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How supernova feedback turns dark matter cusps into cores
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ABSTRACT
We propose and successfully test against new cosmological simulations a novel analytical
description of the physical processes associated with the origin of cored dark matter density
profiles. In the simulations, the potential in the central kiloparsec changes on sub-dynamical
time-scales over the redshift interval 4 > z > 2, as repeated, energetic feedback generates large
underdense bubbles of expanding gas from centrally concentrated bursts of star formation. The
model demonstrates how fluctuations in the central potential irreversibly transfer energy into
collisionless particles, thus generating a dark matter core. A supply of gas undergoing collapse
and rapid expansion is therefore the essential ingredient. The framework, based on a novel
impulsive approximation, breaks with the reliance on adiabatic approximations which are
inappropriate in the rapidly changing limit. It shows that both outflows and galactic fountains
can give rise to cusp flattening, even when only a few per cent of the baryons form stars. Dwarf
galaxies maintain their core to the present time. The model suggests that constant density dark
matter cores will be generated in systems of a wide mass range if central starbursts or active
galactic nucleus phases are sufficiently frequent and energetic.
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1 IN T RO D U C T I O N

Over the last two decades, galaxies formed in numerical simulations
based on the inflationary � cold dark matter (�CDM) paradigm
have suffered from a number of well-documented mismatches with
observed systems. One of the most prominent of these has been
the rotation curves of disc-dominated dwarf galaxies (e.g. Flores
& Primack 1994; Moore 1994; for more recent updates, see Simon
et al. 2005; Oh et al. 2011b, and references therein). The observed
kinematics imply a constant density core of dark matter interior to
1 kpc, whereas simple physical arguments and simulations suggest
that the CDM density should be increasing roughly as ρ∝r−1 to
vastly smaller radii (e.g. Dubinski & Carlberg 1991; Navarro, Frenk
& White 1996b).

Since some of the earliest work on dark matter profiles it has
been suggested that sufficiently violent baryonic processes might
be responsible for heating dark matter cusps into cores (Flores
& Primack 1994). The proposed mechanisms identified in these
papers fall in two broad categories: supernova-driven flattening
(Navarro et al. 1996a; Gelato & Sommer-Larsen 1999; Binney,
Gerhard & Silk 2001; Gnedin & Zhao 2002; Mo & Mao 2004;
Read & Gilmore 2005; Mashchenko, Couchman & Wadsley 2006;

�E-mail: andrew.pontzen@astro.ox.ac.uk

Mashchenko, Wadsley & Couchman 2008), and dynamical friction
from infalling baryonic clumps or disc instabilities (El-Zant, Shlos-
man & Hoffman 2001; Weinberg & Katz 2002; Tonini, Lapi &
Salucci 2006; Romano-Dı́az et al. 2008, 2009; Goerdt et al. 2010;
Pasetto et al. 2010; Cole, Dehnen & Wilkinson 2011). Within the
former category, most early works focused on a single, explosive
mass-loss event. It then became clear that even with extreme pa-
rameters such an event transferred insufficient energy to dark matter
particles (Gnedin & Zhao 2002). On the other hand, Read & Gilmore
(2005) showed that several more moderately violent bursts could
be effective in creating a core. Increasingly sophisticated numer-
ical work by Mashchenko et al. (2006, 2008) strongly supported
the notion of stellar feedback and energy transfer from baryons to
dark matter as the generator of cores, but did not fully explain the
physical mechanism behind this transfer or follow the evolution of
dwarf galaxies to z = 0 to ensure that the cores were long-lived.

Recently, simulations were able to produce realistic, present-day
cored dwarf galaxies within a fully cosmological context (Gover-
nato et al. 2010, hereafter G10). These simulations resolve indi-
vidual star formation ‘clumps’ at the density of molecular clouds
leading to galaxies that are additionally realistic because, like many
observed dwarfs (Dutton 2009), they have no bulge – a consequence
of preferentially expelling low angular momentum gas from the pro-
genitors via naturally occurring galactic winds (Brook et al. 2011;
see also Bullock et al. 2001; van den Bosch, Burkert & Swaters
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2001). Oh et al. (2011a) confirmed that these effects bring the sim-
ulations into excellent agreement with observational constraints on
stellar and H I content as well as those on overall mass distribu-
tion. By testing against dark-matter-only runs, G10 provided strong
support to a model where the core flattening is generated by bary-
onic effects, in particular by rapid gas motions; moreover, a suite
of comparison simulations revealed that these effects only become
significant if stars form in dense clumps (∼100 amu cm−3), sug-
gesting that energy injection has to be concentrated in local patches
(see also Ceverino & Klypin 2009).

The comparison of simulations with recent observations (Oh et al.
2011a) highlighted that feedback must occur in numerous relatively
mild events to allow thin discs to form. However, given the lack
of analytic framework for understanding the microphysics of this
process, the precise mechanism of supernova-driven cusp flattening
was not further elucidated in G10. Providing such a framework is
the aim of the present work.

