
How Technological Support Can Enable Advantages of Agile Software

Development in a GSE Setting

Kevin Dullemond

Delft University of

Technology

k.dullemond@

tudelft.nl

Ben van Gameren

Delft University of

Technology

b.j.a.vangameren@

tudelft.nl

Rini van Solingen

Delft University of

Technology

d.m.vansolingen@

tudelft.nl

Abstract

Because of the distance between the dispersed develop-

ment locations, Global Software Engineering (GSE) is con-

fronted with challenges regarding communication, coordi-

nation and control of the development work. At the same

time, agile software development is strongly built upon com-

munication between engineers and has proven its benefits,

although, mostly on one single site. As such, it might be ad-

vantageous to combine GSE with agile development. This

blend however is not straightforward since the distributed

and agile development approaches might have conflicting

convictions. In this paper we will discuss the advantages

and challenges of combining GSE with agile development

based on a theoretical, literature-based research. The main

results presented in this paper are: (i) aspects of agile soft-

ware development, (ii) benefits and challenges associated

with these in relation to GSE, (iii) categories of technolog-

ical support for agile GSE and (iv) a framework depicting

the mutual relations among them.

1 Introduction

Global Software Engineering (GSE) is becoming in-

creasingly interesting due to the globalization of business

[13, 32, 21, 34, 48, 2]. In GSE the software develop-

ment process is distributed between several geographically

dispersed locations [20, 21, 50]. Advantages of GSE in-

clude: market-proximity [28, 31, 21], reducing time-to-

market by working around the clock [13, 29, 24, 21], flex-

ibility with respect to business opportunities [13, 29], re-

ducing costs by delegating work to countries with low la-

bor cost [14, 21] and being able to fully utilize available

resources [32, 28, 21]. Besides being beneficial, GSE in-

troduces a number of challenges in relation to communi-

cation, coordination and control of the development pro-

cess [14]. Examples are: lack of informal communication

[13, 29, 32, 3], reduced hours of collaboration [7, 40, 39, 2],

communication delay [3, 33, 34, 20] and loss of cohesion

[13, 30, 34]. All these challenges originate from the exis-

tence of three kinds of distances: geographical, temporal

and socio-cultural [13, 43, 20]. The combination of these

distances is what makes GSE complex [38]. A way to deal

with the challenges commonly faced in GSE would be to

a. reduce these distances themselves b. reduce the conse-

quences of the existence of these distances or c. help to cope

with the consequences of these distances. It is expected this

can be achieved by incorporating certain aspects of agile

software development into GSE [38, 45]. In this paper we

analyze agile development to determine how it can improve

upon GSE and how this can be supported with technology.

The core question in this research is: ”What are the ad-

vantages and challenges of the combination of agile soft-

ware development and GSE, and how can these be sup-

ported with technological aid?”

In section 2 we define a subdivision of agile software

development into aspects. With these aspects we system-

atically discuss, in section 3, how agile software develop-

ment can be beneficial explicitly with respect to GSE, and

we also discuss how carrying out these aspects can be more

difficult in a distributed setting. Subsequently, in section 4

we define five categories of technological support which are

useful to agile GSE. In section 5 we discuss how to support

the incorporation of the aspects into GSE best. Finally we

summarize our findings in a framework, reflect on our work

and present possibilities of further research.

2 Aspects of agile software development

In this paper we are concerned with how agile soft-

ware development can be beneficial in the context of GSE.

Therefore we define a subdivision of agile software devel-

opment into aspects to be able to systematically discuss

how agile software development can be beneficial explic-

itly with respect to GSE. We derived these aspects from

2009 Fourth IEEE International Conference on Global Software Engineering

978-0-7695-3710-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ICGSE.2009.22

143

2009 Fourth IEEE International Conference on Global Software Engineering

978-0-7695-3710-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ICGSE.2009.22

143

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on November 23, 2009 at 10:31 from IEEE Xplore. Restrictions apply.

the practices and guidelines mentioned in literature. Many

sources report the development of lightweight method-

ologies [25, 37, 1, 19, 54, 5]. Examples of these new

methodologies are: Scrum [51, 52], eXtreme Programming

[9, 8, 27, 10], Crystal methods [17, 18], Adaptive Software

Development [35, 36, 37] and Feature Driven Development

[16, 46]. After the development of these new methodolo-

gies, seventeen prominent process methodologists formed

the ”Agile Alliance” and wrote ”The Agile Manifesto” in

which they defined a set of principles [4]:

AM1 Our highest priority is to satisfy the customer through early and con-

tinuous delivery of valuable software.

AM2 Welcome changing requirements, even late in development. Agile

processes harness change for the customer’s competitive advantage.

AM3 Deliver working software frequently, from a couple of weeks to a

couple of months, with a preference to the shorter timescale.

AM4 Business people and developers must work together daily throughout

the project.

AM5 Build projects around motivated individuals. Give them the environ-

ment and support they need, and trust them to get the job done.

AM6 The most efficient and effective method of conveying information to

and within a development team is face-to-face conversation.

AM7 Working software is the primary measure of progress.

AM8 Agile processes promote sustainable development. The sponsors,

developers, and users should be able to maintain a constant pace

indefinitely.

AM9 Continuous attention to technical excellence and good design en-

hances agility.

AM10 Simplicity–the art of maximizing the amount of work not done–is

essential.

AM11 The best architectures, requirements, and designs emerge from self-

organizing teams.

AM12 At regular intervals, the team reflects on how to become more effec-

tive, then tunes and adjusts its behavior accordingly.

