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The immune system is able to respond more vigorously to the second contact with a given antigen than to the first contact.
Vaccination protocols generally include at least two doses, in order to obtain high antibody titers. We want to analyze the relation
between the time elapsed from the first dose (priming) and the second dose (boost) on the antibody titers. In this paper, we couple
in vivo experiments with computer simulations to assess the effect of delaying the second injection. We observe that an interval of
several weeks between the prime and the boost is necessary to obtain optimal antibody responses.

1. Introduction

Immunological memory, defined as the capacity of the
immune system to respond more vigorously to the second
contact with a given antigen than to the first contact, is the
basis of the persistent protection afforded by the resolution
of some infections and is the goal of vaccination. Memory is
a system-level property of the immune system, which arises
from the increase in the frequency of antigen specific B and
T cells as well as from the differentiation of antigen specific
lymphocytes into memory cells, which are able to respond
faster to antigen and to self-renew [1–3].

The protection afforded by vaccines currently in use
correlates well with the magnitude of the antibody response.
The persistence of antigen-specific antibody titers over a
protective threshold and the ability to exhibit a “recall re-
sponse” to eencounter with antigen have long been the only
measurable correlates of vaccine “take” and immune mem-
ory. However, these methods for the evaluation of immune
memory suffer from the disadvantage of relying on long-
term monitoring of the immune response. Thus, optimizing
the vaccination schedule to obtain high and persisting

antibody titers, an important step in the development of
novel vaccines and immunotherapies, is a long trial and error
process [4, 5].

The magnitude of the immune response can usually be
increased by multiple administrations of vaccine; the notable
exception being represented by virus-vectored vaccines and
whereby immunity to the viral capsid induced by the first
dose prevents cell infection by subsequent doses.

When a new prototype vaccine is tested for the first
time in vivo, the injection schedule is designed empirically,
using a combination of immunological knowledge, previous
experience, and practical constraints, and it is refined
on the basis of the observed immunological responses
and protection. However, in vivo experimentation poses
practical limits to the number of different immunization
schedules that can be tried to find the protocol that
maximizes the antibody titer, while minimizing the number
of doses. Thus, in silico simulations of the kinetics of the
antibody response can be useful to generate predictions,
that can then be tested experimentally, and to generate
novel hypotheses on early correlates of immune mem-
ory.
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The vaccine used to generate the experimental data
reported in this study and described in Section 2, namely-(1-
11)E2, consists of “virus-like particles” formed by a domain
of the bacterial protein E2 that is able to self-assemble into
a 60-mer peptide [6]. Each particle displays on its surface 60
copies of peptide “DAEFRHDSGYE,” corresponding to the
first 11 N-terminal residues of beta-amyloid, a peptide that
forms aggregates in the brain of Alzheimer’s disease patients.

A single “prime” dose of the (1-11)E2 vaccine induces
measurable titers of anti-beta-amyloid antibodies in all
treated mice, and in 4/5 mice that received a “boost” dose 6
months later, we observed a clear memory response, namely,
a fast rise of anti-beta-amyloid antibody titers to a peak
serum concentration between 1 and 7 mg/mL.

Studies performed in transgenic mouse models of
Alzheimer’s disease have demonstrated that antibodies
against beta-amyloid are able to reduce plaques and improve
cognition (reviewed in [7–10]. In mouse models as well as in
clinical trials in Alzheimer’s disease patients, induction of a
high titer of anti-beta-amyloid antibodies correlates with the
therapeutic efficacy of vaccination [10, 11].

In this study, the effect of the time delay between the first
and the second injection of antigen on the peak antibody
titer is explored in an computer model of the immune system
response.

2. Materials and Methods

2.1. Animals. BALB/c mice were obtained from Charles River
Laboratory, Italy. Ethics Committee of the institution within
which the work was undertaken have approved the protocols
involving mice and these conform to the provisions of the
Declaration of Helsinki and Italian National Guidelines for
animal use in research.