The remainder of this paper describes how to model the effects of
small, central starbursts which create pockets of rapidly expanding
gas and strong fluctuations in the local potential. Over time these
repeated processes gradually transfer energy from the gas to the
dark matter component. This has much in common with the view
of Mashchenko et al. (2006, 2008) but places more emphasis on
disrupting clumps as opposed to pushing them around, and clarifies
that resonance1 is not required. Because our picture can be modelled
mathematically, we are able to validate it against the simulations,
showing that the envisioned process indeed creates cores within the
G10 simulations.

This paper is organized as follows. Section 2 introduces improved
simulations based on those of G10, and discusses the characteristics
of these simulations which predict cusp flattening, thus motivating
a study of orbits in rapidly changing potentials (Section 3). The ini-
tial discussion is, for simplicity, limited to power-law potentials, but
Section 4 removes this restriction, presenting more general equa-
tions to explain the detailed simulation results. We relate our work
to the wider literature and conclude in Section 5, also discussing
the realism of the underlying hydrodynamical evolution within the
simulated galaxies. In a companion paper (Governato et al. 2012),
we will discuss the scaling of the dark matter cores with galaxy
masses.

2 TH E S I M U L AT I O N S

The smoothed particle hydrodynamics (SPH) simulations, run us-
ing the GASOLINE code (Wadsley, Stadel & Quinn 2004), are closely
related to and improve upon those described in more detail by
G10. The emphasis of the present work is on interpreting dynami-
cal effects, rather than discussing the numerical methods in depth;
however, see Section 5 for brief comments on computational accu-
racy. Our new runs output more regular time-steps and include the
effects of metal-line cooling according to the prescription of Shen,
Wadsley & Stinson (2010). The simulations in this paper focus on
the region hosting the galaxy denoted ‘DG1’ in G10. The ‘zoom’
technique (e.g. Katz & White 1993) allows for a high-mass reso-
lution of Mp = 3 × 103 M� (for gas particles) and Mp = 1.6 ×

1 Although Mashchenko et al. (2008) described their model as ‘resonant’,
they have since stated that they did not mean to invoke a formal resonance,
but rather the notion of changes in the potential occurring on roughly the
dynamical time-scale (Wadsley, private communication).

104 M� (dark matter) with a softening of 86 pc in a full �CDM cos-
mological context. We conducted analysis on the two most massive
systems within this region: DG1 itself (Mvir = 3.7 × 1010 M� at z =
0) and a somewhat smaller galaxy (Mvir = 1.3 × 1010 M� at z = 0).
Most results will be presented for the latter case, because the for-
mer undergoes a major merger at z = 3. Although our model does
predict the correct flattening for DG1, its volatile merger history
would introduce undue complexities into our discussion.

In the first run, denoted HT (‘high threshold’), stars are allowed
to form only at hydrogen densities exceeding 100 cm−3. The second
run, LT (‘low threshold’), is identical to the first except that it allows
stars to form at densities exceeding 0.1 cm−3.

Adopting the higher threshold for star formation is strongly mo-
tivated by observational evidence that molecular clouds form at
such densities (Bigiel et al. 2008; Tacconi et al. 2010). HT thus
exhibits more realistic behaviour of the interstellar medium (e.g.
Saitoh et al. 2008). In particular, only at high formation thresholds
exceeding ∼10 cm−3 will supernova feedback naturally give rise
to bulk gas motions and outflows (Ceverino & Klypin 2009). This
follows because individual high-density clumps are efficient in con-
verting gas to stars, ultimately leading to vast overpressurization of
the clump from the high local density of supernovae. The particular
threshold value of 100 cm−3 for HT is chosen for consistency with
G10, in which it was argued that this is the highest density which
can be considered physical at our present resolution. We have also
verified that when H2 physics is consistently included in simulations
(Christensen et al., in preparation; Governato et al. 2012), star for-
mation indeed proceeds only at high densities even in the absence
of an explicit threshold.

By contrast, LT’s threshold of 0.1 cm−3 represents an approxi-
mate historical norm for galaxy formation simulations (e.g. Navarro
& White 1993; Katz, Weinberg & Hernquist 1996) broadly com-
patible with the observed cut-off in star formation at low column
densities averaged over ∼kpc scales (e.g. Kennicutt et al. 2007). Un-
til recently LT would have been the most motivated choice; however,
with the addition of metal-line cooling at increasing resolution we
now prefer the HT simulations, using LT as a reference to under-
stand why older simulations did not produce the effects of interest
here.