The aspects derived in this section are in fact general-

izations of these practices and guidelines. With the term

aspect of agile software development we denote the goals

agile software development attempts to accomplish. More

explicitly, for the Agile Manifesto and agile methodologies

which define explicit practices, these aspects can be seen as

the outcome of using an agile practice from a certain subset

of agile practices. We will explain each of these aspects by

giving a definition of what the aspect entails followed by

a clarification of how exactly the aspect is reflected in the

Agile Manifesto.

A1 Close collaboration among the members of the de-

velopment team

A1 concerns that all members of the development team

should work together daily throughout the project in a very

close way, while communicating frequently. This aspect

is reflected in the Agile Manifesto in the following way:

For one it urges that business people and developers should

work together daily throughout the project (AM4). Also, it

states that the best architectures, requirements and designs

emerge from self-organizing teams (AM11). For teams

to be self organizing the members need to work together

closely. Lastly, it claims the most effective and efficient

method of conveying information to and within the devel-

opment team is face-to-face conversation (AM6).

A2 Short iterations, frequent builds and continuous in-

tegration

A2 concerns that development is done by delivering in-

cremental components of business functionality in so-called

iterations. Developing a product in this fashion helps to

keep focus on short term goals and to create working soft-

ware quickly. During these iterations the work should be in-

tegrated and build as frequent as possible to be able to detect

and resolve problems early. After each iteration ends and

before the next one begins, the process that is used should

be adapted to work even better in the next iteration [25]. The

processes associated with each of the agile methodologies

mentioned earlier concern a development process consist-

ing of short iterations with frequent builds. While the Agile

Manifesto does not explicitly specify a process, it does state

that the highest priority is to satisfy the customer through

early and continuous delivery of valuable software (AM1),

that software needs to be delivered frequently, with a prefer-

ence to a short time scale (AM3), and that working software

is the primary measure of progress (AM7). It also states that

the team should reflect, at regular intervals, on how to be-

come more effective and then tune and adjust its behavior

accordingly (AM12); thus promoting self-adaptivity of the

process. Finally continuous integration is closely related

with receiving feedback, since by continuously integrating

and building, feedback can be acquired more often. This re-

gards both feedback acquired from colleagues and the cus-

tomer as well as feedback acquired from the results of tests.

Feedback is reflected in the Agile Manifesto, as can be gath-

ered from principle AM9, which subscribes the continuous

attention to technical excellence and good design.

A3 Decentralizing the decision making

In agile software development part of the decision mak-

ing is moved to the developers. Management is still needed

to remove roadblocks standing in the way of progress. The

development team, however, is entitled to make certain

technical decisions without involvement of the manage-

ment. This aspect also concerns the decisions made by a

subgroup of a development team rather than an individual.

This aspect is less directly found in the researched method-

ologies. Most agile methodologies however, advise having

faith in the abilities of the developers. The Agile Manifesto

for instance states that projects should be built around mo-

tivated individuals that receive the environment and support

they need and that they should be trusted to get the job done

(AM5). It also emphasizes the power of self-organizing

teams (AM11) and that such teams need to be trusted to

get the job done. This is exactly what this aspect seems to

be about most; management should recognize the expertise

of the developers [25].

144144

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on November 23, 2009 at 10:31 from IEEE Xplore. Restrictions apply.

A4 Customer involvement

A4 involves the active participation of the customer in

the development of the system. This involvement is used to

acquire feedback on the current implementation of the sys-

tem and to further clarify the requirements of the system to

be built. It is important to note that the customer has the

right to change requirements during the entire project. The

Agile Manifesto emphasizes the importance of the customer

in the development process. Again we refer to the fact that

the Agile Manifesto regards satisfying the customer through

early and continuous delivery of valuable software as hav-

ing the highest priority (AM1). Also it states that chang-

ing requirements should be welcomed, even late in devel-

opment (AM2). Besides this also in the values of the Agile

Manifesto the importance of this aspect can be seen, as these

both mention the importance of customer collaboration and

responding to change.

A5 Collective ownership of work

A5 concerns that what is produced is the result of the en-

tire team and not of an individual. No single team member

owns, or is responsible for a specific code segment and all

work can be changed by the entire team, without explicit

permission. This aspect, however, also concerns the devel-

opment team having a shared vision and responsibility of

the system to be built. The whole team is creating some-

thing together, aiming for a single goal and is collectively

responsible that this goal is reached. This aspect is found

in a indirect manner in the researched methodologies. Chao

et al. [15] states: ”. . . several agile methods (e.g. XP and

Scrum) imply that explicit knowledge including designs and

models should be collectively owned”. It is true that this

aspect is merely implied in the Agile Manifesto. The Ag-

ile Manifesto states that the best architectures, requirements

and designs emerge from self-organizing teams (AM11) and

these kind of teams are teams with a shared responsibility

with respect to the work they are performing. The principle

which states projects should be built around motivated in-

dividuals who are given the environment and support they

need and are trusted to get the job done (AM5) implies the

project is the shared responsibility of the entire development

team.

A6 The system to be built is most important

A6 concerns that working software is the most important

goal of the project and other matters, like documentation,

are inferior to it. Spending a lot of time on updating non-

essential artefacts should be prevented. One of the values of

the Agile Manifesto states ”working software over compre-

hensive documentation” which is exactly what this aspect

is about. This aspect is also reflected in two of its practices.

Firstly it states working software is the primary measure of

progress (AM7) and secondly it states the highest priority

is to satisfy the customer through early and continuous de-

livery of valuable software (AM1).

A7 Favoring simplicity

Agile software development favors simplicity, or the

maximization of the amount of work not done [4]. This

aspect concerns looking for the simplest working solution

first and improving it later only if the need arises. This as-

pect is based on the assumption that requirements and other

matters with respect to the project are likely to be changed

in the future so that it is rarely worth to implement things

supposed to be helpful at some point in the future. The re-

lation of this aspect to the Agile Manifesto is rather direct

since it states that it is essential (AM10).

