification. In this

way, we do not artificially inflate the performances of

QM and BJP.

c. Forecast verification

Forecasts are verified in terms of bias, reliability, and

skill. To illustrate bias, forecast and observed climato-

logical means are plotted together in a scatterplot. Un-

biased forecasts will display a 1:1 relationship.

Forecast reliability describes the ability of the en-

semble spread to accurately represent the predictive

uncertainty (Murphy 1993; Gneiting et al. 2007). Fore-

cast ensembles that are too narrow (overconfident) can

lead to operational risk, while ensembles that are too

wide (underconfident) can result in decisions that are

overly cautious (Arnal et al. 2016). A reliable forecast

ensemble is neither too narrow nor too wide. To illus-

trate reliability, we pool the pairwise forecasts and ob-

servations for all locations and all months to construct

two types of plots. The reliability of full ensemble

forecasts is assessed by the histogram of the probability

integral transform (PIT) values under each pair of

forecast and observation:

PIT5

(

F(y
obs

) ( y
obs

. 0)

u3F(0) ( y
obs

5 0)
, (5)

where F( ) is the CDF obtained from the ensemble

forecast, yobs is the corresponding observation, and

u;U(0, 1) is a random number for censored data.

When the ensemble forecast reliably captures the dis-

tribution of observation, the observation yobs can sta-

tistically be regarded as random samples drawn from

F( ). That is, the individual PIT values for different

observations should collectively follow a uniform dis-

tribution. Therefore, the reliability of ensemble spread

is shown by the uniformity of the PIT histogram. In

addition, the reliability of forecast probability is exam-

ined by treating forecasts as binary, in this case whether

precipitation exceeds the median, and is assessed by

plotting an attributes diagram (Hsu and Murphy 1986).
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The forecast probabilities are reliable when they are

consistent with the relative frequency of observations,

manifested by points that follow the diagonal 1:1 line.

Forecast skill is quantified using a skill score based

on the continuous ranked probability score (CRPS;

Hersbach 2000; Gneiting et al. 2007):

CRPS5

ð

1‘

2‘

[F(y)2H(y2 y
obs

)]2 dy , (6)

whereH( ) is a Heaviside step function that indicates the

cumulative distribution of observation yobs. That is, the

value of H(y2 yobs) is 0 when y2 yobs , 0 and is 1 when

y2 yobs$ 0. Thus, CRPS measures the difference be-

tween the observed distribution H( ) and the forecast

distribution F( ). It is essentially a probability-weighted

average of the error of each ensemble member. We use

the CRPS of a naïve climatology forecast as the reference

and define the skill score as the ratio (%) of the reduction

in CRPS for QM- and BJP-postprocessed forecasts. The

climatology forecasts are generated by fitting a log-sinh

transformed normal distribution to observations. The

climatology distributions are fitted under the same leave-

one-year-out cross-validation scheme used to train the

QM- and BJP-postprocessed forecasts.

4. Results

a. Forecast bias and reliability

Raw POAMA forecasts are generally biased and

have a tendency to underestimate observed precipitation

(Fig. 1a). As a result, reliability is poor. This is strongly

evident in the PIT histogram describing raw forecasts for

all grid cells (Fig. 2a), which is heavily left-skewed. The

effect of bias on reliability is also strongly evident in the

corresponding attributes diagram (Fig. 2b), with obvious

mismatches between forecast probabilities and observed

relative frequencies.

QM is extremely effective at correcting bias in the

raw forecasts. The climatological mean of the QM-

postprocessed forecasts for each grid cell is virtually

indistinguishable from the corresponding climatological

mean of observations (Fig. 1b). Removing bias can im-

prove forecast reliability, reducing the skewness of the

PIT histogram (Fig. 2c). However, becauseQMdoes not

explicitly address spread errors in the raw ensemble,

QM-postprocessed forecasts are still not reliable: the

PIT histogram is U-shaped. This indicates that the en-

semble spread tends to be too narrow. In other words,

the forecasts are overconfident. The attributes diagram

for QM-postprocessed forecasts provides corroborating

evidence that QM relieves forecast bias but does not

lead to fully reliable probabilistic forecasts (Fig. 2d).

