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Abstract

The functional role of synchronization has attracted much interest and debate: in particular, synchronization may allow
distant sites in the brain to communicate and cooperate with each other, and therefore may play a role in temporal binding,
in attention or in sensory-motor integration mechanisms. In this article, we study another role for synchronization: the so-
called ‘‘collective enhancement of precision’’. We argue, in a full nonlinear dynamical context, that synchronization may help
protect interconnected neurons from the influence of random perturbations—intrinsic neuronal noise—which affect all
neurons in the nervous system. More precisely, our main contribution is a mathematical proof that, under specific,
quantified conditions, the impact of noise on individual interconnected systems and on their spatial mean can essentially be
cancelled through synchronization. This property then allows reliable computations to be carried out even in the presence
of significant noise (as experimentally found e.g., in retinal ganglion cells in primates). This in turn is key to obtaining
meaningful downstream signals, whether in terms of precisely-timed interaction (temporal coding), population coding, or
frequency coding. Similar concepts may be applicable to questions of noise and variability in systems biology.
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Introduction

Synchronization phenomena are pervasive in biology. In

neuronal networks [1–3], a large number of studies have sought

to unveil the mechanisms of synchronization, from both

physiological [4,5] and computational viewpoints (see for instance

[6] and references therein). In addition, the functional role of

synchronization has also attracted considerable interest and

debates. In particular, synchronization may allow distant sites in

the brain to communicate and cooperate with each other [7–9]

and therefore may play a role in temporal binding [10,11] and in

attention and sensory-motor integration mechanisms [12–14].

In this article, we study another role for synchronization: the so-

called collective enhancement of precision (see e.g. [15–17]), an intuitive

and often quoted phenomenon with comparatively little formal

analysis [18]. We explain mathematically why synchronization

may help protect interconnected nonlinear dynamic systems from

the influence of random perturbations. In the case of neurons,

these perturbations would correspond to so-called ‘‘intrinsic

neuronal noise’’ [19], which affect all of the neurons in the

nervous system. In the presence of significant noise intensities (as

experimentally found in e.g. retinal ganglion cells in primates

[20]), this property would be required for meaningful and reliable

computations to be carried out.

It should be noted that ‘‘protection of systems from noise’’ and

‘‘robustness of synchronization to noise’’ are two different

concepts. The latter concept means that the synchronized systems

remain so in presence of noise, whereas the former concept means

that, thanks to synchronization, the behaviors of the coupled

systems are close to the noise-free behaviors. This difference is

further addressed in the Discussion.

The influence of noise on the behaviors of nonlinear systems

is very diverse. In chaotic systems, a small amount of noise can

yield dramatic effects. At the other end of the spectrum, the

effect of noise on nonlinear contracting systems is bounded by

s2=l where s is the noise intensity – which can be arbitrarily

large – and l is the contraction rate of the system [21]. Between

these two extremes, it has been shown analytically that some

limit-cycle oscillators commonly used as simplified neuron

models, such as FitzHugh-Nagumo (FN) oscillators, are basically

unperturbed when they are subject to a small amount of white

noise [22]. Yet, a larger amount of noise breaks this

‘‘resistance’’, both in the state space and in the frequency space

[Figures 1(A)–(D)]. This suggests that both temporal coding and

frequency coding may be unusable in the context of large

neuronal noise.

One might argue that it could be possible to recover some

information from the noisy FN oscillators by considering the

activities of a large number of oscillators simultaneously [19,23].

Figure 2(A) shows that the spatial mean of the noisy oscillators still

carries very little information when the noise intensities are large,

making the population coding hypothesis also unlikely in this

context. In other words, if the underlying dynamics are

fundamentally nonlinear, as in the case of our FN oscillators, the

spatial mean of the signals is ‘‘clean,’’ but contains very little

information: the nonlinear nature of the systems dynamics

prevents the familiar ‘‘averaging out’’ of noise through multiple

measurements, and getting rid of the noise also gets rid of the

signal.