A8 Sustainable pace of development

A8 is concerned with the fact that people should not

work excessive overtime for long periods of time. The mo-

tivation behind this is that un-energized people produce less

and lower quality work than energized people. DeMarco

states: ”Extended overtime is a productivity reducing tech-

nique” [22]. The idea is that the development speed is such

that all people involved in the project are able to maintain

a constant pace indefinitely. Again the relation to the Agile

Manifesto is rather direct since it prescribes that the spon-

sors, developers and users should be able to maintain a con-

stant pace indefinitely (AM8).

Overview

In table 1 an overview is given of the relation between

the principles of the Agile Manifesto and the aspects of ag-

ile software development we defined in this section. In this

table it can be seen that each of the practices of the Ag-

ile Manifesto is covered by at least one of the aspects we

defined., thus increasing the likeliness that the list is com-

plete. For a similar comparison with eXtreme programming

we refer to [23].

Practice A1 A2 A3 A4 A5 A6 A7 A8

AM1 X X X

AM2 X

AM3 X

AM4 X

AM5 X X

AM6 X

AM7 X X

AM8 X

AM9 X

AM10 X

AM11 X X X

AM12 X

Table 1. Relation between the Agile Manifesto

and the agile aspects

145145

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on November 23, 2009 at 10:31 from IEEE Xplore. Restrictions apply.

3 Benefits and Challenges of incorporating

agile aspects in GSE

When carrying out software development projects pro-

fessionally, a process is used to prevent the project from

lapsing into chaos. What kind of process should be used

depends on the specific requirements and constraints of the

project. Barry Boehm argues: ”Both agile and plan-driven

methods have a home ground of project characteristics in

which each clearly works best, and where the other will

have difficulties. Hybrid approaches that combine both

methods are feasible and necessary for projects that com-

bine a mix of agile and plan-driven home ground charac-

teristics.” [12]. For globally distributed projects however,

Grinter et al. [28] suggest using a structured, plan driven

process, as a way to coordinate such projects. Neverthe-

less there are two reasons why less plan-driven, more agile

practices could be useful for GSE projects:

1. They can be useful in the same way they are useful

to software development in general. This regards that

in general, they are able to better cope with uncertainty

and changing requirements in projects than plan-driven

approaches.

2. They can be useful with respect to GSE in particular

by reducing the negative influence of distance on [14]:

communication, coordination and control.

In this paper we are concerned with reasons of the sec-

ond category, which we will call benefits. For each aspect

we will discuss the benefits it has with respect to each of

the three distances. Besides being beneficial to GSE, agile

aspects can also be more difficult to incorporate correctly

because of the distances since the original methodologies

these are derived from were not created to deal with these

[41, 45]. We will call such problems challenges and will

also discuss these for each aspect.

A1 Close collaboration among the members of the de-

velopment team

Close collaboration leads to good report between col-

leagues. Good report between colleagues means they are

more willing to compromise with respect to working times

(B1). An example of this effect with respect to XP pair

programming is mentioned by Agerfalk et al.: ”. . . peo-

ple were flexible and, even though there was a delay in re-

sponse, individual developers tried hard to spend as much

time as possible with the distributed pair programmer”

[38]. Hence the negative influence of the temporal distance

is reduced since the time overlap is increased in compari-

son to both team members just working normal office hours

and not being flexible. The main challenges which are a di-

rect consequence of the geographical distance in GSE are

the lack of informal communication and the increased ef-

fort to initiate contact. At the same time close collaboration

between team members generally increases informal com-

munication and eases initiating contact (B2). Therefore we

can say close collaboration between team members reduces

the main consequences of the geographical distance. Close

collaboration, does not just lead to good report between col-

leagues, it also leads to a better mutual understanding be-

tween them (B3). Therefore close collaboration actually re-

duces the socio-cultural distance between team members.

The geographical and temporal distances between de-

velopers in GSE projects causes frequent communication

between developers to be difficult (C1) [53, 26, 49, 45]. Be-

cause of this, close collaboration is also harder to accom-

plish than when the development team is collocated since

frequent communication is essential for close collaboration.

In distributed development, participants at different sites are

less likely to perceive themselves as part of the same team

than with collocated development due to the socio-cultural

distance (C2). Because of this, team members find it hard

to have faith in the good intentions of remote colleagues

[41] and there can be a lack of team cohesion [49]. These

things make close collaboration between developers at dif-

ferent geographical locations more difficult.

A2 Short iterations, frequent builds and continuous in-

tegration

Applying short iterations, frequent builds and continu-

ous integration in the development process leads to feed-

back. This feedback motivates developers [45] and moti-

vated developers feel more like a team (B4). Next to this,

seeing high quality work early and frequently results in trust

(B5) [45]. Both feeling more like a team and increased trust

reduce the socio-cultural distance caused by working glob-

ally distributed. In GSE projects in general, it is quite hard

to have a good idea of the progress of work, mainly due

the temporal and geographical distances which make direct

communication difficult. Because of this, problems can be

detected too late, and this can result in time and resources

being wasted. Continuous integration can improve upon

this situation because it leads to transparency of the progress

(B6) [53, 45]. Another issue in GSE projects aggravated by

geographical and temporal distance is configuration man-

agement: the integration of the complete system. Continu-

ously integrating, in contrast to integrating everything at the

end of the project, makes configuration management less of

an issue (B7) [53].