By contrast, BJP generates unbiased ensemble fore-

casts that are also reliable. As with QM-postprocessed

forecasts, the climatological mean of BJP-postprocessed

forecasts is virtually indistinguishable from the clima-

tological mean of observations (Fig. 1c). The PIT

histogram is practically uniform (Fig. 2e). The BJP-

postprocessed forecast ensemble spread is slightly too

wide, but nonetheless close to being reliable in repre-

senting the distribution of observations. The reliability

of BJP-postprocessed forecasts of the probability for

exceeding the climatological median is clearly shown

in the attributes diagram, with points very close to the

1:1 line (Fig. 2f).

To summarize, both QM and BJP are highly effective

at removing climatological biases in raw POAMA

forecasts. However, they differ in their abilities to cor-

rect forecast spread and provide reliable forecasts. QM-

postprocessed forecasts exhibit overly narrow ensemble

spreads, and are therefore not reliable. In comparison,

FIG. 1. Diagnostic plots of bias of raw and postprocessed forecasts at 0-month lead time, generated by pooling all POAMA grid cells and

all months.
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BJP-postprocessed forecasts are generally reliable. Note

that although we have concentrated our analysis on

forecasts at 0-month lead time, all other lead times (1–8

months) give similar results.

b. Forecast skill

The CRPS skill scores of postprocessed forecasts for

each target month are mapped in Fig. 3. QM yields many

instances of positive skill (blue pixels inFig. 3a).However,

QM-postprocessed forecasts can also exhibit strongly

negative skill (red pixels in Fig. 3a). In other words, QM-

postprocessed forecasts can, in some cases, have larger

errors than naïve climatology forecasts: they do not ex-

hibit ‘‘coherence.’’ In contrast, BJP-postprocessed fore-

casts are overall at least as skillful as climatology forecasts

and therefore coherent (Fig. 3b). There are only a few

cases where slightly negative forecast skills are observed

(red pixels in Fig. 3b), which is attributable to cross-

validation and sampling uncertainty.

The differences in forecast skill arise primarily from

how the relationship between raw GCM forecasts and

observations is formulated in postprocessing. QMdoes not

consider the strength of the association between rawGCM

forecasts and observations and consequently generates

both positively andnegatively skillful forecasts. In contrast,

BJP ensures that CRPS skill scores, measured relative to

climatology, will be nearly zero; that is, if raw forecasts are

uncorrelated with observations, a forecast approximating

climatology will be returned (Wang and Robertson 2011;

Hawthorne et al. 2013; Schepen and Wang 2014).

c. Influence of raw forecast performance

To show the influence of raw forecast performance on

postprocessed forecasts, Spearman’s rank correlation is

calculated for the ensemble mean of rawGCM forecasts

and the corresponding observations. The rank correla-

tion quantifies the strength of the forecast–observation

relationship without assuming that it is linear. The

CRPS skill scores of QM- and BJP-postprocessed fore-

casts are plotted against rank correlations in Fig. 4.

Both QM and BJP tend to produce forecasts that

have positive CRPS skill scores if the raw forecasts are

FIG. 2. Diagnostic plots of reliability of raw and postprocessed forecasts at 0-month lead time, generated by pooling all POAMA grid

cells and all months, showing (top) PIT histograms and (bottom) attributes diagrams for forecasts of probabilities of exceeding themedian

observation. Forecasts in attributes diagrams are divided into ten forecast probability bins; point sizes indicate relative number of forecasts

in each bin.
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significantly positively correlated with observations

( p value , 0.10). However, QM-postprocessed fore-

casts can have negative skill scores when the correlation

between raw forecasts and observations is low and/or

nonsignificant. By contrast, BJP-postprocessed forecasts

have similar accuracy to climatology forecasts when

there is little or even negative correlation between raw

forecasts and observations. We note that the skill of raw

GCM forecasts typically diminishes as lead time in-

creases, leading to more instances where raw forecasts

are not strongly correlated with observations (Schepen

and Wang 2014; Peng et al. 2014; Kumar et al. 2015).

