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Abstract

It is estimated 6.4% of males and 1.6% of females globally use anabolic-androgenic steroids (AAS), mostly for appearance and
performance enhancing reasons. In combination with resistance exercise, AAS use increases muscle protein synthesis resulting in
skeletal muscle hypertrophy and increased performance. Primarily through binding to the androgen receptor, AAS exert their
hypertrophic effects via genomic, non-genomic and anti-catabolic mechanisms. However, chronic AAS use also has a detrimen-
tal effect on metabolism ultimately increasing the risk of cardiovascular disease (CVD). Much research has focused on AAS
effects on blood lipids and lipoproteins, with abnormal concentrations of these associated with insulin resistance, hypertension
and increased visceral adipose tissue (VAT). This clustering of interconnected abnormalities is often referred as metabolic
syndrome (MetS). Therefore, the aim of this review is to explore the impact of AAS use on mechanisms of muscle hypertrophy
and markers of MetS. AAS use markedly decreases high-density lipoprotein cholesterol (HDL-C) and increases low-density
lipoprotein cholesterol (LDL-C). Chronic AAS use also appears to cause higher fasting insulin levels and impaired glucose
tolerance and possibly higher levels of VAT; however, research is currently lacking on the effects of AAS use on glucose
metabolism. While cessation of AAS use can restore normal lipid levels, it may lead to withdrawal symptoms such as depression
and hypogonadism that can increase CVD risk. Research is currently lacking on effective treatments for withdrawal symptoms
and further long-term research is warranted on the effects of AAS use on metabolic health in males and females.
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1 Introduction

The fine margins of winning and losing in athletic competi-
tions has always encouraged innovative techniques to help
athletes gain a competitive advantage with little regard to the
potential negative consequences. Although research into sex

hormones existed in the early 19th century, it was only in the
1930s when the anabolic effects of testosterone were demon-
strated [1]. Shortly thereafter, the hormone started to be used
by competitive athletes to increase muscle mass and perfor-
mance, however, the British Association of Sports Medicine
and the American College of Sports Medicine continued to
deny its potential benefits until the 1970s [2, 3]. The use of
testosterone and its derivatives were later banned by the
International Olympics Committee in 1974 [4]. Due to ad-
vancements in technology and pharmacology, a range of an-
abolic androgenic steroids (AAS) (Table 1, [5, 6]) began to be
commonly used by the recreational gym-user in the 1980s,
primarily by young men to improve body image [1, 7]. Due
to this rise in use and the associated adverse effects of AAS,
many countries changed their legislation to incorporate AAS
to regulate its use and distribution in the 1990s [8–10]. The
world anti-doping agency was created in 1999 to protect

* Deaglan McCullough
d.mccullough@2015.ljmu.ac.uk

* Ian G. Davies
I.G.Davies@ljmu.ac.uk

1 Research Institute of Sport and Exercise Science, Liverpool John
Moores University, Liverpool, UK

2 Faculty of Science, Liverpool Hope University, Liverpool, UK

3 Substance Use and Associated Behaviours Group, Manchester
Metropolitan University, Manchester, UK

https://doi.org/10.1007/s11154-020-09616-y

/ Published online: 2 December 2020

Reviews in Endocrine and Metabolic Disorders (2021) 22:389–405

http://crossmark.crossref.org/dialog/?doi=10.1007/s11154-020-09616-y&domain=pdf
http://orcid.org/0000-0002-9882-9639
http://orcid.org/0000-0001-9591-585X
http://orcid.org/0000-0003-1775-6392
http://orcid.org/0000-0002-9092-2927
http://orcid.org/0000-0001-5319-6885
http://orcid.org/0000-0002-8104-4819
http://orcid.org/0000-0003-3722-8466
mailto:d.mccullough@2015.ljmu.ac.uk
mailto:I.G.Davies@ljmu.ac.uk


athletes from the detrimental health risks of AAS use and to
ensure maintenance of the integrity of sport globally [4, 11].

It is currently estimated that 6.4% of males and 1.6% of
females use AAS globally, with recreational sportspeople be-
ing the highest users [12]. Although it is common for individ-
uals to use AAS for multiple reasons, the greatest motivation
to use AAS is primarily to improve body image, while com-
petitive bodybuilding and athletic performance (non-
bodybuilding) are secondary and tertiary respectively
[12–15]. The Middle East has relatively significantly high
levels of AAS use while use in South America, Europe,
North America, Oceania and Africa ranges from 5–2% of
the population, highlighting the global issue at hand [12].
However, the significantly higher prevalence rates in the
Middle East may be due to the majority of studies relying on
self-reports from athletes rather than general populations [12]

1.1 Effects on skeletal muscle

Testosterone and its AAS derivatives increase muscle protein
synthesis (MPS) and accretion, satellite cell activation and
possibly decrease catabolic pathways via genomic and non-
genomic mechanisms (Fig. 1) [16]. Genomic actions of AAS
occur when androgens bind to the nuclear androgen receptor
(AR) and translocate to the cell nucleus, binding to specific

DNA sequences resulting in enhanced transcription of target
anabolic genes [17, 18]. AAS also exert non-genomic actions
by binding of the membrane-located AR and additional mem-
brane receptors such as endothelial growth factor receptor
(EGFR) and sex hormone-binding globulin receptor
(SHBGR) that also alter anabolic/catabolic signalling path-
ways [17, 18]. Resistance exercise also increases muscle
MPS and satellite cell activation resulting in skeletal muscle
hypertrophy [19, 20]. Although testosterone administration
and resistance exercise alone may increase skeletal muscle
hypertrophy, the combination of both results in enhanced skel-
etal muscle hypertrophy [21]. As a result, AAS are commonly
used in conjunction with exercise to increase muscle mass and
improve perceived body image [1, 23].