2.2. Generation of Virus-Like Particles (VLP) (1-11)E2. Syn-
thetic complementary oligonucleotides encoding the se-
quence 1–11 (sequence DAEFRHDSGYE) of beta-amyloid
were cloned into the pETE2DISP vector cut with NcoI and
XmaI, to obtain plasmid pET(1-11)E2. Successful construc-
tion of the plasmid was confirmed by DNA sequence analysis.
(1-11)E2 VLP was produced and characterized as previously
described [5].

2.3. Immunizations. Mice were immunized intraperitoneally
with 200 µL of a 1 : 1 mixture of antigen and adjuvant. Com-
plete Freund’s Adjuvant (CFA) was used in the first injection,
and Incomplete Freund’s Adjuvant (IFA) in the second one.
Each mouse received an amount of antigen carrying 6 µg of
the beta-amyloid epitope. Blood was collected at indicated
time points, and ELISA was performed on serum.

2.4. Enzyme-Linked Immunosorbent Assay (ELISA). Wells of
a 96-well Nunc Immunoplate were coated with streptavidin
at 37◦C over night until complete evaporation. Wells were
blocked with 0.5% bovine serum albumin in 20 mM TrisHCl
pH 7.3, and 120 mM NaCl, incubated with 50 ng biotinylated

peptide, incubated with mouse sera diluted in 0.25% bovine
serum albumin, 20 mM TrisHCl pH 7.3, 0.5 M NaCl, 0.05%
Tween 20, and detected with anti-mouse IgG peroxidase
conjugate (SIGMA A-2554).

All incubations were carried out for 1 hr at 37◦C, and
after each step wells were washed twice with Elisa wash buffer
(EWB) (20 mM TrisHCl pH 7.3, 130 mM NaCl, 0.05% Tween
20) and once with Tris buffered saline (TBS) (20 mM TrisHCl
pH 7.3, 0.5 M NaCl). Wells were incubated for 45 min at
room temperature with 0.4 mg mL−1 O-phenylenediamine
dihydrochloride dissolved in 30 mM citric acid, 70 mM
Na2HPO4, 0.8 mM H2O2. Absorbance was read at 492 nm,
after blocking color development was blocked with 0.8 M
sulfuric acid.

Each serum was tested against synthetic peptides 1–11 of
beta-amyloid (the synthetic peptide 23–29 of beta-amyloid
was used as a negative control). Titer of a serum was defined
as the highest dilution yielding an absorbance value equal
to twofold of the background value obtained against an
irrelevant antigen.

2.5. The Computational Model. The in silico experiments are
performed by a computational model of the immune system
[12] that uses binary strings to represent the binding site
of cells and molecules (i.e., lymphocytes receptors, BCRs,
TCRs, Major Histocompatibility Complexes MHC, antigen
peptides and epitopes, immunocomplexes IC, etc.).

The model is based on the agent-based modeling (ABM)
paradigm, in that all entities are individually represented
[13, 14] as in cellular automata models [15]. It includes
the major classes of cells of the lymphoid lineage, that is,
T helper lymphocytes, cytotoxic T lymphocytes, B lympho-
cytes, antibody-producer plasma cells, and natural killer cells
(NK) and some of the myeloid lineage, that is, macrophages
(Mφ) and dendritic cells (DC). These entities cooperate
following a set of algorithms (or logical rules) carrying out
the different phases of the immune recognition and response
to a generic pathogen. In particular, the model takes into
account phagocytosis, antigen presentation, cytokine release,
cell activation from inactive or anergic states to active states,
cytotoxicity, and antibody secretion. The model simulates a
simplified form of innate immunity and a more elaborate
form of adaptive immunity, including both humoral and
cytotoxic immune responses [16].

In the model, a single human lymph node (or a
portion of it) is mapped onto a three-dimensional ellipsoid
Cartesian lattice. The primary lymphoid organs thymus
and bone marrow are modeled apart: the thymus [17] is
implicitly represented by the positive and negative selection
of immature thymocytes before they enter into the lymphatic
system, while the bone marrow generates already mature B
lymphocytes. Hence, only immunocompetent lymphocytes
are represented on the primary lymphoid organ modeled.