By contrast, one can observe that when oscillators are

synchronized through mutual couplings, then they become ‘‘pro-

tected’’ from noise, whether in temporal [Figure 1(E)], frequential
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[Figure 1(F)] or ‘‘populational’’ aspects [Figure 2(B)]. Thus, in

some sense, the linear effect of averaging noise while preserving

signal [24] can be achieved for these highly nonlinear dynamic

components through the process of synchronization. Our aim in this

article is to give mathematical elements of explanation for this

phenomenon, in a full nonlinear setting. It is also to suggest

elements of response to a more general question, namely: what is

the precise meaning of ensemble measurements or population codes,

and what information do they convey about the underlying

dynamics and signals?

Results

General analytical result
Consider a diffusive network of d-dimensional noisy non-linear

dynamical systems

dxi~ f(xi,t)z
X

j=i

Kji(xj{xi)

 !

dtzsdWi, i~1 . . . n ð1Þ

where f~(f1, . . . ,fd )
T is a Rd

?R
d function. Note that the noise

intensity s is intrinsic to the dynamical system (i.e. independent of

the inputs), which is consistent with experimental findings [20].

For simplicity, we set s to be a constant in this article, although the

case of time- and state-dependent noise intensities can be easily

adapted from [21].

We consider four mathematical assumptions that will enable us

to relate the trajectory of any noisy element of the network xi to

the trajectory of the noise-free system xnoise{ free driven by

equation

dxnoise{ free~f(xnoise{ free,t)dt:

(A1) is an assumption on the form of the network. (A2) gives a

bound on the nonlinearity of the dynamics f. (A3) states that the

system trajectories are resistant to small perturbations. Finally,

(A4) requires that the dynamical systems in the network are

synchronized.

(A1). The network is balanced, that is, for any element of the

network, the sum of the incoming connection weights equals the

sum of the outgoing connection weights

Vi
X

j

Kji~

X

j

Kij :

Remark that any symmetric network is balanced.

A particular kind of balanced network consists of an all-to-all

network with identical couplings, i.e. Kij~k=n for all i and j. In

general, assuming all-to-all coupling needs not be unduly

restrictive, since such coupling can be implemented through

mechanisms such as quorum sensing [25–27]. Indeed, assuming that

the mean value of the xi’s can be provided by the environment as

x
.
~

1

n

X

i
xi, then the all-to-all network (1) can be written as a

star network where damping is added locally and each cell xi is

only connected to the common signal

dxi~ f(xi,t)zk(x.{xi)ð ÞdtzsdWi:

Quorum sensing, and more generally the measurement of a

common mean signal, can thus be seen as a practical (and

biologically plausible) way to implement all-to-all coupling with 2n

connections instead of n2.

(A2). Let Hj denote the Hessian matrix of the function fj and

let lmax(Hj) denote its largest eigenvalue. For all j, we assume that

lmax(Hj) is uniformly upper-bounded by a constant
1
ffiffiffi

d
p Hbd. This

implies in particular that

Vx,j,t x
T
Hjxƒ

Hbd
ffiffiffi

d
p ExE2:

This assumption gives us a bound on the nonlinearity of f, the

extreme case being Hbd~0 for a linear system.

(A3). The dynamics f is resistant to small perturbations. More

precisely, consider two systems starting from the same initial

conditions but driven by slightly different dynamics

_xxnoise{free~f(xnoise{ free,t)

and

_xxperturbed~f(xperturbed,t)zP,

(where P is a real time stochastic process) then (EPE)?0 implies

Exnoise{ free{xperturbedE?0.

In particular, such a property has been demonstrated in the case

of FN oscillators, with P representing a white noise process [22].

(A4). After exponential transients, the expected sum of the

squared distances between the states of the elements of the

network is bounded by a constant r

X

ivj

Exi{xjE
2

 !