Performing short iterations, frequent builds and continu-

ous integration is harder in a distributed than in a collocated

setting for a couple of reasons. For one, the lengths of the it-

erations should be increased to compensate for the time lost

due to communication overhead (C3) [26, 44]. Secondly,

iterations using an agile development approach often define

meetings at the start of the iteration and regular short status

meetings during the iterations. It seems wise to carry these

practices over to the distributed environment for proper co-

146146

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on November 23, 2009 at 10:31 from IEEE Xplore. Restrictions apply.

ordination between teams but this is also difficult (C4), both

due to the temporal distance and because it is often impos-

sible to perform such meetings in a single room due to the

geographical distance between the teams. Lastly, configu-

ration and version management is also more difficult in a

distributed setting [45]. Even though teams at different ge-

ographical locations are working on the project, possibly

at the same time, an unambiguous global view of the cur-

rent system needs to be maintained (C5). To accomplish

this, a common code base should be used [47, 45]. This

can be difficult because of the geographical distance, since

the common code-base must be located somewhere. An-

other reason the unambiguous global view can be difficult

to be maintained is the temporal distance, since colleagues

are not always available when needed.

A3 Decentralizing the decision making

Because of this aspect, both the geographical and tem-

poral distances become less of an issue since, developers

can take certain decisions without having to confer with

management; which could be located in another part of the

world (B8). Next to this, the geographical and temporal

distances often make it hard to make proper estimations re-

garding the progress of the project. By letting the project

team make these estimations they are often more accurate

(B9) [53]. Giving the individual developers and develop-

ment teams autonomy is a great motivator and allows peo-

ple to be more productive [6, 26]. As mentioned earlier,

this increase in motivation leads to developers feeling more

like a team (B10), which reduces the socio-cultural distance

between them. Next to this, allowing teams and individual

developers to make their own decisions conveys trust (B11).

According to Zand [55], one of the most powerful ways to

show your own trustworthiness is to trust the other.

In order to use decentralization of decision making prop-

erly within a project, the developers should be autonomous

and independent enough to actually make decisions on their

own. This can be a problem because people are often

trained to listen to their superiors and not make decisions on

their own (C6) [6, 26]. Furthermore it can be hard to make

decisions decentralized when geographically and tempo-

rally separated from the rest of the development team. This

is because the developer which has to make the decision can

reach better decisions when he has access to certain types of

information, which can be harder to acquire in a distributed

setting (C7).

A4 Customer involvement

In the description of A2, we described that constant feed-

back decreases the socio-cultural distance between team

members, because feedback motivates the developers and

seeing high quality work early and frequently builds trust.

Feedback, however, is much more valuable when it is given

by the actor for which the system is being developed: the

customer (B12).

In distributed development, the customers may be lo-

cated far away making frequent interaction more difficult to

arrange (C8). Having the customer on site is even harder in

this situation and if it can be arranged the on-site customer

might gradually lose connection to his or her own environ-

ment (C9) [45].

A5 Collective ownership of work

Carmel defines several characteristics which a real team

should posses [13]. Two of these are: ”collective responsi-

bility for its products” and ”shared responsibility for man-

aging its work”. Collective ownership reflects both these

characteristics so it will lead to closer development teams

(B13), which, in turn, reduces the socio-cultural distance

between its members.

The main problem with incorporating this aspect of agile

methodologies in a GSE context is that the very idea might

conflict with certain ideologies and cultural believes (C10).

Berteig [11], for instance, discusses teaching a course on

agile development in Romania. Several of the participants

felt that the collective ownership of work closely resembled

communism, to which they objected. Another problem with

incorporating this aspect in a distributed setting is that all

work should be accessible by everyone from anywhere in

order for all the work to truly be collectively owned (C11).

A6, A7 and A8

A6, A7 and A8 do not offer specific benefits when work-

ing globally distributed compared to working co-located.

Therefore there are no associated benefits and challenges

specific to the GSE environment.

Overview

In table 2 and 3 an overview is given of the benefits and

challenges of agile GSE.

Aspect Distance Description

A1 Temporal B1: More overlap in working time

Geographical B2: Increase in informal communication

Socio-cultural B3: Better mutual understanding

A2 Socio-cultural B4: Feedback motivates the developer

B5: Seeing high quality work early and frequently
results in trust

Geographical B6: The process is more transparent
and Temporal

B7: Configuration management is less of an issue

A3 Geographical B8: Less control needed
and Temporal

B9: Better progress estimations

Socio-cultural B10: Autonomy motivates the developers

B11: Being trusted results in trust

A4 Socio-cultural B12: The customer can give valuable feedback

A5 Socio-cultural B13: Increase in team cohesion

Table 2. Benefits of agile GSE [23]

147147

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on November 23, 2009 at 10:31 from IEEE Xplore. Restrictions apply.

Aspect Distance Description

A1 Geographical C1: Frequent communication is difficult
and Temporal

Socio-cultural C2: Team members are less likely to perceive
themselves as part of the team

A2 All C3: Less can be achieved in a certain amount of
time due to communication overhead

Geographical C4: Stand-up and status meetings are more difficult
and Temporal

C5: Unambiguous global view of the current system
is more difficult to be maintained

A3 Socio-cultural C6: Some developers might not be autonomous and
independent enough to make decisions themselves

Geographical C7: Having access to sufficient information in order
and Temporal to reach correct decisions is more difficult

A4 Geographical C8: Frequent interaction with the customer is
and Temporal difficult

C9: When the customer is placed on-site, he might
gradually lose connection with his own environment

A5 Socio-cultural C10: People might object to the notion

Geographical C11: It is more difficult for all work to be accessible
and Temporal to everyone at any time from any location

Table 3. Challenges of agile GSE [23]

4 Supporting agile GSE with technology

In the previous section we discussed the benefits and

challenges associated with agile GSE. This paper is con-

cerned with how to support these with technological aid1.

In order to properly discuss how to support agile GSE with

technology, different types of technological support, bene-

ficial in that specific environment, should be defined. We

will define these categories based on what requirements are

needed in supporting technology for agile GSE. They are

strongly based on the five objectives of supporting technolo-

gies for collaborative work, defined by Carmel [13].