This computational model can be seen as a collection of
working assumptions or theories, most of which are regarded
as established immunological mechanisms. In details, the
model includes: the clonal selection theory of Burnet [18];
the idiotypic network theory of Jerne [19]; the clonal deletion
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Table 1: Biological rules coding for interactions between cells or
among cells and molecules and other specific mechanisms of the
immune system. Each of the entries of this list corresponds to an
algorithm implementing a specific activity of the immune cells.

Interactions Activations

B phagocytosis of antigen Activation of Mφ

Mφ phagocytosis of antigen B cells anergy

DC phagocytosis of antigen TH cells anergy

B presentation to TH Priming of TH cells

Mφ presentation to TH TC cells anergy

DC presentation to TH Activation of TC cells

Formation of immunocomplexes
(IC)

Mφ phagocytosys

Infection of EP cells

Cytotoxicity of infected cells by TC

Antigen ingestion and presentation Other procedures

B exogenous pathway Clone divisions

Mφ exogenous pathway Hematopoiesis

DC exogenous pathway
Plasma secretion of
immunoglobulins

EP endogenous pathway Entity movement

Hypermutation of antibody

B: B cell, Mφ: macrophage, DC: dendritic cell, TC: cytotoxic CD8+ T cell,
Th: CD4+ T cell.

theory (i.e., thymus education of T lymphocytes, [20]);
the hypermutation of antibodies [21]; the danger theory of
Matzinger [22]; the replicative senescence of T cells, or the
Hayflick limit (i.e., a limit in the number of cell divisions,
[23]); T-cell anergy [24]; Ag-dose-induced tolerance in B
cells [25]. These features can be selectively toggled on or
off, allowing for general investigations of immunological
hypothesis. Moreover, other specific biological processes
can be added to the model with relatively little effort. For
example, customizations of the basic model have been used
to simulate different phenomena ranging from viral infection
(e.g., HIV, EBV [26, 27]) to type I hypersensitivity [28] and
cancer [29, 30].

A simulated time step is roughly equivalent to eight
hours. The interactions among the cells determine their
functional behavior (Table 1). Interactions are coded as
probabilistic rules defining the transition of each cell entity
from one state to another. Each interaction requires the
involved cellular entities to be in a specific state out of a
set of possible states (e.g., naı̈ve, active, resting, duplicating)
that is dependent on the cell type. Once these conditions
are fulfilled, the interaction is driven by a probability that
is directly related to the effective level of binding between
ligands and receptors.

Strings of 0s and 1s are used to represent specificity
elements like receptors and other molecular binding speci-
ficities (see Figure 1). The length of this string is specified as
a parameter ℓ. Two bit-strings complement each other (or
are a perfect match) if every 0 in one corresponds to a 1 in

the other and conversely. More generally, an m-bit match is
defined as a pair where exactlym bits complement each other.
Therefore, in order to compute the binding probability, we
first define the function h(a, b) giving us the number of
matching bits between two strings a and b (i.e., the Hamming
distance in the space of the bit-strings). Then, we define the
function α(m) as the affinity of an m-bit match. To ensure
that perfect matches prevail over imperfect ones, we set α(ℓ)
to a high value and α(m) (with m < ℓ) to lower values. To
specify the vector α, one method is to specify it directly by
simply listing out its components. Another method uses the
additional parameter arguments m, that is, the minimum
match allowed, a = α(m), that is, the minimum level of
affinity, and δα a parameter specifying the gain in affinity
proportional to a one bit more match, to calculate in the
following way: (i) using the parameter m, set α(m) = a
whereas for m < m set α(m) to 0 (this provides a level below
which binding cannot occur); (ii) the increase of strength on
increasing a match by one bit is set to be the inverse of the
ratio of number of clones with match m+1 and m multiplied
by the parameter δα. In formula,

α(m + 1)

α(m)
=

δα
(

ℓ
m

)

(

ℓ
m+1

) . (1)

This allows to set the lower end value of α(m) and the
steepness of its increase as the number of matching bits is
incremented. It is usually more convenient than supplying
the α vector directly. Generally, it is advisable to set m
somewhat close to ℓ bits in order to restrict the range of
allowable matches to a few bits, so that the number of
antibodies raised in response to a given antigen remains
manageable.