1.2 Effects on metabolic health

Regular exercise is undoubtedly beneficial for mental, physi-
cal and metabolic health [22]. However, the potential benefits
acquired from regular exercise may be reduced with chronic
AAS use as AAS users are at a higher risk of developing
cardiovascular disease (CVD), psychological disorders, neu-
roendocrine disorders, sex-specific disorders (aromatisation
and hypogonadism in males and virilisation in females) and
a range of other disorders (Table 2) [7, 23–26]. Long term
AAS use has been shown to result in premature death due to
cardiovascular events; however, due to AAS use only being
prevalent since the 1980s, long term longitudinal studies, on
their impact, are scarce [27]. Furthermore, the direct impact of
AAS use on health is difficult to determine as users reportedly
use other substances to complement their AAS use while also
using a variety of AAS types, doses and cycles [13, 28]. AAS-
related polysubstance use also includes other anabolic agents
such as insulin-like growth factor-I (IGF-I) and growth hor-
mone (hGH); drugs to prevent AAS-related adverse effects,
other image enhancing drugs (clenbuterol, diuretics and thy-
roid hormones) and psychoactive drugs [13, 28]. The chemi-
cal interactions of AAS-related polysubstance use may also
elicit additional adverse health outcomes. Quantifying the ad-
verse effects of these drugs is further complicated by the prev-
alence of adulterated products, an inevitable consequence of
the illicit market [29].

Metabolic syndrome (MetS) is the constellation of the often
interrelated metabolic abnormalities that lead to increased risk
of CVD, which are the number one cause of death globally
[30, 31]. It is most commonly associated with sedentary/obese
populations and is defined by having a combination of some,
but not all, of high triglycerides (TG), low high-density lipo-
protein cholesterol (HDL-C), elevated blood glucose, hyper-
tension and elevated waist circumference [30, 32]. Insulin
resistance (IR), visceral adipose tissue (VAT) and small dense
low-density lipoprotein cholesterol (sdLDL-C) also highly
correlate with MetS [30]. Although AAS users are highly

Table 1 List of injectable and oral AAS and typical doses used

Injectable AAS Typical weekly dose

Boldenone Undecanoate 200–400 mg

Drostanolone Propionate 300–450 mg

Methenolone Enanthate 200–400 mg

Nandrolone Decanoate 200–400 mg

Stanozolol 150–700 mg

Testosterone Cypionate 200–600 mg

Testosterone Enanthate 200–600 mg

Testosterone Propionate 150–300 mg

Testosterone Suspension 150–700 mg

Trenbolone Acetate 150–300 mg

Trenbolone Enanthate 200–300 mg

Trenbolone Hexahydrobenzylcarbonate 150–230 mg

Oral AAS Daily dose

4-chlorodehydromethyltestosterone 20–80 mg

Fluoxymesterone 20–40 mg

Methandrostenolone, Methandienone 20–40 mg

Mesterolone 50–100 mg

Oxandrolone 20–40 mg

Oxymetholone 50–100 mg

Stanozolol 20–50 mg

Testosterone Undecanoate 80–160 mg
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active, they are also at risk of CVD as AAS use has been
reported to increase the risk of sudden cardiac arrest as a result
of cardiac remodelling and abnormal cardiac function [33–35].
The use of AAS reportedly results in polycythaemia, reduced left
ventricular and diastolic function and accelerated atherosclerosis
compared to non-use [24, 36]. AAS use may affect blood pres-
sure (BP) and metabolism which ultimately increases CVD risk
in addition to altered cardiac function [33]. Furthermore, AAS
use can increase low-density lipoprotein cholesterol (LDL-C)
and decrease high-density lipoprotein cholesterol (HDL-C) in-
creasing the risk of developing atherosclerosis and hence CVD
[33], particularly given that AAS use could result in lower insulin
sensitivity and higher levels of VAT compared to matched con-
trols [37]. Therefore, although most AAS users have high levels
of activity and low adiposity, they can also share similar meta-
bolic characteristics of obese/sedentary populations such as the
MetS, thereby increasing risk of CVD.

1.3 AAS withdrawal

While increasing levels of lean mass has an inverse relationship
with CVD risk, AAS use has such a deleterious effect on health
that it is not recommended to use for appearance or performance
reasons [7, 38]. DiscontinuingAAS use can be a difficult process
as immediate cessation may also have a detrimental effect on
health and wellbeing. The withdrawal effects of AAS can cause
hypogonadism, depression and fatigue, reduced libido, leading to
relapse and AAS dependency [7, 39]. Current evidence on suc-
cessful treatments for cessation of AAS use are scarce and further
research is required, but potential strategies for males include
testosterone replacement therapy (TRT), selective estrogen re-
ceptor modulators (SERM), human chorionic gonadotropin
(hCG) and aromatase inhibitors [40, 41]. As a result, up to date
guidance and information on the risks of commencing and ceas-
ing AAS use along with effective treatments for withdrawal
symptoms are required to prevent adverse health outcomes.

2 Aim and scope

Although previous reviews have focused on the effects of
AAS use on blood lipid and lipoproteins profiles [33, 42],

the effects on overall metabolism have yet to be reviewed.
Abnormal lipid metabolism is commonly associated with im-
paired glucose metabolism, hypertension and VAT accumu-
lation and this may also be the case in AAS users [30].
Therefore, the objectives of this review are to: 1, highlight
the mechanisms by which AAS exert their hypertrophic ef-
fects on skeletal muscle; 2, explore the impact of AAS use on
lipid, lipoprotein and glucose metabolism, all indicators of
MetS and 3, explore the negative effects of AAS withdrawal
and potential treatments. With the substantial levels of AAS
use [7, 12], better knowledge of these interrelated mechanisms
and issues may lead to targeted interventions to reduce the
potential harm that may be associated with AAS use.

3 Mechanism of action on skeletal muscle

3.1 Genomic-mediated mechanisms

The primary action of AAS is to bind to the nuclear AR lo-
cated in the cytoplasm which results in their translocation to
the nucleus following disassociation of the AR complex with
chaperone (Hsp90, Hsp70) and co-chaperone proteins (Hsp
organising protein (Hop)) [43, 44]. At the nucleus the
androgen/AR complex moderates gene transcription by bind-
ing to the ARE of the DNA [17, 45]. Transcription is altered
further by the recruitment co-activators such as cAMP re-
sponse element-binding protein (CREB)-binding protein
(CBP)/p300 and steroid receptor coactivator (Src) 1, 2 and 3
[17, 45, 46]. This, in turn, upregulates expression of genes
related to protein accretion and anabolism such as IGF-I, nu-
trient sensing, storage and transporting (Lipin, GLUT3 and
SAT2) and satellite cell differentiation (myogenin), while also
increasing satellite cell number [47–50]. ARE binding may
also downregulate genes involved in muscle atrophy such as
I-Kappa kinase alpha (IKKα) [47, 51] (Fig. 1). The
transactivation domain of the AR is susceptible to a CAG
repeat polymorphism within the first exon, which may regu-
late AR activity. The number of CAG repeats typically ranges
from 11 to 31 triplets in length and is inversely associated with
transactivational activity of the AR [43]. An increase in CAG
repeats is associated with elevated testosterone levels, perhaps
due to decreased AR activity, which may affect hypothalamic-

Table 2 Diseases associated with
chronic AAS use Cardiovascular Psychological Neuroendocrine Other

Cardiomyopathy Depression Neurotoxicity Hepatoxicity

Coronary heart disease Mood disorders Reduced grey matter Hypogonadism (males)

Sudden cardiac death Substance abuse Thinner and smaller cortices Virilisation (females)

Stroke Dependence Cognitive impairment Acne

Myocardial infarction Fertility

Hypertension Cancer
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pituitary feedback regulation although no association has been
observed with muscle mass in young males (25–45 years)
[52]. There is currently a lack of evidence on the response of
AAS in relation to the amount of AR CAG repeats.