The first difficulty that can be supported with technology

is the communication between team members (R1). This

is required because the software development process does

not operate on mandate, orders and edicts but on the self-

managing capabilities of the developers [13, 42]. Hence the

technology needs to provide an infrastructure for collabo-

rative sessions, making it easier to interact with colleagues,

in order to support this self-managing character of software

development [13, 42]. Another problem with GSE is the

risk of re-inventing the wheel. This risk can be reduced

when tools are used to create a rich and up-to-date project

memory (R2) including versioned files, change histories and

technical documentation [13, 42, 34]. Thirdly, in a GSE

project it is much harder to understand what other project

members are doing than in a co-located project [13, 42, 34].

Therefore project transparency is necessary in order to co-

ordinate effectively with the members of the team. Tech-

nology which provides status information about tasks, peo-

ple and other dynamic team information to all team mem-

bers at different sites can increase the transparency of the

project (R3). Fourthly, in a distributed setting quality assur-

ance is especially important to monitor and guarantee the

1See [23] for ways to support the challenges with non-technological aid

quality of the product. Technology which supports quality

assurance functions, such as functional testing can have a

positive influence on the total quality of the product (R4)

[13]. Up until this point only technological support which

support GSE in general have been discussed. We conclude

with a requirement category specifically applicable to ag-

ile GSE: technology facilitating continuous integration and

frequent builds (R5) [23]. Examples of such technologies

are automated build systems and configuration management

tools. Below the requirement categories discussed are sum-

marized [13, 42, 34, 23]:

R1 Facilitates direct contact between colleagues

Technological support which facilitates direct communication be-

tween two or more actors.

R2 Facilitates knowledge sharing among colleagues

Technological support which facilitates the sharing of technical

project knowledge.

R3 Facilitates transparency of the project status

Technological support which facilitates the sharing of organiza-

tional project knowledge.

R4 Facilitates quality assurance

Technological support which facilitates quality assurance functions

to monitor and guarantee the quality of the product.

R5 Facilitates continuous integration and frequent builds

Technological support which eases the process of continuously inte-

grating the system as well as producing builds frequently.

Of these requirements of technologies, R1 through R3

can often be achieved by the same tools since these cate-

gories all have to do with communication. Tools can, how-

ever, be more appropriate to support one category than an-

other. Instant messengers and conferencing software are for

example suitable to category R1 while wikis and tracking

software are more appropriate to R2 and R3. Tools which

support categories R4 or R5, on the other hand, are often

specific to just one of these two categories. Finally there

exist technologies which attempt to integrate several of the

requirements into a single environment. Examples of these,

are tools like Jazz, Merlin Toolchain and Microsoft Visual

Studio Team System which attempt to extend Integrated De-

velopment Environments (IDEs) with collaborative func-

tionalities. In [23], a more extensive discussion regarding

existing supporting technologies and their relation with the

requirement categories is presented.

5 How each aspect can be supported by dif-

ferent types of technology

In order to incorporate the five aspects of the agile de-

velopment approach, that influence distance, into the GSE

development process, in the best possible way, the chal-

lenges faced should be alleviated and the benefits should

be exploited. In this section, we discuss what types of tech-

nological support are beneficial to which aspects or more

precisely: which challenges and benefits belonging to the

aspects can be supported by which type of technological

aid. To do this we have presented tables 2 and 3 in a dif-

ferent manner in figure 1, showing the relationship between

148148

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on November 23, 2009 at 10:31 from IEEE Xplore. Restrictions apply.

the aspects and the distances. In this figure, the distances

and aspects are depicted as nodes and the interdependen-

cies as directed arcs, which correspond to either a benefit

or a challenge. The arcs which correspond to a benefit are

directed from the aspect to the distance it targets and rep-

resent how the aspect helps to cope with this distance. The

arcs which correspond to a challenge are directed from the

distance which causes the challenge to the aspect that the

challenge opposes, and represent how the distance makes it

harder to carry out the aspects.

This representation of the relation between the aspects

and the distances shows that the aspects can be supported

directly by supporting their associated benefits and chal-

lenges, or indirectly through other benefits and challenges.

Next, for each aspect we will discuss how each of its ben-

efits and challenges can be supported by the requirement

categories defined in the previous section.

A1 Close collaboration among the members of the de-

velopment team

The main challenge with respect to aspect A1 is chal-

lenge C1: the fact that frequent communication is difficult

in a distributed setting. Because of this, close collaboration

among team members is more difficult. This can be alle-

viated by technological support, which makes it easier for

team members to communicate and by technological sup-

port which eases knowledge sharing in the entire develop-

ment team; categories R1 and R2 respectively. Features

belonging in category R3 could also help to initiate contact,

if the specific feature makes it possible to determine who to

contact by offering information with respect to individual

knowledge and availability of colleagues. In this particular

case, the same types of technological support that help to

deal with challenge C1 also support benefit B2 because C1

and B2 are closely related.