As expected, following G10, LT remains cusped, unlike HT
which develops a 1 kpc dark matter core at z = 0 in both of its
two most massive haloes. In all cases the code consistently follows
the feedback effects of the stellar populations (Stinson et al. 2006)
so that, after a delay of ∼10 Myr, significant amounts of thermal
energy are deposited into the surrounding gas. By z = 2, when HT
has developed a stable core, LT and HT runs have formed an al-
most identical mass of stars (7 × 107 M�) and therefore the same
quantity of supernova energy has been released (7 × 1056 erg).2 The
failure of LT to lose its cusp thus reflects a difference in the coupling
mechanism, not in the absolute energy deposition.

Fig. 1 gives immediate insight into the difference between HT
(cusp flattening) and LT (cusp preserving) simulations by showing
their spherically averaged halo density profiles shortly before the
cusp begins to flatten in HT, at z = 4. Solid, dashed and dotted lines
indicate respectively dark matter, gas and stellar density; thick red
and thin blue lines represent the HT and LT runs in turn. In the
LT run, the gas density cannot exceed the threshold of 0.1 cm−3;

2 Note, however, that by z = 0 the LT simulation forms 4 × 109 M� in stars
compared against the HT simulation’s 5 × 108 M�. Only the HT simulation
forms a realistic dwarf galaxy (Oh et al. 2011a).
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3466 A. Pontzen and F. Governato

Figure 1. Spherically averaged halo density profiles for high star formation
threshold (HT, thick red lines) and low threshold (LT, thin blue lines) simu-
lations at z = 4, shortly before the dark matter profile starts to flatten in the
high-threshold model. Solid, dashed and dotted lines show respectively dark
matter, gas and stellar content. In the low threshold case, dark matter dom-
inates by orders of magnitude at every radius. In the high-threshold case,
the gas reaches a comparable density to the collisionless matter in the cen-
tral regions. Gaseous processes can therefore cause heating of collisionless
components (dark matter and stars) in HT but not LT runs.

stars are able to form and deposit supernova energy, preventing
further cooling. In the HT run, by contrast, the gas density rises
monotonically towards the centre because most of the gas is not
eligible to form stars. The result is that the central gas density
slightly exceeds that of the dark matter. It is natural to suppose
from this that the halo will have a qualitatively different reaction
to the presence of baryons in the two runs. (This work focuses
on expansion of dark matter orbits, but we verified that the same
processes operate on the similarly collisionless star particles in the
simulation, the interesting implications of which are left for future
study.)

Focusing on the HT simulation, Fig. 2 (upper panel) shows the
baryonic mass enclosed within 0.2, 0.5 and 1.0 kpc as a function of
time. From around 1.7 Gyr after the big bang, the density near the
centre undergoes order-of-magnitude fluctuations. First, gas flows
in, cools and condenses near the centre of the potential well. Then,
as the density of clumps rises above the 100 cm−3 threshold, star
formation is allowed to proceed.

Once supernova energy is dumped into the gas, thermal expansion
forms an underdense bubble of up to several kiloparsecs diameter
(lower panel, Fig. 2). The energy is initially deposited within a small
volume (a consequence of the high star formation threshold) which
then reaches temperatures of ∼108 K. The gas is vastly overpressur-
ized relative to its surroundings, so expands at close to the thermal
velocity (typically reaching ∼300 km s−1 � 0.3 kpc Myr−1). Com-
pared to the orbital time-scales, which are � 25 Myr, the bubble
formation is effectively instantaneous.

The adiabatic cooling from the expansion is included, but the
bubbles nonetheless remain hot (∼106 K) by the time they reach
rough pressure equilibrium with the remainder of the disc. They are
then sufficiently underdense (∼10−2 cm−3) that the radiative cool-
ing time-scale is up to 100 Myr; the bubble can therefore persist for
this length of time, after which it cools back into the disc if it has not
actually escaped in a galactic wind. The rapid, repeated fluctuations

Figure 2. Upper panel: the baryonic mass interior to, from top line to
bottom, 1 kpc, 500 pc and 200 pc (HT simulation). Bursty central star for-
mation coupled to strong supernova feedback causes coherent, rapid oscilla-
tions in the potential interior to 1 kpc. The orbital time of typical dark matter
particles interior to 1 kpc is � 25 Myr. By contrast, the simulated super-
nova bubbles can encompass the inner kiloparsec in around 3 Myr, far too
rapidly for the adiabatic approximation to be valid. The lower panel shows
the disc-plane density during the starburst event at t = 2.56 Gyr, z = 2.67. A
large underdense bubble has formed at the centre of the disc through thermal
expansion of gas heated by multiple supernova explosions. The cross marks
the halo centre.

in the central mass content of the simulated galaxy are similar to
those shown in fig. 3 of Mashchenko et al. (2008). However we
have verified that, in our case, this is due to the gas being heated
and expanding outwards rather than remaining in rapidly moving
coherent clumps as suggested by Mashchenko et al. (2008).