ƒr:

This is where synchronization will come into play, because

synchronization is an effective way to reduce the bound r. Some

precise conditions for this will be given later.

We show in Methods that under these assumptions and when

n?? and r=n2?0, the distance between the trajectory of any

noisy element xi of the network and that of the noise-free system

xnoise{ free tends to zero, with the impact of noise on the mean

Author Summary

Synchronization phenomena are pervasive in biology,
creating collective behavior out of local interactions
between neurons, cells, or animals. On the other hand,
many of these systems function in the presence of large
amounts of noise or disturbances, making one wonder
how meaningful behavior can arise in these highly
perturbed conditions. In this paper we show mathemat-
ically, in a general context, that synchronization is actually
a means to protect interconnected systems from effects of
noise and disturbances. One possible mechanism for
synchronization is that the systems jointly create and then
share a common signal, such as a mean electrical field or a
global chemical concentration, which in turn makes each
system directly connected to all others. Conversely,
extracting meaningful information from average measure-
ments over populations of cells (as commonly used for
instance in electro-encephalography, or more recently in
brain-machine interfaces) may require the presence of
synchronization mechanisms similar to those we describe.
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trajectory evolving as

rHbd

2n2
z

s
ffiffiffi

n
p :

In particular, when f is a time-varying linear system of the form

f(x,t)~A(t)xzb(t), we recover the known result [28] that the

impact of noise evolves as the inverse square root of n. More

generally, linear components of the system dynamics (including, in

particular, the input signals) do not contribute to the first term of

the above upper bound.

Figure 1. Simulations of a network of FN oscillators using the Euler-Maruyama algorithm [47]. The dynamics of coupled FN oscillators are
given by equation (2). The parameters used in all simulations are a~0:3, b~0:2, c~30. (A) shows the trajectory of the ‘‘membrane potential’’ of a
noise-free oscillator and (B) depicts the frequency spectrum of this trajectory computed by Fast Fourier Transformation. (C) and (D) present the
trajectory (respectively the frequency spectrum) of a noisy uncoupled oscillator (s~10). (E) and (F) show the trajectory (respectively the frequency
spectrum) of a noisy synchronized oscillator within an all-to-all network (s~10, kij~5, n~200). Note the temporal and frequential similarities between
a noise-free oscillator and a noisy synchronized one. For instance, the main frequency and the first harmonics are very similar in the two frequency
spectra. In contrast, the frequency spectrum of a noisy uncoupled oscillator shows no clear harmonics.
doi:10.1371/journal.pcbi.1000637.g001
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Synchronization in networks of noisy FN oscillators
We now give conditions to guarantee assumption (A4) for all-to-

all networks of FN oscillators with identical couplings. The

dynamics of n noisy FN oscillators coupled by (gap-junction-like)

diffusive connections is given by

dvi ~ cf (vi, wi, I)z
P

j

k

n
(vj{vi)

 !

dtzsdWi

dwi ~ {
1

c
(vi{azbwi)dt

8

>

>

>

<

>

>

>

:

ð2Þ

where f (v, w, I)~v{
1

3
v3zwzI . We show in Methods that,

after exponential transients of rate k,

X

ivj

(vi{vj)
2

 !

ƒ
n(n{1)s2

k
: ð3Þ

Thus, (A4) is verified with

r~
n(n{1)s2

k
: ð4Þ

For large n, we have r=n2*s2=k, which converges to 0 when

k??. Figure 3(A) provides a comparison of this theoretical

bound with simulations.

Assumption (A1) is also verified because an all-to-all network

with identical couplings is symmetric, therefore balanced. Since

the (vi, wi)
T are oscillators with stable limit cycles, it can be shown

that the trajectories of the vi are bounded by a common constant

M. Thus (A2) is verified with Hbd~2cM. Finally, (A3) may be

adapted from [22]. Indeed, we believe that the arguments of [22]

can be extended to the case of non-white noise. Making this point

precise is the subject of ongoing work.