A2 Short iterations, frequent builds and continuous in-

tegration

With respect to this aspect various challenges and ben-

efits can be alleviated or exploited respectively, by means

of technological support. For one, challenge C5 can be al-

leviated both by facilitating knowledge sharing and facil-

itating transparency of the project status. This is because

knowledge sharing will provide team members with a better

and more complete understanding of the technical project

knowledge. The transparency of the project status, on the

other hand, will ease the access to the knowledge regarding

how the project is to be carried out and how this is pro-

gressing. Both these types of information together make up

an unambiguous global view of the current system. Techno-

logical support from categories R2 and R3 alleviate access

to these types of information and thus alleviate challenge

C5. Another challenge which can be alleviated by means

of technological support is challenge C4. By facilitating

Figure 1. Complete overview of relationships

aspects and distances [23]

direct contact, having meetings geographically distributed

is made easier. Therefore technological support from cate-

gory R1 will directly target this challenge. Another factor

to consider when dealing with this challenge is the diffi-

culty to arrange the meetings when the people required to

be present do not share the same working hours. By facili-

tating access to the information regarding the availability of

the participants, as well as other relevant data, this challenge

can be directly dealt with. Technological support from cat-

egory R3 accomplishes this. Lastly, technological support

from category R2 will also help dealing with this challenge,

although in a less direct manner, because when knowledge

sharing is improved, the actual need for having meetings is

decreased. The last challenge associated with this aspect,

challenge C3, can be supported by technology from cate-

gories R1, R2 and R3 because these all facilitate a certain

149149

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on November 23, 2009 at 10:31 from IEEE Xplore. Restrictions apply.

aspect of communication and when communication is less

difficult, the communication overhead will be decreased.

Next we will discuss how the benefits caused by this aspect

can be exploited by means of technological support. Firstly

benefit B4, can be exploited by facilitating quality assur-

ance, technology from category R4, because better quality

assurance will improve the quality of the feedback. Tech-

nological support from categories R1, R2 and R5 helps to

exploit this benefit in an indirect manner. Support from R5

causes the feedback to be more up-to-date because the in-

formation the feedback is based on is created more often.

Support from R1 and R2, finally, helps exploit this benefit

by helping to make the feedback accessible to the appro-

priate people. Benefit B5 is related to benefit B4 in the

sense that feedback can also concern the quality of work. In

this benefit however, emphasis lies on team members wit-

nessing the high quality themselves. This can be achieved,

either by examining a prototype of the system or by taking

note of certain measures which increase the chances of cre-

ating a high quality product. An example of such a measure

is employing a certain testing scheme. When this is done

and the results of these tests are positive, this is an indicator

that the work is of high quality. These ways to witness the

high quality of work can be supported by technology offer-

ing features from categories R4 and R5. Technology from

R4 offers measures to assure that a high quality system is

created and because of support from R5 it is easier to have

access to a prototype of the current system. Another benefit

caused by aspect A2 is benefit B6, which can be supported

by category R3 because this provides an overall view of

the current state of the project and thus increases the trans-

parency of the project status directly. Technology from R4

and R5 is also useful since R4 enables the quality aspect of

the progress to be available and R5 enables the overview to

be updated more often and thus to more accurately reflect

the actual state of the project. The last benefit of aspect A2,

benefit B7, concerns configuration management being eas-

ier because of continuous integration. This can be supported

by technology which eases the integration of the portion of

the system that is complete. This is achieved by technology

from category R5.

A3 Decentralizing the decision making

With respect to this aspect, challenge C7 can be allevi-

ated by use of technological support by easing the access to

the knowledge necessary to reach the right decisions. Be-

cause this mainly concerns technical decisions, technolog-

ical support from R2 can be used to directly alleviate the

challenge, while support from R3 is useful as well, yet in

an indirect manner. This is because knowledge regarding

the organizational status and setup of the project will pro-

vide a context to make the decisions in, yet the information

the decisions are mainly based on will be technical infor-

mation. The same is true with respect to the exploitation of

benefit B8 since when better decisions are made, less con-

trol is needed in both directions between the people techni-

cally implementing the project and the people managing the

project. Benefit B9 is further exploited directly by techno-

logical support from both R2 and R3. This is because both

knowledge regarding the content of work to be performed

and the context this work is to be performed in, directly in-

fluences the estimation of the current and expected progress.

A4 Customer involvement

With respect to this aspect challenge C8 can be allevi-

ated in a similar fashion as challenge C1 from aspect A1.

Thus technological support from categories R1 and R2 sup-

port it directly because this eases communication and R3

supports it indirectly since this only helps with the arrange-

ment of direct contact. Benefit B12 can be further exploited

by facilitating for constant integration and frequent builds

because this will more frequently provide the customer with

prototypes, to give feedback on. Because of this, the cus-

tomer can be involved without actually having to be on site,

since the prototype can be sent to a remote location. This is

also why technical support from categories R1 and R2 also

helps further exploitation of this benefit, since if both the

feedback and the information regarding and including the

prototype are as easily accessible to the customer as possi-

ble; this will result in the best and most feedback possible.

A5 Collective ownership of work

Aspect A5 can only be supported by technological sup-

port which alleviates challenge C11. This can be done by

using technological support from R2, because support from

this category eases access to technological project informa-

tion and so also to all work produced by the development

team. Technological support from category R3 can support

challenge C11 in an indirect fashion, because working to-

gether in a single work-base can be done more effectively

and efficiently when knowledge regarding the current and

past activities of the other team members, is available.

6 Conclusions

In this paper we have deducted a set of requirements for

technological support which can be used as a reference for

combining GSE and agile software development. This is

done through the identification of: a set of agile aspects

relevant to GSE, benefits and challenges which arise when

applying these in a GSE setting, and categories of techno-

logical support which are useful to agile GSE. This set of

requirements can be used to address specific benefits and

challenges of incorporating agile aspects by selecting or de-

veloping dedicated technology. Or in other words: the de-

velopment of software tools for GSE can now directly sup-

port these benefits and challenges by fulfilling the associ-

ated requirements. The benefits and challenges can then be

used to further refine the requirements for the specific fea-

tures in these tools.

150150

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on November 23, 2009 at 10:31 from IEEE Xplore. Restrictions apply.