3.2 Non-genomic mediated adaptations

Non-genomic actions of AAS are characterised by the speed
in which they exert their effects (within minutes) thus indi-
cating activities independent of transcription [17, 53]. AAS
have been reported to exert non-genomic effects via
membrane-located receptors; membrane-located AR,
EGFR, and SHBGR [17]. Binding of these receptors leads
to an increase in intracellular calcium and activation of

several second messenger signalling cascades including;
mitogen-activated protein kinases (MAPK), ERK 1/2,
PKA, PI3K/Akt and CaM pathways [17, 54, 55].
Activation of PI3K/Akt by testosterone, triggers mTORc1,
a key regulator of protein turnover via activation of the
eukaryotic initiation factor 4E-BPs and S6K1 [19, 56].
Resistance exercise also activates S6K1 via mTORc1, in-
creasing MPS and muscle hypertrophy [57, 58]. The com-
bination of testosterone and resistance exercise further in-
creases mTORc1, 4E-BP1 and S6K1 activation compared
to either alone [59]. These signalling cascades upregulate
transcription, satellite cell proliferation, muscle protein syn-
thesis and reduce apoptosis ultimately resulting in skeletal
muscle hypertrophy [17, 54, 55, 60] (Fig. 1).

Fig. 1 Genomic and non-genomic mechanisms of AAS induced skeletal
muscle hypertrophy and mechanisms of insulin signalling and
resistance. Genomic pathway: Androgen binding of the AR complex
causes translocation to the nucleus following dissociation of heat shock
proteins (HSP). The androgen/AR complex regulates gene transcription
on the androgen response element (ARE) of DNA. Non-genomic path-
way: In addition to the AR, androgens can activate other membrane-
bound receptors such as EGFR and SHBGR. This causes an increase in
intracellular calcium (Ca2+), activation of several second messenger sig-
nalling such as extracellular regulated kinases 1/2 (ERK 1/2), protein
kinase A (PKA), calmodulin (CaM) and phosphatidylinositol-3-
phosphate kinase (PI3K)/Akt/mTORc1 pathways and deactivation of
myostatin pathway. Activation of these genomic and non-genomic path-
ways leads to skeletal muscle hypertrophy via upregulating gene

transcription of anabolic genes, nutrient sensing, storage and transporting.
While also upregulating satellite cell proliferation, differentiation, MPS
and inhibiting muscle protein breakdown (MPB). Insulin/IGF-1 signal-
ling pathway: Insulin/IGF-1 bind to the insulin/IGF-1 receptor on the cell
membrane inflicting tyrosine phosphorylation. The now activated recep-
tor causes phosphorylation of insulin receptor substrate-1/2 (IRS-1/2)
activating the PI3K/Akt signalling cascade leading to satellite cell prolif-
eration; MPS via mTORc1, 4E-binding protein 1 (4E BP1) and p70 S6
kinase 1 (S6K1) activation; glucose uptake via GLUT4 translocation and
inhibition of forkhead O transcription factor (FOXO) leading to reduced
MPB. Abnormal levels of circulating fatty acids and inflammatory cyto-
kines result in serine/threonine phosphorylation of IRS-1 causing insulin
resistance.
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3.3 Anti-catabolic effects of AAS

In addition to the genomic and non-genomic effects of AAS
decreasing atrophy related gene expression and activity of
catabolic pathways (FOXO pathway), AAS may cause direct
inhibition on glucocorticoid receptor (GR) signalling and/or
its expression [5]. Binding of the GR by agonists increases
skeletal muscle atrophy and thereby inhibition of this pathway
will increase net protein balance and further increase muscle
hypertrophy [61]. Compared to young muscle, aged muscle
shows a decrease in function and size, of which the mecha-
nisms are multifactorial [62]. Increases in apoptosis may be
implicated in this decline of ageing muscle as old mice were
observed to have increased rates of apoptosis of skeletal mus-
cle compared to young [63]. Treatment of old mice with tes-
tosterone reduced apoptotic rate to similar levels of young
mice while also regenerating myofiber size [63]. Myostatin,
an endogenous inhibitor of muscle growth through negative
regulation of satellite cell proliferation and differentiation, was
also shown to be downregulated following testosterone treat-
ment in old mice, further highlighting its potential anti-
catabolic effect [63, 64] (Fig. 1). However, the specific anti-
catabolic effects of AAS use may only be beneficial in popu-
lations with abnormally low levels of testosterone such as
ageing, as it remains to be confirmed in healthy adults with
normal testosterone level.

3.4 Resulting effect on muscle mass and/or
performance

The enhanced anabolic and reduced catabolic signalling high-
lights the benefits of AAS use for enhanced muscle growth
yet, it wasn’t until the mid-90 s that it was confirmed to result
in improved athletic performance [21]. In 1996, Bhasin et al..
performed the first controlled experiment on the effects of
testosterone enanthate (TestE) on muscle mass and strength
inmales (N = 40, 19–40 years) [21]. Energy and protein intake
were match controlled and participants were randomly
assigned to one of four groups (no exercise with or without
TestE and exercise with or without TestE). Similar supervised
training programmes were followed, and TestE groups
injected 600 mg per week of TestE intramuscularly for 10
weeks. Muscle thickness and strength showed significant
(P < 0.05) improvements in the TestE alone and exercise
alone; however, the combination of TestE and exercise had a
significant (P< 0.001) additive effect [21]. The enhanced ef-
fect of combining AAS and resistance exercise on muscle
hypertrophy and strength is most likely due to upregulation
of AR activation and enhanced mTORc1 signalling as
discussed above [56]. It was later reported that there is a
dose-response relationship (25–600 mg p/wk) of AAS with
body composition and muscle performance (Fig. 2) [65].
Furthermore, supraphysiological doses of AAS (200–

300 mg p/wk) significantly increased cycle performance com-
pared to placebo-controlled participants following a 6-week
resistance exercise programme [66]. Self-reported AAS use
suggests that the enhanced effects on muscle mass and
strength continue to be elevated with long term use (>
5 years) compared to non-users [67].