Unlike the many immunological models, the present
one not only simulates the cellular level of the intercellular
interactions but also the intra-cellular processes of antigen
uptake and presentation. Both the cytosolic and endocytic
pathways are modeled. In the model, endogenous antigen
is fragmented and combined with MHC class I molecules
for presentation on the cell surface to CTLs receptors,
whereas the exogenous antigen is degraded into smaller
parts (i.e., peptides), which are then bound to MHC class
II molecules for presentation to the THs receptors (Table 1).
The affinity among MHC molecules and the antigen peptides
is computed in a slightly different manner than those
between cell receptors and antigenic epitopes. Firstly, the
match is computed over half bit string; secondly, there is no
minimum match. The affinity value between two half strings
whose match is m, for all m = 0, . . . , ℓ/2, is defined as

β(m) =

(

1

2

)ℓ/2−m

. (2)

The function β(m) represents the probability that a peptide
with match m to the MHC molecule binds and is presented
alongside with it on the cell surface for subsequent TCR
recognition.

While macroscopic entities like cells are individually rep-
resented (i.e., they are considered as agents), low-molecular,
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Figure 1: Molecular affinity is calculated on the basis of the Hamming distance of the binary strings representing the binding sites of the
interacting entities. In the figure a T lymphocyte receptor binds the MHC-peptide complex of an antigen presenting cell.

weight molecules, such as interleukins or chemokines, are
represented in terms of their concentration. The correspond-
ing dynamics is modeled by the following parabolic partial
differential equation that describes a uniform diffusion
process with the addition of a degradation term that takes
into account the finite half-life of molecules:

∂c

∂t
= D∇2c − λc + s(x, t), (3)

where c = c(x, t) is the concentration of chemokines, s(x, t) is
the source term, D is the diffusion coefficient, and λ = ln 2/τ
where τ is the half-life. We assume D = 3000µm2/min and
τ = 3 hrs for all chemokines [31, 32]. Differences in cell
mobility also are taken into account. TH cells are the fastest
with an average velocity of 11 µm/min, followed by B cells
with 6 µm/min and DC with a velocity of 3 µm/min [32].

The rules listed in Table 1 are executed for each time step.
The stochastic execution of these rules, as in a Monte Carlo
methods, produces a logical causal/effect sequence of events
culminating in the immune response and development of
immunological memory. The starting point of this series of
events is the injection of antigen (the priming).

The system is designed to maintain a steady state of the
global population of cells (homeostasis) if no infection is
applied. This is achieved by modeling the birth/death process
as a mean reverting process of the type:

dxi(t)

dt
=

log2

τi
(xi(0)− xi(t)) + σ(t), (4)

where xi(t) is the population i at time i, τi is the specific half-
life parameter, and σ(t) is a Gaussian random noise.

Initially the system is naı̈ve in the sense that there
are neither T and B memory cells nor plasma cells and
antibodies. The various steps of the simulated immune
response depends on what is actually injected, for example,
a recombinant virus or bacteria.

The model contains a number of parameters whose
value has been determined as follows. These parameters

can be classified into three categories: (i) unknown values
or free parameters, which are set after a tuning procedure
that begins with an initial estimation of their values and
iteratively improves the results of the simulations by small
modifications of the parameters; (ii) parameters that cor-
respond to the initial conditions of the system and that
determine the problem under investigation; (iii) parameters
whose value is well known and available from immunology
literature.