In table 4 a framework is presented which summarizes

how technological support from each of the categories is

beneficial with respect to each of the benefits and chal-

lenges. In this framework a double-plus sign indicates it is

possible to use technological support from the correspond-

ing category to directly exploit or alleviate a benefit or chal-

lenge respectively. A single-plus sign also indicates that

exploitation or alleviation is possible with the help of tech-

nological support from the corresponding category. How-

ever, either the technology does not alleviate the challenge

itself or the level of exploitation of the benefit, the technol-

ogy can achieve, is limited. With this framework it becomes

feasible to identify technological support for GSE which re-

spectively exploits or alleviates the benefits and challenges

of incorporating agile aspects.

This paper started with the core question: ”What are

the advantages and challenges of the combination of agile

software development and GSE, and how can these be sup-

ported with technological aid?” The first part of this ques-

tion is answered by table 2 and 3 which respectively list

benefits and challenges and their relation with agile aspects

and distance. The last part of this question is answered by

table 4, which lists the requirements for GSE technology

when incorporating the agile aspects into GSE.

There are however some limitations regarding this re-

search. Firstly, the challenges and benefits are not mutually

comparable with respect to their importance. This is be-

cause the importance of each of the challenges and benefits

is likely to depend on each specific practical setting. Sec-

ondly, we cannot fully guarantee the completeness of all de-

fined benefits, challenges, requirement categories and agile

aspects, because it is impossible to derive them in a way that

is both conclusive and exclusive. In other words; it is pos-

sible that there are more challenges, benefits, requirement

categories and agile aspects we did not yet elicit. Thirdly,

we perform categorizations which posses an inherent sub-

jective characteristic. This applies to both the assignment

Aspect Challenge/Benefit R1 R2 R3 R4 R5

A1 C1 ++ ++ +

B2 ++ ++ +

A2 C3 ++ ++ ++

C4 ++ + ++

C5 ++ ++

B4 + + ++ +

B5 ++ ++

B6 ++ + +

B7 ++

A3 C7 ++ +

B8 ++ +

B9 ++ ++

A4 C8 ++ ++

B12 + + ++

A5 C11 ++ +

Table 4. Framework of technological support

for agile GSE

of agile principles to the agile aspects and the assignment

of requirement categories to benefits and challenges. This

can be improved by validating the current categorizations,

for example by using an expert committee. Finally, we fo-

cused on how the incorporation of agile aspects influences

distance, either in a positive or negative way, via the associ-

ated benefits and challenges. Because of this, we have only

shown the influence aspects have on each other by influenc-

ing the distances. This is not the entire story because the

aspects also influence each other directly. An example is

that aspect A2, Short iterations, frequent builds and contin-

uous integration, causes the more frequent building of an

intermediate system and aspect A4, Customer involvement,

directly benefits from this because it allows the customer to

give feedback, on the most recent build, more frequently.

Such direct interactions between separate aspects have not

been investigated.

This research has been limited to a theoretical analysis

of available literature and deduction of theoretical aspects,

benefits, challenges and requirement categories. These

are fully based on literature and deductions from this

literature. As such our findings are well-founded in theory

and traceable to its sources. However, our research results

have not yet been validated as a whole. As such, we will

continue with the validation of these findings by means of

a series of industrial case studies. These are expected to

complete and/or confirm (parts of) our findings and extend

the work with guidelines on how to exploit them in practice.

References

[1] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta. Agile

software development methods. Review and analysis. VTT

Publications, 2002.

[2] P. Ågerfalk, B. Fitzgerald, H. Holmström Olsson, and

E. Conchúir. Benefits of global software development: The

known and unknown. In Q. Wang, D. Pfahl, and D. Raffo,

editors, ICSP, volume 5007 of Lecture Notes in Computer

Science, pages 1–9. Springer, 2008.

[3] P. Ågerfalk, B. Fitzgerald, H. Holmström Olsson, B. Lings,

B. Lundell, and E. Conchúir. A framework for consider-

ing opportunities and threats in distributed software devel-

opment. In DiSD’05, pages 47–61, August 2005.

[4] Manifesto for agile software development.

http://agilemanifesto.org.

[5] M. Awad. A Comparison between Agile and Traditional

Software Development Methodologies. Honours program

thesis, University of Western Australia, 2005.

[6] J. Barker. Tightening the iron cage: Concertive control

in self-managing teams. Administrative Science Quarterly,

38(3):408–437, 1993.

[7] R. Battin, R. Crocker, J. Kreidler, and K. Subramanian.

Leveraging resources in global software development. Soft-

ware, IEEE, 18(2):70–77, Mar/Apr 2001.

[8] B. Beck. Extreme Programming Explained: Embrace

Change. Addison-Wesley, 1999.

151151

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on November 23, 2009 at 10:31 from IEEE Xplore. Restrictions apply.

[9] K. Beck. Embracing change with extreme programming.

Computer, 32(10):70–77, 1999.

[10] K. Beck. Extreme Programming Explained: Embrace

Change, Second edition. Addison-Wesley, 2004.

[11] M. Berteig. Agile is Not Communism. PhD thesis, 2007.

http://www.agileadvice.com/archives/2007/07/agile is not.html.

[12] B. Boehm. Get ready for agile methods, with care. IEEE

Computer, 35(1):64–69, 2002.

[13] E. Carmel. Global software teams: collaborating across

borders and time zones. Prentice Hall, 1999.

[14] E. Carmel and R. Agarwal. Tactical approaches for allevi-

ating distance in global software development. IEEE Softw.,

18(2):22–29, 2001.

[15] T. Chau, F. Maurer, and G. Melnik. Knowledge sharing: Ag-

ile methods vs. tayloristic methods. In WETICE’03, pages

302–307. IEEE Computer Society, 2003.

[16] P. Coad, E. Lefebvre, and J. De Luca. Java Modeling in

Color with UML. Prentice Hall, 1999.

[17] A. Cockburn. Writing effective use cases, The crystal col-

lection for software professionals. Addison Wesley, 2000.