In physically active females (mean age 24 years old), 10
weeks of testosterone cream treatment (70 mg/wk) resulted in
a significant (P < 0.001) moderate increase in testosterone
levels (0.9 to 4.3 nmol/L). This increase in testosterone levels
resulted in significantly (P < 0.05) improved lean mass com-
pared to a placebo-controlled group but no improvement in
muscle strength was detected [68]. Although 10 weeks may
not be long enough to increase muscle strength, higher doses
of AAS (up to 600 mg per week) may show greater improve-
ments due to the dose-response relationship of AAS and mus-
cular improvements, however, data are limited in females
[65]. Furthermore, female athletes with higher endogenous
testosterone levels have an increase in athletic performance
in 400m, 400m hurdles, 800 m, hammer throw and pole vault
by 2–5% [69]. A recent systematic review and meta-analysis
on the effects of AAS on healthy exercising adults of all ages
showed that AAS use with exercise improved strength by
52% along with improved body composition vs. non-users
[70]. Although data reported were highly variable, ranging
in quality and lacking female representation, the evidence of
translating the enhanced anabolic signalling into increased
muscle mass and performance is substantial. Due to this,
AAS have been viewed as a possible strategy in reducing
the age-related decline in muscle mass and function (termed
sarcopenia) in testosterone deficient older individuals [71].
Although resistance exercise has shown to reduce the severity
of sarcopenia [72, 73], serum testosterone levels decline with
age in males which may lead to testosterone deficiency and
attribute to sarcopenia and frailty; therefore, low dose testos-
terone supplementation may attenuate this decline and even
improvemuscle mass and function [74]. Long term (> 3 years)
TRT (~ 75 mg daily to achieve normal total testosterone
levels) in older (> 60 years) men resulted in improvements
in muscle strength, power and lean body mass compared to

Fig. 2 The dose-response effect of testosterone on change in fat-free mass
(FFM) and leg press strength after 20 weeks in combination with a resis-
tance exercise protocol (redrawn from Bhasin et al.) [65]
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a placebo-controlled group [75]. Additionally, the testosterone
trials involved 7 coordinated placebo-controlled trials with the
aim of increasing deficient testosterone levels to normal levels
in 788 males aged ≥ 65 years old with transdermal TRT for
one year [76]. TRT resulted in improving 6-minute walking
distance in addition to increasing sexual function, mood and
bone mineral density [77].

Nonetheless, TRT is only recommended for individuals
who exhibit symptoms of testosterone deficiency (reduced
libido, gynecomastia, depression, low bone mineral density,
decreased energy, low muscle mass/strength and poor cardio-
vascular health profile) and low testosterone serum levels (<
12 nmol/l) [78, 79]. The risks associated with TRT include
infertility (in young), cardiovascular disease and prostate can-
cer and therefore, should be assessed on a case by case base by
a clinician [79, 80]. It has also been reported that an important
motivation to take AAS was to “slow the ageing process” in
older males, which may exhibit greater health risks compared
to clinically prescribed TRT [81].

In summary, chronic AAS use increases skeletal muscle
anabolism, which results in skeletal muscle hypertrophy, im-
proved function and body composition via genomic, non-
genomic and anti-catabolic signall ing pathways.
Nevertheless, the use of AAS has negative consequences on
overall metabolic health through altered lipid metabolism and
therefore an increase in CVD risk. With CVD being the num-
ber one cause of deaths globally, the potential clinical benefits
of AAS use on skeletal muscle are far outweighed by the
negative outcomes on cardiovascular health [31].

4 Impact on metabolic health

4.1 Lipid metabolism

Dyslipidaemia is associated with an increased CVD risk and is
underpinned by high levels of triglycerides > 150 mg/dL,
LDL-C > 116 mg/dL and/or low levels of HDL-C < 40 mg/
dL in males and < 50 mg/dL in females [82, 83]. Although
only triglycerides and HDL-C are considered components of
MetS, sdLDL-C is considered an additional element to this
disease [30]. LDL can be separated into 4 groups: large and
buoyant (lbLDL), intermediate size and density (idLDL),
small and dense (sdLDL) and very small and dense
(vsdLDL) [84]. High circulating particles of sdLDL and
vsdLDL indicate a greater risk of CVD events compared to
total LDL alone [84, 85]. Cholesterol is primarily synthesized
in the liver and circulates around the body as very-low-density
lipoprotein (VLDL) (rich in TG) of which apolipoprotein
B100 (ApoB) is the major apolipoprotein (Fig. 3) [86].
Upon interaction with lipases at various tissues, the VLDL
containing TG are hydrolysed, and free fatty acids are released
for energy or subsequent storage as adipose tissue [87]. The

remaining lipoprotein is now cholesterol-rich, TG poor LDL
(or LDL-C). This LDL will bind to the hepatic LDL receptor
to increase LDL-C clearance [87]. With dysregulated metab-
olism, as observed in MetS, there is an increase in circulating
sdLDLwhich, has a lower affinity for the LDL receptor, there-
fore, having a reduced clearance rate, subsequently increasing
circulating levels and CVD risk [88]. The sdLDL can also
penetrate the arterial wall easier compared to lbLDL due to
its small size increasing the risk of trapping ApoB depositing
atherogenic cholesterol and increasing the risk of a CVD event
[89]. High-density lipoprotein (HDL), particularly subfraction
HDL2 transports cholesterol away from peripheral tissue, in-
cluding arterial lesions, to the liver to be excreted, through a
process of reverse cholesterol transport, thereby reducing
CVD risk [90, 91]. HDL of which apolipoprotein A1
(ApoA1) is the major apolipoprotein, also has an anti-
inflammatory and antioxidant effect on the vascular system
further reducing the potential of CVD [92]. Use of AAS has
shown a reduction in HDL-C of ≥ 70% and increased LDL-C
levels of > 20% [33]. Testosterone has been reported to sig-
nificantly decrease HDL-C, although with differential dose
and time responses. Increasing doses of Test E for 20 weeks
in resistance-trained males has been reported to have an in-
verse dose-response relationship with HDL-C and ApoA1 but
only 600 mg/wk was significantly (P < 0.001) different to
baseline levels [93]. However, in contrast, 150 mg/wk for 2
weeks and a 300 mg dose of testosterone cypionate on week 3
resulted in the largest decrease in HDL-C but no further de-
crease was observed with 600 mg/wk for a further 4 weeks
[94]. Furthermore, 3 weeks of 600 mg/wk Test E administra-
tion in inactive ageing males resulted in significant decreases
in HDL-C, particularly HDL2 [95]. Although 200 mg/wk of
Test E in resistance training males showed significant de-
creases in HDL-C after 6 weeks, no effect was observed on
HDL2 [96]. In healthy males, 200 mg/wk of Test E adminis-
t ra t ion for 12 months had dramat ic s ign i f ican t
(mean:1.15 mmol/L to 0.09 mmol/L, P < 0.05) decrease in
fasting HDL-C levels. Interestingly, neither study observed
significant deleterious changes in LDL-C or TG levels in fact,
Thompson et al. (1989) reported a significant (P < 0.05) de-
crease in LDL-C.