The overall picture for the dark matter is insensitive to the ultimate
destination of the gas, requiring only the intermittent variations
explained above; the present work makes no assumptions about
mass loss. Note, however, that significant winds do exist in the
simulations; the final baryon fraction in the galaxies is only 25 per
cent of the cosmic value (G10) and only 3 per cent of the baryons
have been turned into stars. The winds have been shown to be
important in matching the star formation rates, distribution of stars
and final baryon fractions of the dwarf galaxies (see McGaugh et al.
2010; Brook et al. 2011; Oh et al. 2011a).

3 A NA LY T I C A L M O D E L

This section discusses how the energy of a single dark matter particle
(or star) changes in response to a fluctuating potential sourced by
gas subject to processes described above. Two restrictions on the
calculation are imposed throughout the paper:
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Figure 3. The mechanism for injecting energy into the dark matter orbits,
illustrated by the exact solution for a time-varying harmonic oscillator po-
tential. The lower panel shows (solid line) a solution to the equations of
motion, where ω2 = 1 (blue) at early and late times, while at intermediate
times ω2 = 0.1 (red) mimicking baryonic blowout and recondensation. The
changes in potential occur instantaneously; in this case, the final amplitude
of the oscillation is approximately twice that of the initial orbit. The dashed
line shows the solution when the potential changes smoothly over several
orbital periods; this gives adiabatic behaviour, so that the final orbit regains
the initial amplitude, demonstrating the necessity for relatively sudden po-
tential jumps. The inset figures (top) illustrate how the post-blowout orbit
expansion implies that the late-time energy gain dominates over the initial
energy loss.

(i) the potential is assumed to be spherically symmetric;
(ii) the tracer particles are assumed to be massless, i.e. the po-

tential is always external.

The latter condition represents a decision to focus on the micro-
physical mechanism via which particles gain energy, rather than the
subsequent evolution of the self-gravitating system. The first condi-
tion could in future be relaxed, but makes calculations much simpler
because particles orbit in the one-dimensional effective potential:

Veff (r; j, t) = V (r; t) + j 2

2r2
, (1)

where V(r; t) is the time-dependent physical potential and j is a
conserved angular momentum.

For simplicity, we will temporarily impose two further restric-
tions which will later be removed in Section 4:

(iii) only the normalization of the potential changes, i.e. its func-
tional form is fixed;

(iv) the functional form of the potential is a power law.

Together these imply that the underlying potential in (1) is specified
by V(r; t) = V0(t)rn. Some useful test cases fall into this exact form:
a Keplerian orbit has n = −1 while a harmonic oscillator implies
n = 2. The final case will be of particular interest chiefly for its
analytic simplicity, but we also note that it corresponds to assuming
a spatially constant density of matter.

The rate of change of the total energy of a particle orbiting within
the potential, dE/dt, is given by the partial derivative ∂V /∂t |r(t),
where r(t) denotes the solution to the equations of motion. In the
limit of an instantaneous change in the potential V → V + �V

occurring at time t, the total energy of the particle therefore changes
by �E = �V(r(t)) = �V0 r(t)n.

Assuming we have no prior knowledge of the phase of the parti-
cle, the virial theorem (e.g. Goldstein, Poole & Safko 2002) states
that the expected potential energy is

〈V 〉 = 2E0

2 + n
, (2)

where E0 is the total energy of the particle and the result is inde-
pendent of j. This and following equations are also therefore valid
in the one-dimensional (j = 0) sub-case.

If suddenly V0 → V0 + �V0, the energy after the potential
change is E0 + �E1, where

〈�E1〉 = �V0〈rn〉 = 2E0

2 + n

�V0

V0
. (3)

The fiducial adiabatic limit can be attained from here by assuming
�V0 and �E1 to be infinitesimal and integrating over a series of
such changes taking V0 smoothly to V f . This yields a final, finite
change in energy:

Ef,adiabatic = E0

(
Vf

V0

)2/(2+n)

. (4)

As expected in the adiabatic limit, equation (4) implies no energy
shift, regardless of the intermediate states, if the final potential is
the same as the initial. This is the central problem of the adiabatic
approximation. Fig. 2 shows that the final distribution of gas will
indeed be very similar to the initial, and therefore that the adiabatic
prediction will be for no change in the final distribution of dark
matter.

However, Section 2 showed that potential changes in the simu-
lations take place on time-scales much shorter than the dynamical
time, because the expansion speeds of the supernova-induced bub-
bles are much larger than the local circular velocity. As the gas
expands and leaves the galaxy centre, the potential undergoes a se-
ries of large, instantaneous jumps, invalidating the adiabatic result
given by equation (4).