Given the initial condition represented by the simulated
volume determining the number of cells populating the space
according to known leukocyte formulas, the model runs
in a metastable state assured by homeostasis. In absence
of antigenic stimulus, the populations of immune cells
randomly fluctuates around the average values given. Upon
an antigenic challenge performed by injecting a certain
amount of a pathogen, the system moves away from the
metastable state to recognize the insulting molecules and
to mount an immune response that may or not include
the deployment of both the humoral and the cytotoxic
artillery. Once the antigen is cleared, the system goes back
to an equilibrium state that is not the same as before as
it contains a shift in the system specificity amounting to
the immune memory. This memory allows for a faster and
stronger reaction to a later encounter of the same (or similar)
pathogen.

Figure 2 shows this dynamics as an example of a typical
immunization experiment consisting in injecting at day
zero and about ten weeks after a generic immunogenic
substance as a vaccine. The result of the priming is that
the antigen is cleared in about four days (panel up-left)
as the antibodies elicited peak within the second and the
third week (bottom-left panel). The different specificities
(i.e., binary strings) of the antibodies elicited are shown in
the same figure. The figure also shows the corresponding
antibody-producing plasma cells (bottom-right panel) and
the immunocomplexes titer (up-right panel) consisting of
antigen clotted with antibodies.
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Figure 2: The virtual experiments are conducted priming at day zero and later after a certain time interval. In this case the boost has been
performed after about ten weeks. While the antibodies are produced by plasma cells derived by expanding clones of B cells, the injected
antigen is cleared and immunocomplexes are formed. The secondary immune response to the boost is stronger and faster than the response
to the priming because of the immunological memory (not shown).

Whereas the immunogenicity of the injected substance is
the main responsible for the immune response, a secondary
but not less important factor is the timing. Indeed, as
anticipated above, the question investigated here is what is
the optimal timing for boosting in terms of higher antibody
titers. Intuitively, one expects a window of optimality since a
too close boost does not elicit a strong memory as it simply
add, (and compete for resources) to the prime, whereas
an overly delayed boost may fail to wake up the memory
simply because it already faded away. Computer simulations
allow to easily broadening the search for the optimality,

something that would be costly and time consuming with
animal models.

3. Validating the Model against
the Experimental Dataset

Before use, the simulator needs to be validated against
the specific experimental data available and described in
Section 2. Interestingly, matching experimental data was not
straightforward. Indeed, the first set of simulations did not
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yield reasonable fit with the data indicating that the model
was lacking of some specific mechanism.

In particular, the model failed to reproduce a correct
kinetic for both antigen clearance and antibody expansion
(it goes without saying that the two issues are connected)
as we obtained faster than experimentally observed rates.
Discussions pointed us to identify a mechanism of vaccine
delivery that was missing in the computational model and
could account for the divergence observed. Therefore, in
order to correct this inconsistency, we implemented two
mechanism: (i) one to implement what is called the “depot
effect,” that is, the gradual release of the vaccine so as
to cover a long period of antigen exposure, and (ii) a
mechanism accounting for immunocomplexes dissociation
actually providing a further longer exposition time to the
injected vaccine.

The modified model incorporating these two effects
effectively increased the targeted adherence to the exper-
imental data. Since the depot effect resulted in a minor
difference, we show hereafter the effects of implementing
the dissociation of immunocomplexes on the simulation
outcome. Note that the overall expected effect of the antigen-
antibody compound dissociation is to have a longer exposi-
tion to the antigen and also a better affinity maturation since
weak binders have a higher dissociation rate. Specifically,
the instability of immunocomplexes (ICs) favors re-ingestion
of the immunogenic peptides by antigen presenting cells
(APCs) and representation to specific lymphocytes, who,
on their side, opt for higher affinity ones. See Figure 3 to
compare the antibodies responses in three different cases:
without IC dissociation, with IC dissociation but no direct
ingestion and following presentation of IC by macrophages
and with both IC dissociation but no competing mechanism
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Figure 4: Comparison with mice data: antibody (IgG) titers as
average of four mice experiments with relative standard deviation.
Mice received a prime injection at day 0 and a boost six months
later.

of IC elimination by macrophages. We can see that without
IC dissociation, the antibody titers are low compared to
the case of higher antigen-antibody instability whereas the
effect of a direct ingestion and following presentation of IC
by macrophages does not account for the same big effect
but nevertheless shows that IC ingestion by Mφ actually
represents a suboptimal situation compared to the “neat” IC
dissociation because of the waste of antibodies bound to the
antigen in the complexes that are effectively thrown away by
macrophages upon ingestion.