Nandrolone administration has reported contrasting effects
on lipid metabolism. HDL-C has been reported to significant-
ly decrease after a 200 mg starting dose of nandrolone and a
further 100 mg/wk for a total of 8 weeks in male bodybuilders
[97]. Although in a similar design and population, 200 mg/wk
of nandrolone for 8 weeks resulted in no significant change in
HDL-C [98]. In healthy adults, 100 mg/wk for 6 weeks result-
ed in no change in HDL-C [99]. No effect was observed on
LDL-C, TGs, Apo A1 or Apo B levels in the above studies
[97–99]. Nandrolone administration (200 mg/wk) for 6
months in ageing males undergoing haemodialysis resulted
in significantly reduced HDL-C and increased apo B levels
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but had no effect on TG orApo A1. [100]. In post-menopausal
women, 50 mg/wk of nandrolone for 3 weeks significantly
decreased HDL-C and Apo A1 levels [101]. In male body-
builders, 42 mg/wk of oral stanozolol administration has
shown to significantly reduce HDL-C, ApoA1 and TGs after
6 weeks while also increasing LDL-C [96]. In healthy males,
one intramuscular injection of 50 mg of stanozolol resulted in
a significant reduction and increase in HDL-C and LDL-C
levels respectively 28 days later [102]. Both returned to base-
line levels after 56 days [102]. Similar results have been

observed in postmenopausal females with osteoporosis, as
42 mg/wk of oral stanozolol resulted in significant reductions
in HDL-C and ApoA1 levels after 2 weeks and was main-
tained until the end of the treatment at 6 weeks along with
an increase in LDL-C levels [103]. No change was observed
in TG levels [103].

Differences in study designs, populations and lack of die-
tary control in some studies has resulted in differing responses
in lipid metabolism with AAS administration. Nonetheless,
increasing doses of testosterone administration has a large

Fig. 3 Normal and AAS-influenced lipoprotein metabolism. During nor-
mal lipoprotein metabolism, intestinally produced chylomicrons carrying
dietary lipids are hydrolysed by lipoprotein lipase (LPL). FFA are liber-
ated and taken up by the liver, muscle and adipose tissue. Resulting
chylomicron remnants are taken up by the liver via low-density lipopro-
tein receptor (LDL-R) and the LDL receptor-related protein (LRP).
Meanwhile, hepatically produced VLDL transport cholesterol esters
(CE) and TG through blood vessels, during which they undergo hydro-
lysis, releasing FFA which are taken up by peripheral tissues. This loss of
TG means VLDL particles decrease in size (and therefore density) and
become cholesterol-enriched and known as idLDL. Due to the action of
HGTL, IDL particles become even smaller and known as LDL. LDL
particles have an increased propensity to deposit cholesterol in peripheral

tissues; however, they primarily transport cholesterol to the liver, where
they are taken up by the LDL-R. The intestine also produces precursors
which contribute towards the production of HDL. Small HDL3 particles
acquire CE and TG and form larger HDL2 particles which, with the
assistance of lecithin–cholesterol acyltransferase (LCAT), subsequently
exchange CE for even more TG with VLDL particles and chylomicrons,
before travelling to the liver where they are taken up by scavenger recep-
tor B1 (SR-B1) or LDL-R. During AAS-influenced lipoprotein metabo-
lism HGTL is upregulated, resulting in a preponderance of more athero-
genic small, dense LDL III and IV particles, as opposed the larger and
more buoyant LDL I and II particles found in normal lipoprotein metab-
olism. There is also a severe decrease in the number of HDL 2 and 3
particles overall, which are generally regarded as being atheroprotective.
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negative impact on HDL-C with no adverse effect on other
lipid markers. Although inconsistent, the negative effects of
nandrolone administration are primarily observed on HDL-C
levels, however, nandrolone does appear to consistently re-
duce lipoprotein(a) (Lp (a)) levels [98, 100, 101], an indepen-
dent risk factor of CVD [104, 105], yet further research is
warranted on the potential benefits of nandrolone, if any. In
contrast, stanozolol administration may have a greater delete-
rious effect on lipid metabolism as it has shown to negatively
affect LDL-C and HDL-C levels.

Individuals who use AAS for appearance and performance
reasons typically do not use one type of AAS but rather ad-
minister a polypharmacy regime which may lead to different
implications on lipid metabolism.