This means that at longer lead times there are more

instances when QM-postprocessed forecasts are not

coherent than shown for the 0-month lead time in Fig. 4.

We also consider the reliability of postprocessed

forecasts in light of whether raw POAMA forecasts are

significantly positively correlated with observations or

not (Fig. 5). Forecasts are separated into 1) cases where

positive correlations between the raw forecast ensemble

mean and observations are statistically significant

(p value , 0.10) and 2) all other cases. The PIT

histograms forQM-postprocessed forecasts areU-shaped,

indicating overconfident forecasts, regardless of

whether the raw forecasts are significantly positively

correlated with observations (Fig. 5a) or not (Fig. 5c).

Attributes diagrams also show that the QM-

postprocessed forecasts are overconfident (Figs. 5b,

d), although to different degrees: when correlations are

not significantly positive (Fig. 5d), the attributes dia-

gram deviates more markedly from the 1:1 line.

By contrast, BJP-postprocessed forecasts tend to be

reliable, irrespective of whether raw POAMA forecasts

are significantly positively correlated with observations

or not. The PIT histograms in Figs. 5e and 5g show that

the BJP-postprocessed forecasts have similarly reliable

ensemble spread in all cases. The attributes diagram for

the cases when raw POAMA forecasts are significantly

positively correlated with observations (Fig. 5f) dem-

onstrates that the forecast probabilities of exceeding the

climatological median are consistent with observed rel-

ative frequencies (i.e., the forecasts are reliable). When

raw forecasts are not significantly positively correlated

with observations, the attributes diagram shows that

FIG. 3. CRPS skill score of (a) QM- and (b) BJP-postprocessed forecasts at 0-month lead time (climatology forecasts are used as the

reference). Blue pixels (.5%) show positively skillful forecasts; white pixels (.25%, ,5%) show neutrally skillful forecasts; red pixels

(,25%) show negatively skillful forecasts.
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BJP forecast probabilities concentrate around the cli-

matological probability of 0.5 (Fig. 5h). This shows that

the BJP is performing as expected: when raw forecasts

are essentially uninformative, the BJP returns a forecast

akin to climatology.

5. Discussion

QMcan be useful in instances when bias is the only, or

main, deficiency of raw forecasts, as it is highly effective

at removing bias (Crochemore et al. 2016). By removing

bias, QM also improves the reliability of GCM forecasts

to some extent. However, as we have shown, QM cannot

correct overconfidence in the raw ensemble spread, and

thus cannot guarantee reliable forecasts. It is usual for

GCMs to produce ensemble forecasts that are not only

biased but also have ensemble spread that is over-

confident (Gneiting et al. 2005; Wilks and Hamill 2007;

Lerch and Thorarinsdottir 2013; Baran and Lerch 2015;

Yuan 2016). Forecasts that are not reliable, even if they

are unbiased, may be of little use for decisions where

users need to weigh the risk of action against the un-

certainty inherent in a forecast (e.g., Arnal et al. 2016;

Raftery 2016).

The property of coherence is a prerequisite for fore-

casts to be valuable to decision makers. When introduc-

ing the term ‘‘coherence,’’ Krzysztofowicz (1999) argued

that forecasts should be at least as informative as a

Bayesian prior—that is, a naïve reference forecast—to

allow them to have formal economic value to decision

makers. Climatology has long played the role of the naïve

reference forecast in theoretical discussions of forecast

verification and economic value (Murphy 1993; Hersbach

2000; Wilks and Hamill 2007). Climatology is also the de

facto benchmark in most practical applications of sea-

sonal precipitation forecasts. For example, resampled

historical rainfall, a form of climatological precipitation

forecast, has been used for decades in seasonal ensemble

streamflow prediction (ESP) systems (e.g., Day 1985).