[18] A. Cockburn. Agile software development. A-Wesley, 2002.

[19] D. Cohen, M. Lindvall, and P. Costa. An introduction to

agile methods. Advances in Computers, 62:2–67, 2004.

[20] E. Conchúir, H. Holmström Olsson, P. Ågerfalk, and

B. Fitzgerald. Exploring the assumed benefits of global soft-

ware development. ICGSE’06, pages 159–168, Oct. 2006.

[21] D. Damian and D. Moitra. Guest editors’ introduction:

Global software development: How far have we come? Soft-

ware, IEEE, 23(5):17–19, Sept.-Oct. 2006.

[22] T. DeMarco. Slack, Getting Past Burnout, BusyWork, and

the Myth of Total Efficiency. Broadway Books, 2002.

[23] K. Dullemond and B. Gameren van. Techno-

logical support for distributed agile development.

Master, Delft University of Technology, 2009.

http://www.dullemond.co.cc/thesis.pdf.

[24] C. Ebert and P. De Neve. Surviving global software devel-

opment. Software, IEEE, 18(2):62–69, Mar/Apr 2001.

[25] M. Fowler. The new methodology. Dev. magazine, Dec.

2000.

[26] M. Fowler. Using agile software process with offshore de-

velopment. martinfowler.com, july 2004.

[27] R. Glass. Extreme programming: The good, the bad, and

the bottom line. IEEE Softw., 18(6):112, 2001.

[28] R. Grinter, J. Herbsleb, and D. Perry. The geography of

coordination: dealing with distance in R&D work. In

GROUP’99, pages 306–315. ACM, 1999.

[29] J. Herbsleb and R. Grinter. Splitting the organization and in-

tegrating the code: Conway’s law revisited. ICSE’99, pages

85–95, 1999.

[30] J. Herbsleb and A. Mockus. An empirical study of speed

and communication in globally distributed software devel-

opment. Software Engineering, IEEE Transactions on,

29(6):481–494, June 2003.

[31] J. Herbsleb, A. Mockus, T. Finholt, and R. Grinter. Dis-

tance, dependencies, and delay in a global collaboration. In

CSCW’00, pages 319–328. ACM, 2000.

[32] J. Herbsleb and D. Moitra. Global software development.

Software, IEEE, 18(2):16–20, Mar/Apr 2001.

[33] J. Herbsleb, D. Paulish, and M. Bass. Global software de-

velopment at siemens: experience from nine projects. In

ICSE’05, pages 524–533. ACM, 2005.

[34] J. D. Herbsleb. Global software engineering: The future of

socio-technical coordination. In FOSE’07, pages 188–198.

IEEE Computer Society, 2007.

[35] J. Highsmith. Messy, exiting, and anxiety-ridden: Adaptive

software development. American Programmer, 10(1), 1997.

[36] J. Highsmith. Adaptive Software Development: A Collab-

orative Approach to Managing Complex Systems. Addison

Wesley, 2000.

[37] J. Highsmith. Agile Software Development Ecosystems. Ad-

dison Wesley, 2002.

[38] B. Holmström Olsson, B. Fitzgerald, P. Ågerfalk, and

E. Conchúir. Agile practices reduce distance in global

software development. Information Systems Development,

23(3):7–18, 2006.

[39] H. Holmström Olsson, E. Conchúir, P. Ågerfalk, and

B. Fitzgerald. Global software development challenges: A

case study on temporal, geographical and socio-cultural dis-

tance. ICGSE’06, pages 3–11, Oct. 2006.

[40] L. Kiel. Experiences in distributed development: a case

study. In ICSE’03, pages 44–47, 2003.

[41] M. Kircher, P. Jain, A. Corsaro, and D. Levine. Distributed

extreme programming. In XP’01, pages 20–23, May 2001.

[42] A. Mockus and J. Herbsleb. Challenges of global software

development. METRICS’01, pages 182–184, 2001.

[43] G. Olson and J. Olson. Distance matters. Human-Computer

Interaction, 15(2/3):139–178., Sep 2000.

[44] M. Paasivaara and C. Lassenius. Using iterative and incre-

mental processes in global software development. IEE Sem-

inar Digests, 2004(912):42–47, 2004.

[45] M. Paasivaara and C. Lassenius. Could global software de-

velopment benefit from agile methods? ICGSE’06, pages

109–113, Oct. 2006.

[46] S. Palmer and M. Felsing. A Practical Guide to Feature-

Driven Development. Pearson Education, 2001.

[47] C. J. Poole. Distributed product development using extreme

programming. In XP’04, volume 3092 of Lecture Notes in

Computer Science, pages 60–67. Springer, 2004.

[48] R. Prikladnicki, J. Audy, D. Damian, and T. de Oliveira.

Distributed software development: Practices and challenges

in different business strategies of offshoring and onshoring.

ICGSE’07, pages 262–274, Aug. 2007.

[49] B. Ramesh, L. Cao, K. Mohan, and P. Xu. Can distributed

software development be agile? CACM, 49(10):41–46,

2006.

[50] R. Sangwan, M. Bass, N. Mullick, D. Paulish, and

J. Kazmeier. Global Software Development Handbook.

Auerbach Publications, 2007.

[51] K. Schwaber. Scrum development process. In OOPSLA’95.

[52] K. Schwaber and B. M. Agile Software Development with

Scrum. Alan R. Apt, first edition, 2001.

[53] M. Simons. Internationally agile. InformIT, march 2002.

[54] L. Williams. A survey of agile dev. methodologies. 2004.

[55] D. Zand. The leadership triad : knowledge, trust, and

power. Oxford University Press, New York, 1997.

152152

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on November 23, 2009 at 10:31 from IEEE Xplore. Restrictions apply.