Early studies reported that after 8 weeks of AAS
administration, HDL-C and LDL-C significantly
(P < 0.01) decreased by 49% and increased by 31% re-
spectively [106]. Similarly, this suppression on HDL-C,
particularly HDL2, is maintained after 14 weeks of self-
administration [98]. However, Bonetti et al.. only re-
ported a significant (P < 0.05) decrease in HDL-C after
18 months [107] . The method of us ing se l f -
administrating participants results in a variety of AAS
dosages, types and cycles being used which may lead to
different health outcomes thereby making comparisons
between studies difficult. Critically, however, although
they may be less controlled, they may be more repre-
sentative of the population compared to randomised
controlled trials as it replicates the AAS and AAS-
related polysubstance methods used by this unique pop-
ulation. A more recent cross-sectional study reported
similar results in which current users of AAS, displayed
45% lower HDL-C, and 26% and 35% higher LDL-C
and TG levels vs. non-AAS using controls (all P < 0.01)
[37]. A case study of prolonged AAS use in a 35-year-
old male demonstrated an almost 100% decrease in
HDL-C and a 100% increase in LDL-C during 5 years
of AAS cycling [108]. Similarly, in females, HDL-C is
shown to be significantly depressed with chronic AAS
use compared to healthy controls. While AAS use may
also exhibit an increase in plasma TG, data remains
equivocal as this was only reported by Moffatt et al.
[109–111]. In addition to small sample sizes in female
studies, the variety in AAS use, type, dose and frequen-
cy might explain the differences in results. Although,
the lipoprotein profile is undoubtedly impacted by
chronic AAS use and therefore highlights the increased
risk of future CVD incidence, due to the uncontrolled
self-administration of AAS and other anabolic sub-
stances the severity in which it impacts health can be
variable. Conversely, AAS polypharmacy is also report-
ed to improve Lp (a) levels, similar to the effect of

n and ro l one adm in i s t r a t i on a l one [ 98 ] . S e l f -
administration of a variety of AAS resulted in a signif-
icant (P < 0.05) decrease in Lp (a) after 8 weeks and
was maintained after 14 weeks [98]. However,
24 months of AAS use did not result in a significant
decrease (mean ± SD; 179 ± 117 vs. 137 ± 80 mg/dL,
P > 0.05) in Lp (a) [107]. Although non-significant, it
may be clinically significant as Lp(a) levels > 180 mg/
dL are considered high risk of CVD [82]. The implica-
t ions of AAS induced improvements in Lp(a)
concerning CVD risk are unclear and warrant further
investigation. Use of AAS also doesn’t appear to nega-
tively impact TG levels in males as only one cross-
sectional study reported significantly (P < 0.01) higher
TGs (although not clinically significant < 1.7 mmol/L)
with AAS use, yet self-administration studies showed
no significant negative effect [98, 106, 107]. The mech-
anisms by which AAS negatively impact lipid metabo-
lism are not fully understood, but the upregulated activ-
ity of hepatic triglyceride lipase (HTGL) has been im-
plicated (Fig. 3) [95, 96]. Phospholipase activity of
HTGL catabolises HDL-C and its removal from the
plasma and conversion of idLDL to sdLDL [42, 112].
Research of the impact of AAS use on LDL density are
limited with most focusing on total LDL-C however,
one randomised controlled trial investigated the short-
term (3 weeks) effects of TestE administration on cho-
lesterol associated with LDL density by density gradient
ultracentrifugation (DGUC) [95]. In older eugonadal
males (mean 71 years old), 600 mg of TestE increased
sdLDL-C indicating an increase in CVD risk [85, 95].
Unpublished data, by the authors, showed no significant
(P > 0.05) difference in a cross-section of AAS using
males and healthy controls in sdLDL-C. Further re-
search is warranted on the effect of AAS use on LDL
density and its associated CVD risk. The type of AAS
and route of administration also has an impact on the
effect of HTGL activity and lipoprotein levels. Orally
administered stanozolol showed a significant (P < 0.05)
increase in HTGL activity, leading to a significant
(P < 0.05) increase and decrease in LDL-C and HDL2-
C respectively whereas injected TestE showed no signif-
icant (P > 0.05) change in HDL2-C after 6 weeks, but a
significant (P < 0.05) decrease in LDL-C [96]. The
slower liver clearance rate of orally administered AAS
compared to injected AAS could have a greater detri-
mental effect on metabolic health and also increase the
risk of hepatoxicity [113–115]. Interestingly, the effect
of AAS on the lipoprotein profile is reversible, as for-
mer users of AAS with long term discontinuation of at
least one year, are reported to have healthy lipoprotein
levels [37, 116]. The reversible effects may be seen as
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early as 10 weeks of AAS cessation as shown by a case
study in a 35-year-old male [108].

4.2 Glucose metabolism and VAT

Key features associated with MetS are IR and VAT [30].
IR is the precursor of the development of Type 2 diabetes
(T2D), with lipid accumulation and inflammation being
implicated as the primary triggers [117–119]. IR can be
measured by the hyperinsulinemic-euglycemic clamp with
IR being defined as a glucose disposal rate below
5.6 mg/kgFFM + 17.7/min [120]. Skeletal muscle is the
largest tissue for insulin-induced glucose uptake [121].
Insulin binds to the insulin receptor on the cell membrane
causing its tyrosine phosphorylation of the receptor
(Fig. 1). The now activated insulin receptor causes phos-
phorylation of insulin receptor substrate-1 (IRS-1) on tyro-
sine residues, which allows the recruitment of the Type IA
phosphatidylinositol 3’ kinase (PI3K). PI3K catalyses the
formation of PI(4,5)-bisphosphate to PI(3,4,5)-trisphos-
phate thus recruiting 3’ phosphoinositide-dependent ki-
nase-1 (PDK-1). PDK-1 phosphorylates protein kinase B
(PKB) (also known as Akt) and the atypical protein kinase
C (PKC) [118, 119, 122, 123]. Akt phosphorylates 160-
kDa substrate of Akt (AS160) which stimulates transloca-
tion of GLUT4 storage vesicles to fuse at the cell surface to
release GLUT4 into the plasma membrane allowing cellu-
lar glucose uptake [124, 125]. However, within IR tissue
this signalling cascade is diminished possibly due to in-
creased circulating fatty acids, inflammatory cytokines
and/or reactive oxygen species (ROS) which result in
serine/threonine phosphorylation of IRS-1. This reduces
Akt activity and glucose uptake and negatively affects oth-
er downstream signalling such as protein synthesis and
apoptosis (Fig. 1) [119, 122, 126]. Acute testosterone ad-
ministration has shown to activate the PI3K/Akt pathway
and GLUT4 translocation in vitro indicating an increase in
cellular glucose uptake [54]. However, supraphysiological
levels of testosterone and nandrolone have been reported to
significantly (P < 0.05) diminish the response of insulin-
induced glucose uptake in rodents [127, 128]. Rodents also
showed impairments in gluconeogenesis, most likely due
to the high fasting insulin levels [128]. In contrast, increas-
ing doses of testosterone (25–600 mg/wk) for 20 weeks
had no significant effect on insulin sensitivity in
resistance-trained males [93]. Additionally, in a double-
blind crossover design, 300 mg/wk of Test E and nandro-
lone administration for 6 weeks did not affect glucose tol-
erance or fasting insulin levels in healthy males [129].
Although research is lacking, females who use AAS for
performance are reported to display reduced insulin sensi-
tivity [130]. In healthy females, up to 12 days of
methyltestosterone dosing (5 mg), showed a significant

(P < 0.05) reduction in whole-body insulin sensitivity
[130]. Similarly, in postmenopausal females, 120 mg of
testosterone undecanoate per week resulted in a significant
decrease in insulin sensitivity [131]. Hyperandrogenism in
females is a significant risk factor in developing polycystic
ovary syndrome (PCOS) and PCOS increases the risk of
developing MetS although the risk of developing CVD
is currently unclear [132–135]. Interestingly, muscle
strength determined by bench press and handgrip test
was shown to be significantly (P < 0.05) higher in fe-
males with PCOS compared to healthy controls, further
indicating that hyperandrogenism may be implicated in
PCOS and MetS [136].