The fact that QM does not ensure coherent forecasts, as

we have shown, is thus a serious limitation to its value as a

postprocessor of seasonal GCM precipitation forecasts.

The inability of QM to produce fully reliable and co-

herent forecasts has been pointed out before in contexts

other than seasonal precipitation forecasting. Wood and

Schaake (2008) compared QM and regression-based

postprocessing for ensemble streamflow forecasts,

showing that QM did not produce reliable and coherent

streamflow forecasts while regression provided calibra-

tion benefits similar to those afforded here by BJP. In

addition, the ability of a variety of EMOS-type methods

to produce reliable and coherent ensemble forecasts is

well established. These include the logistic regression

model, which postprocesses raw forecasts and generates

probability forecasts for selected quantiles (Wilks and

Hamill 2007); the nonhomogeneous Gaussian re-

gression (NGR) model, which employs multivariate

linear regression to account for the relationship between

raw ensemble forecasts and observations (Gneiting et al.

2005); and variants of the NGR model that use other

distributions, such as generalized extreme value and

lognormal distributions (Lerch and Thorarinsdottir

2013; Baran and Lerch 2015). Similarly to BJP, these

EMOS methods explicitly consider the relationship be-

tween raw forecasts and observations in postprocessing,

and any of these methods is likely to be preferable to

QM for postprocessing seasonal climate forecasts.

We note that EMOS-type methods are not without

potential limitations. The statistical assumptions un-

derlying any EMOS method underpin its effectiveness.

For example, the BJP model assumes a joint bivariate

normal distribution for the transformed forecasts and

observations. Similarly, the NGR model assumes that

the observation follows a normal distribution condi-

tional on the ensemble mean. If the forecasts and ob-

servations do not satisfy the underlying assumptions, the

performance of EMOS methods will be impacted. Fur-

ther, EMOS methods all depend, to some degree, on

‘‘doubting’’ the forecasts (by applying a regression of

some form) and adding uncertainty. If the underlying

FIG. 4. Relationship between CRPS skill score of postprocessed

forecasts and the correlation between raw ensemble mean and

observation at 0-month lead time. The vertical solid line divides

correlation into two categories: grid cells with significantly positive

correlation ( p value , 0.10) (right of line) and all other grid cells

(left of line). The two horizontal dashed lines divide CRPS skill

score into three groups: positively skillful, neutrally skillful, and

negatively skillful.
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forecasts are extremely good, it may be better to simply

‘‘trust’’ the forecast in the way that QM does—for ex-

ample, in a few cases where forecasts have high skill,

QM-postprocessed POAMA forecasts have (slightly)

lower errors than BJP-postprocessed forecasts (Figs. 3

and 4). On the whole, however, EMOS-type methods

are conceptually preferable to QM for seasonal forecast

postprocessing.

For general applications, QM has a few other limita-

tions not discussed so far. Maraun (2013) pointed out

that in using QM as a tool for downscaling, it can pro-

duce outputs that have larger variance than observations

when the outputs are rescaled to the original domain

(‘‘variance inflation’’). This problem arises from the

same root cause as the reliability and coherence issues

described above—that is, becauseQMdoes not consider

the correlation between forecasts and observations.

Another way of putting this is that QM assumes that raw

forecasts will be perfectly correlated with observations,

and thus it is justifiable to apply a deterministic correc-

tion. EMOS methods recognize that the correlation

between forecasts and observations is imperfect, and

thus that postprocessing requires a random component

[as recommended by Maraun (2013) and Wong et al.