Using now the ‘‘general analytical result’’, we obtain that, given any

(non necessarily small) noise intensity s, in the limits for k?? and

n?? and after exponential transients, the behavior of any oscillator

will be arbitrary close to that of a noise-free oscillator (Figure 1).

This statement can be further tested by constructing a model-

based nonlinear state estimator (observer) [29]. Let (vi, wi)
T be a

noisy synchronized oscillator and consider the observer

vobs ~ cf (vobs, wobs, I)zkobs(vi{vobs)

wobs ~ {
1

c
(vobs{azbwobs):

8

<

:

ð5Þ

If vi has the same trajectory as a noise-free FN oscillator, then it

can be shown that (vobs, wobs)
T tends exponentially to (vi, wi)

T ,

independently of the observer’s initial conditions [29]. Thus the

squared distance (vobs{vi)
2 indicates how close vi is from a noise-

free oscillator [see Figure 3(B) for a comparison this theoretical

result with simulations].

Simulations of more generic networks
We provide in this section simulation results which show that

similar observations can be made even for more general network

classes that are not yet covered by the theory. We believe that this

simulations show the genericity of the concepts presented above.

Probabilistic networks. In practice, all-to-all neuronal

networks of large size are rare. Rather, the mechanisms of

neuronal connections in the brain are believed to be probabilisitic

in nature (see [30] for a review). Here, we consider a probabilistic

symmetric network of n oscillators, where any pair of oscillators

has probability p to be symmetrically connected and probability

1{p to be unconnected. Figure 4 shows simulation results for

randomly chosen network with p~0:1. Concretely, we have built

a network by randomly deciding for any pair of connections if the

connection exists or not.

Hindmarsh-Rose oscillators. Hindmarsh-Rose oscillators

are three-dimensional dynamical systems that are also often used

as neuron models

dV ~ (I{n{m{V3
zgVVzEVV

2)dtzsdW

dn ~ (GNazENaV
2
{n)dt

dm ~ (gCa(ECa(VzVconst){m))dt

8

>

<

>

:

Figure 2. ‘‘Spatial mean’’ of FN oscillators. Note that the same set of random initial conditions was used in the two plots. (A) shows the average
‘‘membrane potential’’ computed over n~200 noisy uncoupled oscillators (s~10). (B) shows the average ‘‘membrane potential’’ computed over n~200
noisy synchronized oscillators within an all-to-all network (s~10, kij~5). Observe that, in the first plot, the average trajectory of uncoupled oscillators
carries essentially no information, while in the second plot, the average trajectory of synchronized oscillators is very similar to a noise-free one.
doi:10.1371/journal.pcbi.1000637.g002
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with gV~0:5; EV~2:8; GNa~0; ENa~4:4; gCa~0:001; ECa~9;

Vconst~7=ECa. These oscillators can exhibit more complex

behaviors (including spiking and bursting regimes [31]) than

FitzHugh-Nagumo oscillators. The proofs of (A3) and (A4) for

Hindmarsh-Rose oscillators are the object of ongoing research.

We made the inputs time-varying in this simulation. In fact, all

the previous calculations can be straightforwardly extended to the

case of time-varying inputs, as long as those inputs are the same for

all the oscillators [6].

One can observe from the simulations (see Figure 5) that the

synchronized oscillators preserve the input signal, while the

uncoupled oscillators completely blur it out.

Discussion

We have argued that synchronization may represent a

fundamental mechanism to protect neuronal assemblies from

noise, and have quantified this hypothesis using a simple nonlinear

neuron model. This may further strengthen our understanding of

synchronization in the brain as playing a key functional role,

rather than as being mostly an epiphenomenon.