Instead of integrating, one should therefore recursively apply
equation (3) to each finite change. If, for instance, the potential
switches immediately back to its original depth, the second shift in
energy is given by

〈�E2〉 = 2 (E0 + 〈�E1〉)
2 + n

−�V0

V0 + �V0
, (5)

where the angular brackets indicate averaging over the orbital phase
of our chosen trajectory during both the initial and final instanta-
neous potential jumps. These conditions are justified because the
initial blowout is not causally connected to the location of a single
tracer particle, nor is the exact fractional number of orbits between
initial blowout and eventual recollapse predictable (this aperiodic-
ity is illustrated by Fig. 2). By Taylor expanding, we find that the
expected final energy of the orbit is given by

〈Ef〉 = E0 + 〈�E1 + �E2〉 � E0 +
(

�V0

V0

)2 2n

(2 + n)2
E0 , (6)

which is always an energy gain for bound orbits since E0 < 0 for
n < 0. The energy gain is second order in the potential change
�V0, but linear in the energy. One may verify that, if the potentially
first changes suddenly but then gradually (i.e. adiabatically) relaxes
to its original state, we will also see an increase in expected final
energy of the same magnitude. The essential point is for the initial
change to be rapid; the energy shift will then follow.
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The special case of the harmonic oscillator (n = 2) is helpful in
demonstrating the origin of this energy shift, because its dynamics
are especially simple. The potential is separable in Cartesian co-
ordinates, which means that we can assume the one-dimensional
sub-case without loss of generality. Then, for the case of sudden
discrete jumps, the analytic form of the solution is written as

x(t) = A cos (ωt + ψ) , (7)

where ω2(t) = 2V0(t) while A(t) and ψ(t) specify the amplitude and
phase of the oscillation, which change discontinuously with the po-
tential. The new values of A and ψ after any jump can be determined
either through energy arguments as above or by requiring continuity
of both x and ẋ. Without loss of generality, we let ω change from
ω0 to ω1 at t = 0. The amplitude of the trajectory after the jump,
A1, is given by the expression:

A2
1 = A2

0

[
1 + ω2

0 − ω2
1

ω2
1

sin2 ψ0

]
, (8)

which is explicitly dependent on the orbital phase ψ0 at which the
discontinuity occurs. The corresponding change of energy is

�E1 = −E0
ω2

0 − ω2
1

ω2
0

sin2 ψ0. (9)

We can now analyse the changes in a single trajectory which
lead us to recover the expected gain in orbital energy under a single
blowout–recollapse cycle, equation (6). Fig. 3 (thick line) shows
an example orbit for which ω2

0 = 10 ω2
1. The initial amplitude is

unity until, at a certain time, the potential flattens out as mass is
lost from inside the orbit. Intuitively, or from equation (9), this
must always involve a loss of energy for the particle (since ω2

0 >

ω2
1); see also panel 1 at the top of Fig. 3. However, according to

equation (8), the new potential is sufficiently flattened that the orbital
amplitude is now larger than unity (panel 2). This is crucial because
the energy gain made when the potential change is later reversed (ω
returns from ω1 to ω0) will be accordingly larger, scaling with 〈x2〉
(panel 3). Applying equations (8) and (9) for the reverse jump (i.e.
with ω1 and ω0 exchanged) allow this picture to be directly verified.

This makes more concrete the assertion of equation (6) that one al-
ways expects to gain energy during a series of potential changes. Yet
seen from another perspective, such a claim still needs to be recon-
ciled with the underlying dynamics which are fully time-reversible.
For instance, the time-reverse of Fig. 3 (viewing the figure from
right to left) represents an equally valid trajectory of the forward
dynamics and yet loses energy.

Under time-reversal, the blowout phase maps on to the recollapse
phase and vice versa. The irreversibility thus arises not from dy-
namical differences but statistical differences between the forward-
blowout and reverse-recollapse pictures. In particular, a uniform
prior on the orbital phase before a transition is always assumed,
2π p(ψ0) = 1. On the other hand, the phase ψ ′

0 after the transition
is determined by

tan ψ ′
0 = ω0

ω1
tan ψ0, (10)

and, accordingly, the probability distribution function of ψ ′
0 is

2π p(ψ ′
0) =

(
ω0

ω1
cos2 ψ ′

0 + ω1

ω0
sin2 ψ ′

0

)−1

. (11)

The precise functional form (11) is not crucial, only that p(ψ ′
0)

cannot be taken to be uniform. After the sudden baryonic blowout,
collisionless particles enter their new orbit in a special phase –

preferentially near pericentre – so that they subsequently migrate
outwards in unison.

It is this difference in knowledge of phases before and after
sudden changes that allows irreversibility in the real universe to
appear in the model. Only if all collisionless particles were near
their pericentre just before the baryons returned would the statistical
properties of the reversed picture match those of the actual model.
While this is dynamically possible, it is statistically unlikely.