Although individual AAS use may not result in reduced
insulin sensitivity in males [93, 129], limited research sug-
gests chronic AAS polysubstance use may be detrimental to
glucose metabolism as shown by Cohen et al. [137].
Powerlifting steroid users (PS) were shown to have similar
fasting glucose levels as non-using powerlifters (NP) and sed-
entary participants; however, they had significantly (P < 0.05)
higher fasting insulin levels that were similar to those ob-
served in obese participants [137]. An oral glucose tolerance
test (OGTT) also revealed the PS to have a significant
(P < 0.05) 2-fold increase in post-glucose glycaemia com-
pared to NP, which was a similar increase to the obese group.
Post-glucose insulinaemia in the PS group was also signifi-
cantly (P < 0.01) higher compared to all groups, with it being
at least 2-fold higher compared to obese participants [137].
The authors only report participants use of AAS although
insulin is commonly used for its anabolic potential and
may have also been used by participants which may
have impacted the results. More recently in males, an
OGTT between healthy controls, steroid-using body-
builders and former steroid-using bodybuilders (mean
discontinuation of 2.5 years) revealed that current and
former AAS users had significantly (P < 0.05) impaired
glucose tolerance compared to healthy controls [37].
Reduced insulin sensitivity in former AAS users, was
associated with higher % body fat, which may be due
to reduced testosterone levels compared to healthy con-
trols [37, 138].

Chronic AAS use suppresses the hypothalamic-
pituitary-testicular (HPT) axis resulting in reduced endog-
enous testosterone production [39]. Low testosterone
levels reduce insulin sensitivity and increases risk of de-
veloping MetS and CVD [139]. Interestingly, although
current users of AAS had significantly (P < 0.001) lower
% body fat compared to healthy controls and former users,
they had significantly (P < 0.05) greater levels of VAT and
reduced adiponectin and leptin levels which are all inde-
pendent predictors of IR, T2D and MetS [37, 140–143].

However, a randomised controlled trial of the dose-
response of TestE for 20 weeks showed significant
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(P < 0.05) decreases in VAT with higher doses, indicating
supraphysiological doses do not increase VAT [144].
Although cross-sectional studies cannot determine causation,
it may be more representative of long term AAS and AAS-
associated polysubstance use in this case. Individuals typically
use a range of AAS types and other complementary drugs;
doses, cycles, methods of administration and for years rather
than weeks or one AAS which may explain the differences in
results.

Accumulation of VAT is an important indicator of glu-
cose tolerance, MetS and CVD risk, much more so than
subcutaneous adipose tissue (SAT) [143, 145, 146]. In
healthy adipose tissue, when surplus energy is consumed,
the energy is stored in SAT. However, in unhealthy or IR
adipose tissue, the excess energy will be deposited in
VAT and a variety of organs including muscle tissue
[147, 148]. The lipolytic rate of VAT is increased com-
pared to SAT due to the increased effect of pro-lipolytic
catecholamines and decreased effect of anti-lipolytic insu-
lin. This increases the flux of FFA to the liver, which may
further increase hepatic IR [146]. Though, with AAS use,
VAT was associated with lower lipolysis rates as deter-
mined by lower levels of plasma glycerol [37]. The un-
usual lower lipolytic activity may be attributable to re-
duced activity of catecholamines due to AAS compounds
such as nandrolone downregulating β3-adrenoceptor ex-
pression [149]. In addition to being involved in lipid stor-
age and mobilisation, adipocytes are also an endocrine tissue,
releasing cytokines and adipokines. An increase in VAT leads
to a pro-inflammatory state as shown by an increase in C-
reactive protein (CRP) and tumour necrosis factor-alpha
(TNF-a) which may further increase IR [150, 151]. As skeletal
muscle is the largest tissue for glucose disposal, increases in
muscle mass should improve insulin sensitivity; paradoxically,
these results indicate that chronic AAS may cause tissue IR.
This may be due to an imbalance of regulatory adipokines and
cytokines from increased VAT levels and circulating lipids
leading to a decreased/delayed stimulus of the PI3K/Akt signal-
ling cascade in response to glucose ingestion, as also observed
in T2D individuals [119]. This dysregulated metabolism leads
to a continuous cycle of VAT and IR that potentiate each other.
Furthermore, nutrient overload is reported to increase IR via
mTORc1 dependent pathway. Chronic activation of S6K1 me-
diated by mTORc1, inflicts serine phosphorylation of IRS1
leading to reduced insulin sensitivity [152, 153]. For example,
chronic high glucose concentrations in murine skeletal muscle
cells (C2C12 myoblasts) induce IR and reduced Akt stimula-
tion; however, inhibition of mTOR/S6K1 signalling with
rapamycin restored insulin induced Akt stimulation [154]. It
may be possible that chronic AAS use, leading to hyperactiva-
tion of mTORc1/S6K1 signalling may cause IR (Fig. 4).
Estradiol has shown to be significantly (P < 0.01) higher with
AAS use compared to healthy controls and may also be a cause

of IR in this population. The conversion of testosterone to es-
tradiol resulting in a decrease in the testosterone to estradiol
ratio has been implicated in the development of MetS in older
males [155]. Additionally, estradiol is reported to bind to insu-
lin and the insulin receptor further highlighting its potential role
in inducing IR (Fig. 4) [156].

Research is currently lacking on the prevalence of in-
creased levels of VAT with AAS use, most likely due to
AAS typically reducing fat and to its dysregulation of insulin
sensitivity. This field of research warrants further
investigation.