It should be noted that the causal relationship studied here –

effect of synchronization on noise – is converse to one usually

investigated formally in the literature – effect of noise on

synchronization: under certain conditions, adding noise can de-

synchronize already synchronized oscillators (destructive effect)

Figure 3. Asymptotic appraisal of the theoretical bounds. Note that the experimental expectations were computed assuming the ergodic

hypothesis. (A) Expectation of the average squared distance between the vi ’s and v. (given by
1

n

X

i
(vi{v.)2) as a function of the coupling

strength kij (s~10). Theoretical bound
(n{1)s2

n2kij
(cf equations (7) and (4)) for n~10 (bold line), for n~50 (plain line), for n~200 (dashed line);

simulation results for n~10 (squares), for n~50 (triangles), for n~200 (crosses). (B) Expected squared distance between a noisy synchronized

oscillator and its observer (given by (vobs{vi)
2) as a function of n (s~10, kij~5). The bound

(n{1)s2

n2kij
was plotted in plain line and the simulation

results were represented by crosses.
doi:10.1371/journal.pcbi.1000637.g003

Figure 4. Simulation for a probabilistic symmetric network (n~200, p~0:1, s~10, kij~5). (A) shows the trajectory of the ‘‘membrane
potential’’ of an oscillator in the network. (B) shows its frequency spectrum. Compare these two plots with those in Figure 1.
doi:10.1371/journal.pcbi.1000637.g004
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[32]; under other conditions, adding noise can, on the contrary,

synchronize oscillators that were not synchronized (constructive

effect) [33,34]; for a review, see [35]. Also, previous papers have

studied a similar phenomenon of improvement in precision by

synchronization. Enright [28] shows
ffiffiffi

n
p

improvement in a model

of coupled relaxation oscillators, all interacting through a common

accumulator variable (possibly being the pineal gland). This
ffiffiffi

n
p

improvement has been experimentally shown in real heart cells

[36]. More recently, [37] shows a way to get better than
ffiffiffi

n
p

improvement. However, their studies primarily focused on the

case of phase oscillators, which are linear dynamical systems. In

contrast, we concentrate here on the more general case of

nonlinear oscillators, and quantify in particular the effect of the

oscillators’ nonlinearities. The assumptions we consider are also

different: while most existing approaches (including [37]) assume

weak couplings and small noise intensities, we consider here strong

couplings and arbitrary noise intensities.

The mechanisms highlighted in the paper may also underly

other types of ‘‘redundant’’ calculations in the presence of noise

and variability. In otoliths for instance, ten of thousands of hair

cells jointly compute the three components of acceleration [38,39].

In muscles, thousands of individual fibers participate in the control

of one single degree of freedom. Similar questions may also arise in

systems biology, e.g., in cell mechanisms of quorum sensing where

individual cells measure global chemical concentrations in their

environment in a fashion functionally similar to all-to-all coupling

[25–27], in mechanical coupling of motor proteins [40], in the

context of transcription-regulation networks [41,42], and in

differentiation dynamics [43].

Finally, the results point to the general question: what is the

precise meaning of ensemble measurements or population codes,

what information do they convey about the underlying signals, and is

the presence of synchronization mechanisms (gap-junction mediated

or other) implicit in this interpretation? As such, they may also shed

light on a somewhat ‘‘dual’’ and highly controversial current issue.

Ensemble measurements from the brain can correlate to behavior,

and they have been suggested e.g. as inputs to brain-machine

interfaces. Are these ensemble signals actually available to the brain

[44], perhaps through some process akin to quorum sensing, and

therefore functionally similar to (local) all-to-all coupling? Are local

field potentials [45] plausible candidates for a role in this picture?

Methods

Proof of the general analytical result
In the noise-free case (s~0), it can be shown that, for strong

enough coupling strengths, the elements of the network synchro-

nize completely, that is, after exponential transients, we have r~0

in (A4) [6]. Thus, all the xi tend to a common trajectory, which is

in fact a nominal trajectory of the noise-free system
_xxnoise{free~f(xnoise{ free,t), because all the couplings vanish on

the synchronization subspace.