Finally, note that if the changes in potential are introduced grad-
ually, the process should become adiabatic and hence reversible.
The dashed line in Fig. 3 shows a numerical solution for which ω

changes smoothly over several orbital times from ω0 to ω1, then
back to ω0. As expected from equation (4), the final orbital am-
plitude is the same as its initial value, confirming the qualitatively
different results to be expected from gradual variation as opposed
to sudden jumps.

4 VA L I DAT I N G T H E A NA LY T I C M O D E L
AG A I N S T SI M U L AT I O N S

To test the picture expounded above, we start by generating a time-
dependent effective toy potential from the simulations (Section 2).
This is given by equation (1), with V(r; t) calculated from the
spherically averaged density profile. The starting energy E0 and the
value of j can be determined by specifying initial orbital parameters.
The angular momentum is necessarily conserved because of the
spherical symmetry of the modelling (restriction 1 of Section 3). In
the simulations, the changes in potential are not exactly symmetric
(e.g. lower panel of Fig. 2); however, we will see below that, for the
purposes of calculating real-space density profiles, the symmetric
approximation which enforces constant j actually works extremely
well.

As before, the energy shift for one jump is given by averaging
over possible orbital phases. However, the potential Vsphere is no
longer an exact power law, so the calculation required is

〈�E〉 =
∫

�Veff (r(t))dt∫
dt

=
∫

�Veff (r) dr√
E − Veff (r)

/ ∫
dr√

E − Veff (r)
, (12)

where the time integrals are evaluated over an orbital period;
after changing variables to r this corresponds to integrating over
the region where the integrand is real. Equation (12) agrees with
equation (3) for the special case of power-law potentials.

The remainder of this section applies expression (12) recursively
to a time series of potentials from the HT (cusp-flattening) simula-
tion, at each step updating �V , E and Veff appropriately.3 The energy
gain is evaluated at every stored simulation time-step; the relevant
outputs are written every δt � 27 Myr. Thus, changes occurring on
time-scales ≤δt will implicitly be classified as ‘rapid’ (composed
of one jump), whereas those occurring on time-scales δt will
automatically be treated as ‘adiabatic’ (composed of many small
steps). While the boundary between these limits cannot be uniquely
defined, the change in behaviour must occur at around the orbital

3 Because E takes a random walk, a more accurate result is in principle
attainable by keeping track of its evolving distribution function rather than
just its expected value. Our approach here is akin to taking the first term in
a Fokker–Planck analysis and will be an excellent approximation because
the energy shifts are approximately linear, as can be shown by generalizing
equation (3).
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Figure 4. Using the spherically averaged potential from the simulations,
we model the expansion of orbits of test particles at different initial radii
(solid lines). Orbits starting significantly within the inner kiloparsec migrate
outwards over several Gyr, whereas those starting outside a kiloparsec do
not feel the rapid potential variations and so remain near their initial ra-
dius. Our model thus explains the flattening of central density cusps into
kiloparsec-scale cores in small galaxies through radial outward migration.
As expected, the reversible, adiabatic model (illustrated for the innermost
orbit by the dashed line) does not correctly model the heating effect of very
rapid potential variations in the inner parts of the halo.

period for a particle, which is indeed ∼25 Myr. We verified by run-
ning checks with only every second time-step (δt � 54 Myr) that
the results presented are insensitive to the precise time-slicing.

The solid lines in Fig. 4 show the resulting mean radius 〈r〉 of
orbits as a function of time, where

〈r〉 =
∫

r dr√
E(t) − Veff (r; j, t)

/ ∫
dr√

E(t) − Veff (r; j, t)
. (13)

The values of j and E0 for each orbit are chosen by requiring the
initial motion to be circular at a range of different radii. As time
progresses, the orbits starting interior to 1 kpc migrate outwards,
reflecting a net gain in energy. Orbits outside this radius are largely
unaffected. In the LT run, by contrast, no tracer particles gain energy;
those that start on circular orbits, for instance, are predicted to
remain at the same radius for the entire run.

Fig. 2 implies that the central baryonic potential returns to its ap-
proximate original shape at the end of each starburst cycle, because
the gas affected by the supernovae has cooled back into the disc
(or has flowed out, replaced by fresh gas). In the adiabatic limit,
where all potential changes occur slowly, the final orbital param-
eters should return to their initial values. Indeed by making �Veff

infinitesimal and integrating (12) one obtains∫ √
E(t) − Veff (r; j, t) dr = constant, (14)

where again the integral is taken over the real region of the integrand.
This is the generalization of equation (4), and is exactly the adiabatic
invariant derived through the action-angle approach (e.g. Binney &
Tremaine 1987). It implies that Efinal = Einitial if the potential returns
to its initial form via a series of slow changes.

Demanding the adiabatic invariant (14) is constant yields the
orbital migration in the ‘gradual outflows’ scenario. The dashed line

in Fig. 4 shows that the result derived in this limit is as expected;
although temporary changes in the orbital radius do occur, they do
not persist over time. This underlines the difference between our
new model (where a tracer particle picks up energy from baryons)
and the older adiabatic calculations (where the energy of a tracer
particle is conserved).