After these modifications the simulator showed titers that
are comparable to that observed in real data. Figure 4 show
the fit with mice data calculated as average of four mice
experiments. Error bars show the standard deviation of IgG
antibodies receiving a vaccine priming at day zero and a
boost six months later. The solid line in Figure 3 show a
good agreement of the simulated mice with the experimental
data.

This data set allowed to fine tune the parameters of
the simulator. Further experiments have been performed
afterwards to investigate the relationships among the prime-
boost time distance and the magnitude of the immune
response measured as IgG antibody titers. This is show in the
next section.

4. Results

In order to investigate the relationship between the interdose
delay and the immune response, we have performed a set of
virtual experiments by running the simulation with different
initial conditions. In particular, we injected the antigen at
time step t1 = 0 and successively at t2. We performed
simulations for T time steps, corresponding to about T/3
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Figure 5: The lower panel shows that m1 is trivially independent
of t2 whereas the upper panel showing m2 tells that, overall, there
exists an optimal timing for the boost that is greater than 45 days.

days of real life. The delay δt = t2 − t1 is the free variable of
the experiment, whereas the outcome is the differences in the
amount of antibodies produced to the prime and the boost
vaccination. More specifically, we call ab(t) the antibody
titers at time t, m1 = max{ab(t) : t1 ∈ [t1, t2)} the maximum
level of ab relative to the injection of antigens at time t0 (i.e.,
the prime injection), and analogously m2 = max{ab(t) :
t ∈ [t2,T]} the maximum level of IgG antibodies relative to
the injection of antigens at time t2 (i.e., the boost injection).
We can assume that m1 ≤ m2 since the injected antigen is
the same for the two injections and, therefore, the immune
memory is such that the second immune response is faster
and stronger than the first [33, 34].

We call ∆ab = m2 −m1 the differences in the peak values
of antibody titers during the two responses. Since t1 is fixed,
t1 = 0 and m1 and m2 both depend on the time of the second
injection t2, we have that δt = t2, m2 ≡ m2(t2) and ∆ab ≡

∆ab(t2).
In Figure 5, we show a boxplot to compare m1(0) and

m2(t2) for different values of δt = t2. This has been
computed averaging over 20 simulations of 10 micro liters
of volume. The lower panel of that figure shows that, apart
from large stochastic fluctuation, m1(t2) = const, that is, it is
independent of t2, whereas the upper panel showing m2(t2)
tells that, overall, there exists an optimal timing for the boost
that is greater than 45 days.
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Figure 6: When the boost is given in the first month after the prime,
our measure of the efficiency of the boost, ∆ab(δt), is quite low
whereas it increases when the second dose is given 45 to 90 days
after the prime.

The same information is better displayed in Figure 6 that
plots ∆ab(δt) as a function of δt = t2. In particular, an interval
of several weeks between the prime and the boost is necessary
to obtain an optimal humoral response, as hypothesized and
reported in experimental studies. Indeed, when the boost
is given in the first month after the prime, the difference
between the peaks of the secondary and primary responses,
that is a measure of the efficiency of the boost, is quite low.
The boost efficiency increases when the second dose is given
45 to 90 days after the prime, whereas further delaying the
boost does not improve the secondary antibody peak.

5. Discussion

Optimizing prime-boost regimens is key to developing
novel vaccines. What is the optimal time for boosting is
a fundamental question that remains unanswered [4]. It
has been suggested that an interval of at least 2-3 months
between the prime and the boost is necessary to obtain
optimal responses, as memory T cells with high proliferative
potential do not form until several weeks after the first
immunization, and memory B cells have to go through the
germinal center reaction and take several months to develop
[4].