Figure 5. Simulation of Hindmarsh-Rose oscillators with time varying inputs. (A) The time-varying input voltage. (B) Trajectory of the
‘‘membrane potential’’ of a noise-free oscillator. (C) Trajectory of a noisy uncoupled oscillator. (D) Trajectory of a noisy synchronized oscillator (n~200,
s~10, kij~5).
doi:10.1371/journal.pcbi.1000637.g005
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In the presence of noise, it is not clear how to relate the

trajectory of each xi to a nominal trajectory of the noise-free

system. Nevertheless, we still know that the xi live ‘‘in a small

neighborhood’’ of each other, as quantified by (A4). Thus, if the

center of this small neighborhood follows a trajectory similar to a

nominal trajectory of the noise-free system, then one may gain

some information on the trajectories of the xi.

To be more precise, let x. be the center of mass of the xi, that is

x
.
~

1

n

X

i

xi: ð6Þ

Observe that, after expansion and rearrangement, the sum
P

ivj Exi{xjE
2 can be rewritten in terms of the distances of the

xi from x
.

X

ivj

Exi{xjE
2
~n

X

i

Exi{x
.E2:

Using (A4) then leads to

X

i

Exi{x
.E2

 !

ƒ
r

n
: ð7Þ

Summing over i the equations followed by the xi and using

assumption (A1), we have

dx.~
1

n

X

i

f(xi,t)

 !

dtz
1

n

X

i

sdWi: ð8Þ

We now make the dynamics explicit with respect to x
. by letting

e~
1

n

X

n

i~1

f(xi,t)

 !

{f(x.,t) ð9Þ

so that Equation (8) can be rewritten as

dx.~ f(x.,t){eð Þdtz 1

n

X

i

sdWi: ð10Þ

Using the Taylor formula with integral remainder, we have

fj(xi,t){fj(x
.,t){Fj(x

.,t)T (xi{x
.)

~
Ð 1

0
(1{s)(xi{x

.)THj((1{s)xizsx.)(xi{x
.)ds

ð11Þ

where Fj is the gradient of fj or, equivalently, the j
th vector of the

Jacobian matrix of f. Summing Equation (11) over i and using

assumption (A2), we get

j
X

i

(fj(xi,t){fj(x
.,t))jƒ Hbd

2
ffiffiffi

d
p
X

i

Exi{x
.E2: ð12Þ

Summing now inequality (12) over j and using inequality (7), we

get

(EeE)ƒ
rHbd

2n2
ð13Þ

which implies that (EeE)?0 when r=n2?0.

Turning now to the noise term
1

n

X

i
sdWi in Equation (10), we

have

1

n

X

i

sdWi%
s
ffiffiffi

n
p dW ð14Þ

since the intrinsic noises of the elements of the network are

mutually independent.

Thus, for a given (even large) noise intensity s, the difference

between the dynamics followed by x. and the noise-free dynamics f

tends to zero when n?? and r=n2?0. Assumption (A3) then

implies that Ex.{xnoise{ freeE?0. More precisely, the impact of

noise on the mean trajectory (quantified by (Ex.{xnoise{ freeE))

evolves as

rHbd

2n2
z

s
ffiffiffi

n
p : ð15Þ

Finally, Equation (7) and the triangle inequality

Exnoise{ free{xiEƒExnoise{ free{x
.EzEx.{xiE ð16Þ

imply that the trajectory of any synchronized element of the network

xi and that of the noise-free system xnoise{ free are also similar

[compare Figure 1(A) and Figure 1(E)].

FN oscillators in an all-to-all network
Two FN oscillators. Consider first the case of two coupled

FN oscillators driven by Equation (2). Construct the following

auxiliary system (or virtual system, in the sense of [46]), where v1
and v2 are considered as external inputs

dx1 ~ (c{(v21zv1v2zv22){k)x1zcx2)
� �

dtz
ffiffiffi

2
p

sdW

dx2 ~ {
1

c
x1{

b

c
x2

� �

dt:

8

>

<

>

:

ð17Þ

Remark that (x1, x2)
T
~(v1{v2, w1{w2)

T is a particular

trajectory of this system.