Although Fig. 4 shows that orbits gain energy, it cannot be used
directly to infer the final inner profile of the dark matter. To draw
conclusions about the evolution of the slope, we evolved the en-
ergy of ∼90 000 orbits corresponding to all dark matter particles
in the halo at z = 4. At each time-step, the full radial probability
distribution for each particle,

p(r; E, j ) ∝ 1√
E − Veff (r; j )

, (15)

was calculated numerically. The sum of the normalized probability
distributions for all particles then implies a density profile according
to

ρmodel(r) ∝ 1

r2

∑
i

p(r; Ei, ji), (16)

where the sum is over all tracer particles. Time evolution of ρmodel(r)
arises from updating Vsphere and each Ei at every time-step according
to equation (12) or, for comparison, by solving equation (14) to
derive the behaviour in the adiabatic limit.

Starting at z = 4, the distribution function is evolved in this way
to z = 2; the resulting density profiles are illustrated in Fig. 5. The
thick solid line shows our main model [i.e. it is derived from equa-
tion (12)], and is seen to be in excellent agreement with the output
of the simulation (dotted line). The dotted line shows the results
of modelling the baryonic effects using the adiabatic approxima-
tion [i.e. equation (14)]; the cusp remains, contrary to the results
of the simulation. This reaffirms that the adiabatic approximation
does not capture important aspects of the impact of baryons on the

Figure 5. The spherically averaged dark matter density as a function of
radius, measured at z = 2 when the core has formed in the HT simulations
(thick dotted line). The solid line shows the density profile at this time
according to our model (see text for details); this is seen to be in excellent
agreement with the HT simulation. The adiabatic model (dashed line) fails to
correctly model the cusp flattening, demonstrating the need for the improved
modelling presented here. The LT comparison simulation (dot–dashed line)
also remains cusped as explained in Section 2.
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Figure 6. The evolution of the logarithmic slope of the halo in the raw sim-
ulation data (dotted line) and according to our model (solid line), measured
at 500 pc in both cases. Values � −1 indicate a conventional Navarro–
Frenk–White (NFW)-style cusp; shallower profiles are indicated by values
closer to zero. The flattening of the profile in the simulations has previously
been demonstrated to agree with observational data (Oh et al. 2011a). Our
physical model for the origin of the flattening is in excellent agreement with
the detailed simulation results.

dark matter. Finally, the dot–dashed line shows the profile from the
LT (low star formation threshold) simulation which, as explained in
Section 2, retains its cusp and is therefore in approximate agreement
with the adiabatically evolved case.

The calculation described by equation (12) involves calculating
the particle distribution function for every intermediate step. It is
possible, therefore, to monitor the rate at which the cusp flattens and
compare it against the simulations. Fig. 6 shows the time evolution
of the measured logarithmic slope at 500 pc for both the model
density profile, equation (16), and the simulated density profile.
As time progresses, both the simulated and model density profiles
gradually flatten out, with the value rising from <−1.0 (cusped)
to ∼−0.4, consistent with observations (Oh et al. 2011a).

To conclude, the analytic model presented here predicts flattening
of the slope at the same rate as seen in the HT simulation (Figs 5
and 6), whereas the adiabatic approximation does not predict any
significant flattening (Fig. 5). We further verified that the new model
did not predict a change in slope for the LT run in which the gas
density remains too small to generate significant fluctuations in
the potential. Overall, the new model alone provides a convincing
explanation for the flattening processes seen by G10.

5 C O N C L U S I O N S

We have proposed a new analytic model that accounts for the flat-
tening of dark matter cusps into cores. Energy is transferred into
dark matter particle orbits through repeated, rapid oscillations of
the central gravitational potential. These oscillations are caused by
recurrent, concentrated bursts of star formation which induce rapid
expansion of gas through supernova feedback heating. We verified
that this process quantitatively accounts for cusp flattening in a
novel set of simulations similar to those in G10. The simulations
include the effects of metal-line cooling, but like those in G10 form
thin stellar discs and have a galactic star formation efficiency of

only a few per cent. A comparison simulation (LT) with lower star
formation density threshold does not form a core, despite forming
10 times as many stars by z = 0. The model correctly predicts no
cusp flattening in this case (Fig. 6), confirming our interpretation
that for cores to form the supernova energy must be injected in a
concentrated region (Fig. 1).

The baryons do not have to escape the system completely, but only
temporarily vacate the central regions, because the energy transfer
is inherently irreversible. The G10 simulations do exhibit galactic-
scale outflows which remove 75 per cent of baryons by z = 0. These
outflows have other important effects (e.g. Brook et al. 2011), yet
the mass involved is only around a third of the mass involved in the
central blowout–recollapse cycle. The relation between the galactic
outflows and the local feedback will be the focus of future work.