Immunization schedules are designed empirically and
are then refined on the basis of the observed immunolog-
ical responses and protection. In some instances, different
countries that implement the same vaccine in their national
immunization programs use different schedules [35, 36].

The United States Advisory Committee on Immuniza-
tion Practices (ACIP) publishes each year a recommended
immunization schedules for licensed vaccines, to reflect
current recommendations [37, 38]. For individuals whose
vaccinations have been delayed, catch up schedules and
minimum intervals between doses are indicated [37]. For
most vaccines currently in use, the minimum recommended
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interval between dose 1 and dose 2, for children, is 4 weeks,
however, for some vaccines a minimum interval of 8 weeks,
3 months, or 6 months is recommended [37].

In preclinical experimentation of prototype vaccines, on
the other hand, shorter intervals between doses are often
used, to obtain a rapid rise in antibody titers above protective
values. In the case of vaccination against beta-amyloid in
mouse models of Alzheimer’s disease, a schedule that has
been used with a variety of prototype vaccines involves
doses at day 0, 2 weeks and 4 weeks, and monthly doses
thereafter. When multiple doses are administered within a
short timeframe, understanding the contribution of each
dose to the peak antibody titer can be practically impossible.

In this study we have analyzed the effect of the interval
between prime and boost injection on the antibody response
in a computational model of the immune system.

We have shown that in the computational model an
interval of several weeks between the prime and the boost
is necessary to obtain optimal responses, as hypothesized
and reported for real immune responses. In particular, in the
simulations, when the boost is given in the first month after
the prime, the difference between the peaks of the secondary
and primary responses, our measure of the efficiency of the
boost, is low. The boost efficiency increases when the second
dose is given 45 to 90 days after the prime, whereas further
delaying the boost does not improve the secondary antibody
peak (simulations of boosts administered up to 300 days after
the prime are shown in Figure 6).

Thus, the computational model displays the qualitative
features of real immune responses, and it can be useful to
understand which component of the immune system is in
charge for the time-dependent differences in boost efficacy
that are observed in vivo. Interestingly, the efficacy of the
boost does not parallel the number of T helper cells and B
cells. In the model, the number of T and B cells increases after
the prime, as cells are activated and duplicate. Cell numbers
then decline, as a consequence of cell death. Thus, at day 15
there are more T or B cells than at day 90. Interestingly, also
memory T cells are more abundant at the 15 and 45 time
point than at later time points, revealing that the better mem-
ory response obtained at later time points is not correlated to
higher numbers of memory T cell. On the contrary, the boost
is optimal at a time point when the populations generated by
the prime, in particular, activated cells, duplicating cells, and
also memory cells, have all contracted. The T and B cells that
are present in the system at late time points after the prime
are qualitatively different from earlier cells. It is important
here to emphasize that, in the model, a memory cell is a
cell that, having been activated by antigen, has increased
its average lifespan. Further encounters with antigen lead to
further increases in the lifespan. Thus, memory cells are not
all equal in their proliferative potential, and the memory of
the system matures over time, as cells with high proliferative
capacity are generated. This model, therefore, demonstrates
that cell populations dynamics, and a simple assumption,
namely the fact that a “survival signal” is received by
memory cells at each encounter with antigen, are sufficient
to reproduce the need for an optimal delay between prime
and boost, observed in vivo.

On the other hand, different vaccines are known to
have different requirements with respect to the minimum
interval between doses. The simulations reported in this
study refer to a “generic vaccine,” and the time scales that
were obtained, which are quite realistic, anyway do not refer
to a specific vaccine, although parameters have been set to fit
data obtained with a nonreplicating protein antigen, namely,
virus-like particle (1-11)E2 (6). The computational model
can be useful to explore the role of different features of the
primary response on the optimal time point for boost, and
on boost efficiency, at a set time point.

A deeper analysis of the overall system dynamics is
currently underway to pinpoint which immune component
is in charge for the observed behavior and will be published
in due course. Furthermore, vaccine specificities like the
number of peptides are likely to play a distinct role the quest
optimality and therefore they have to be incorporated in the
computer model as well.
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