Let l1~kz(v21zv1v2zv22){c and l2~b=c. Assume that the

coupling strength is significantly larger than the system’s

parameters, i.e. k&c, k&1=c and k&b=c. Since v21zv1v2zv22
is nonnegative for any v1 and v2, we have either l1§k or l1^k,

depending on the actual value of v21zv1v2zv22. This implies in

particular that l1&c, l1&1=c and l1&l2~b=c.
Given these asymptotes, the evolution matrix of system (17) is

diagonalizable with eigenvalues {l1’ and {l2’ and eigenvectors

respectively (l
00

1,1=c)
T and (c,l

000

1 )
T . Furthermore, it is not difficult

to see that all those l’s are asymptotically close to each other, that

is li^l
0

i^l
00

i^l
000

i (i~1,2). We now define

y1~l
00

1x1z
1

c
x2

y2~cx1zl
000

1 x2

8

<

:

ð18Þ

leading to

dy1~{l
0

1y1dtz
ffiffiffi

2
p

sl
00

1dW

dy2~{l
0

2y2dtz
ffiffiffi

2
p

scdW :

(

Since these equations are in fact uncoupled, they can be

solved independently. Using the stochastic contraction results
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(corollary 1 of [21]) and the approximations li^l
0

i^l
00

i , this

yields

(y21)ƒs2l1, after transients of rate l1

(y22)ƒ
c2s2

l2
, after transients of rate l2:

8

<

:

These bounds can be translated back in terms of the xi by

inverting (18)

x1^
1

l1
y1{

c

l21
y2

x2^{
1

cl21
y1z

1

l1
y2:

8

>

>

>

<

>

>

>

:

Thus, after transients of rate l1,

(x21)ƒ
s2

l1
(x22)ƒ

s2c2

l21l2
:

Since (v1{v2, w1{w2)
T is a particular trajectory of system

(17) as we remarked earlier, one finally obtains that, after

transients of rate k,

((v1{v2)
2)ƒ

s2

k
((w1{w2)

2)ƒ
s2c3

bk2
: ð19Þ

General case. Consider now an all-to-all network with

identical couplings as in Equation (2). Construct as above the

following n(n{1) auxiliary systems indexed by (i,j) [ ½1 . . . n�2,
where the vi are considered as external inputs

dvij ~ (c{(v2i zvivjzv2j ){k)vijzcwij)
� �

dt

z

ffiffiffi

2
p

sdW

dwij ~ {
1

c
vij{

b

c
wij

� �

dt:

8

>

>

>

>

<

>

>

>

>

:

Remark that, similarly to the case of two oscillators,

(vij , wij)
T

� �

i,j
~ (vi{vj , wi{wj)

T
� �

i,j
is a particular solution of

these equations. Remark also that each pair (vij , wij) is in fact

uncoupled with respect to other pairs. This allows us to use (19) to

obtain that, after transients of rate k,

Vi, j, i=j, ((vi{vj)
2)ƒ

s2

k
:

Summing over the i, j yields

X

ivj

(vi{vj)
2

 !

ƒ
n(n{1)s2

k
:

Thus, (A4) is verified with

r~
n(n{1)s2

k
:

For large n, we have r=n2*s2=k, which converges to 0 when

k?? [see Figure 3(A)].

Assumption (A1) is also verified because an all-to-all network

with identical couplings is symmetric, therefore balanced. As for

(A2), observe that Hw~0 and

Hv~
2cv 0

0 0

� �

:

Since the (vi, wi)
T are oscillators with stable limit cycles, it can be

shown that the trajectories of the vi are bounded by a common

constant M. Thus (A2) is verified with Hbd~2cM.
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