The picture is related to the more established view that removal
of baryons through galactic superwinds could cause the central dark
matter profile to flatten (e.g. Navarro et al. 1996a; Gnedin & Zhao
2002; Read & Gilmore 2005). However, our model confirms that
extreme, violent mass-loss events are not necessary, as suggested
by Mashchenko et al. (2006, 2008). This is important because the
more moderate heating events allow retention of baryons and the
formation of a thin stellar disc.

Dynamical friction from infalling baryonic clumps (El-Zant et al.
2001; Mo & Mao 2004; Romano-Dı́az et al. 2009; Goerdt et al.
2010) does not appear to play a dominant role in our simulations. In
the LT simulations, no cores form; therefore, effects of dynamical
friction are ruled out except from the densest clumps in HT. In the
HT simulations, any dense infalling clumps are typically disrupted
long before they reach the inner kiloparsec. To test the effect of
dynamical friction, one would first need to remove the explosive
events associated with feedback. However as the feedback energy
is decreased, dense clumps start to pile up in galaxies until time
integration becomes computationally unfeasible, at the same time
creating an unrealistic dense central bulge. Additionally, we do not
have the resolution to produce star clusters (Goerdt et al. 2010)
which could be more robust to disruption than gas clumps. As a
result, we are not ruling out dynamical friction as an agent for
weakening cusps except for the particular simulations in use here.

The DG1 case (which undergoes major mergers at z = 3 and
1; see Section 2) has a very similar cusp-flattening history to the
galaxy described in this work. The mergers themselves have no
measurable effect on the halo slope and, as expected through ar-
guments based on Liouville’s theorem, cores remain present after
the merger (Kazantzidis, Zentner & Kravtsov 2006). In Governato
et al. (2012), we show that cores form in the large majority of dwarf
galaxies, irrespective of their assembly history.

The model is reminiscent of the violent relaxation envisioned by
Lynden-Bell (1967), although our analysis does not attempt to gen-
erate the gravitational potential self-consistently. It would thus be
desirable in the future to work the microphysics into a broader, an-
alytical description of the evolution of a self-consistent dark matter
distribution function. We would further like to investigate the impor-
tance of departures from exact spherical symmetry. The simulated
supernova explosions are rarely exactly on the axis of the disc, so
even axisymmetry is violated. This will lead to the non-conservation
of angular momentum, which must be understood before we can
investigate the impact of the process on the anisotropy of the orbits
(Tonini et al. 2006).

Stars, like dark matter particles, are collisionless and therefore
should be subject to the same migratory processes outlined here.
Stars forming near the centre of the HT galaxies indeed migrate
outwards; it could be natural in this context that the scalelength of
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the dark matter cores and the stellar discs are approximately equal,
an observational relation noted by Gentile et al. (2009). Indeed the
scalelengths of both stellar disc and dark matter core of the dwarf
galaxies discussed here are approximately 1 kpc (G10; Brooks et al.
2011). To make this link convincing will require a more systematic
study of scaling with mass (Brooks et al., in preparation).

While the analytic model we have described is independent of the
detailed gas dynamics, to obtain results the simulated hydrodynam-
ics are used as an input. The cusp-flattening effect is therefore only
achieved in reality if the rapid gas motions predicted by the SPH
code are reproduced. Mesh-based codes (Teyssier 2002; O’Shea
et al. 2004; Springel 2010) highlight potential shortcomings of tra-
ditional SPH such as its poor handling of instabilities related to sharp
density contrasts (Agertz et al. 2007; Bauer & Springel 2011). In
future, we intend to address the sensitivity of our results to these
inaccuracies through comparison with alternative codes and use of
forthcoming improvements to the GASOLINE SPH engine that reduce
artificial surface tension (see also Read & Hayfield 2011). Through
direct comparison of various codes, Scannapieco et al. (2011) con-
clude that, for most practical purposes, the choice of sub-grid model
approximation (via which supernova energy is coupled to the gas)
is more critical than the numerical technique. It will be of interest
to determine whether other feedback mechanisms and numerical
methods can reproduce our results. Indeed, recently Martizzi et al.
(2011) reported the formation of dark matter cores in adaptive mesh
refinement simulations through gas fluctuations very similar to ours,
but driven by active galactic nucleus (AGN) activity in clusters.

We are currently investigating how the cores scale for 109 M� <

Mvir < 1012 M� (Governato et al. 2012). At higher masses, the
results will depend on a detailed interplay between the deepening
dark matter potential, increased star formation rates and the nature
of AGN feedback (Martizzi et al. 2011). The challenge of running
suitable simulations to tackle the most massive systems at sufficient
resolution is formidable, but one that we hope to tackle in due
course.
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