(2014)]. This not only ensures that forecasts are co-

herent and reliable, it alsomeans EMOSmethods can be

adapted to downscaling applications without causing

variance inflation (Robertson et al. 2013; Schepen and

Wang 2014; Shrestha et al. 2015).

Our findings on the usefulness of QM for post-

processing seasonal forecasts are not readily transfer-

able to the cases whereQM is applied to correct biases in

climate projections. A number of studies have shown

that QM is highly effective for correcting the bias of

climate projections (e.g., Wood et al. 2004; Piani et al.

2010; Mehrotra and Sharma 2016). When QM is applied

to climate projections from an ensemble of models, it

can also adjust the ensemble spread of the projections

(e.g., Maraun et al. 2010; Wong et al. 2014; IPCC 2015).

When a larger ensemble spread is desired, Kim et al.

(2016) suggests a procedure that applies the QM in a

more selective manner, to only some of the ensemble

members. However, it is not possible to objectively

evaluate how reliable the ensemble spread is, because

climate projections are not synchronous with observa-

tions (Maraun 2016). Accordingly, it is not possible to

calibrate climate projections using the BJP method as

we have presented it in this paper. Note that use of QM

for climate projections also has other limitations as re-

ported, for example, in Bürger et al. (2013), Maraun

(2013), and IPCC (2015), which we do not discuss here in

the interests of brevity.

Our findings may be relevant to specific aspects of

climate projections. For example, climate projections

FIG. 5. Reliability conditioned on raw forecast performance. (left) QM-corrected forecasts, showing (a),(b) cases in which raw POAMA

forecasts are significantly positively correlated with observations (p value , 0.10) and (c),(d) all other cases. (right) BJP-postprocessed

forecasts, showing (e),(f) cases where raw forecasts are significantly positively correlated with observations and (g),(h) all other cases.
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aggregated over time may be able to be treated as syn-

chronous with observations, for example the mean cli-

mate over longer periods (e.g., 20-yr mean temperature),

or trends in climate variables taken over a sufficiently

long period (e.g., the rate of change in temperature per

decade). If these variables can be considered synchro-

nous with observations, it may be possible to apply

EMOS-type methods to long-range climate projections.

Better representations of the spread of climate pro-

jections may be useful, for example, in the attribution

of extreme events to human influence (Bellprat and

Doblas-Reyas 2016).

We have illustrated that QM does not ensure fore-

cast reliability and coherence, while EMOS-type

methods, exemplified by the BJP, do. This may al-

ready be appreciated by experienced forecast practi-

tioners, but perhaps because QM’s limitations vis-à-vis

EMOS-type methods have not been demonstrated for

GCM precipitation forecasts, QM continues to be ap-

plied (e.g., Hopson and Webster 2010; Mo et al. 2012;

Shukla and Lettenmaier 2013; Yuan 2016). Given the

serious limitations of QM and the ready availability of

more comprehensive postprocessing methods, we caution

against the use of QM in forecasting applications.

6. Summary and conclusions

In this study, we investigate the performance of QM

for postprocessing seasonal GCM precipitation fore-

casts. QM is highly effective at correcting bias in the raw

GCM forecasts. However, QM ignores the correlation

between raw ensemble forecasts and observations.

When raw forecasts are not significantly positively

correlated with observations, QM tends to produce

negatively skillful forecasts. Even when there is sig-

nificantly positive correlation, QM cannot ensure re-

liability and guarantee that postprocessed forecasts are

‘‘coherent’’—that is, at least as skillful as climatology

forecasts. The flaws of QM in postprocessing GCM

forecasts cast doubt on the usefulness of this popular

method. Based on these findings, we contend that QM

is not a wholly satisfactory method for postprocessing

GCM precipitation forecasts. These findings can be

generalized to postprocessing other types of forecasts.

Alternative EMOS-type postprocessing methods are

available for producing forecasts that are not only un-

biased but also reliable in ensemble spread and at least

as skillful as climatology.
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