4.3 Hypertension

Hypertension is highly associated with MetS and CVD risk
[30, 157]. Hypertension is caused by an increase in vascu-
lar stiffness due to degenerative changes in the extracellu-
lar matrix (ECM) derived from an imbalance of arterial
scaffolding proteins such as elastin and collagen [158].
Chronic low-grade inflammation, underpinned by cyto-
kines such as CRP, TNF-a and interleukin-6, induced by
ageing, T2D or an atherogenic lipid profile results in en-
dothelial and smooth muscle cell proliferation, hypertro-
phy, remodelling and apoptosis [159, 160]. This vascular
proinflammatory state characterised by angiotensin II re-
sults in upregulation of matrix metalloproteinases (MMPs)
leading to degradation of elastin fibres and increased col-
lagen deposition resulting in ECM remodelling and arterial
stiffening [161, 162]. Furthermore, metabolic disorders
such as T2D can cause disruption of vasodilation (nitric
oxide) and vasoconstriction (endothelin) regulators
resulting in hypertension [160].

Hypertension, as a result of chronic AAS use, is under
debate due to conflicting data [33]. Although further research
is required, there is some evidence to suggest that chronic
AAS use in males may lead to increased BP [33, 163–165].
By contrast, early studies suggested that AAS use did not have
a detrimental effect on BP even with 24-hour monitoring [97,
106, 166]. Short-term (< 8 weeks) testosterone (200 mg/wk)
and nandrolone (100–200 mg/wk) administration resulted in
no change in systolic or diastolic BP [97, 167] however, long
term-controlled studies are lacking.

Lenders et al., reported AAS polysubstance use to have a
significant (P < 0.05) increase in systolic BP (SBP) after an
average AAS use of 5 months although the increase was not
clinically relevant (118 ± 2.2 to 121 ± 2.4 mmHg) [106].
Nevertheless, more recent studies have shown chronic AAS
polysubstance use to have significantly (P < 0.05) higher SBP
compared to healthy controls and former AAS users [163,
165]. These results may be clinically relevant as mean SBP
was reported to be 132 mmHg and 138 mmHg in current AAS
users [163, 165]. Current and former AAS users were also
reported to have significantly (P < 0.05) increased aortic
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stiffness. These higher levels in aortic stiffness and SBP were
associated with the significantly (P < 0.05) lower mid-
regional pro-atrial natriuretic peptide (MR-proANP) in AAS
users [163]. ANPs regulate vasodilation, reduce renin-
angiotensin-aldosterone system activity and sympathetic
nerve activity; yet, high levels of MR-proANP are associated
with hypertension and incidence of mortality [168, 169]. The
conflicting results regarding hypertension with AAS use may
be partly due to differences in study designs. Repeated mea-
sure designs as implemented in the early studies are more
indicative of causal effects compared to the most recent
cross-sectional studies; however, the cross-sectional studies
have larger sample sizes and potentially greater power but
only association can be conferred. The lack of control on
AAS type and quantity also makes it difficult to compare
findings. Nonetheless, chronic AAS use may have detrimental
effects on the vasculature and consequently causing hyperten-
sion and increased risk of CVD, but more long-term con-
trolled studies are required.

5 Reducing CVD risk

In addition to increased LDL-C, research indicates that AAS
users may develop MetS due to having low HDL-C, IR, pos-
sible hypertension and increased VAT. Considering this, they
share a similar metabolic phenotype to sedentary/obese pop-
ulations and have an increased risk of CVD incidence [30, 32,
33, 37, 98]. As MetS is typically associated with obese/
sedentary populations, treatments include inducing weight
loss through improving lifestyle behaviours (exercise and nu-
trition) and bariatric surgery or pharmaceutical medication to

alter negative metabolic function [170]. However, these inter-
ventions would not apply to AAS users due to their already
low body fat and high physical activity [170].

To reduce MetS and CVD risk, cessation of AAS use is
highly recommended as it has been shown to at least improve
the lipoprotein profile, yet may have lasting effects on insulin
sensitivity, BP and VAT levels [37, 106, 108, 163].
Unfortunately, total cessation can lead to withdrawal symptoms
such as hypogonadism in males, infertility and depression [7,
39]. Suppression of the HPT axis results in low endogenous
testosterone production leading to decreased sexual function,
such as erectile dysfunction and reduced libido and may be de-
pendent on the dose and duration of AAS use [171]. These
symptoms promote relapse and AAS dependency and must be
treated accordingly with pharmaceutical and cognitive behaviour
therapies to help with AAS cessation and prevent relapse [172].
AASusemay also lead to gynecomastia, due to an increase in the
estrogen to testosterone ratio via an increase in aromatase activity
resulting in the conversion of testosterone to estradiol [173].
Therefore, use of estrogen receptor antagonists are typically used
in conjunction with AAS, particularly during times of AAS ces-
sation [41, 173]. On cessation of AAS, pharmaceuticals such as
hCG, aromatase inhibitors and SERMs can reduce withdrawal
symptoms although current evidence is lacking on its benefits [7,
41, 174]. Hypogonadism is also associated withMetS, therefore,
total cessation of AAS use may not improve MetS symptoms
andCVD risk [175, 176]. It may be feasible to decrease AAS use
instead of total cessation as low testosterone (40–80 mg per day)
treatment in males with hypogonadism has been shown to im-
prove MetS markers [177]. However, further clinical trials in
AAS users, who wish to stop, are required before any true treat-
ment can be recommended. Additionally, many users of AAS

Fig. 4 Potential mechanisms of
insulin resistance with chronic
anabolic steroid use. Chronic
upregulation of S6K1 via
activation of PI3K/Akt signalling
cascade by AAS may reduce in-
sulin sensitivity due to inhibition
of IRS-1 by S6K1 as seen with
nutrient overload models.
Furthermore, chronic AAS use
may lead to an increase in VAT
increasing circulating fatty acids
and/or inflammatory cytokines
causing inhibition of IRS-1 and
reducing insulin sensitivity.
Aromatisation of testosterone
may lead to increasing levels of
Estradiol causing IR by binding to
insulin and the insulin receptor.
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rely on information from websites or online forums for post-
cycle therapy which may lead to mismanagement of AAS with-
drawal symptoms [178]. It’s imperative that users of AAS seek
professional advice while it is also equally important that clini-
cians aim to help in a non-judgemental way to reduce the likeli-
hood of permanent adverse effects ofAAS use. There is currently
a lack of research on the effects of AAS withdrawal in females
although they are likely to improve their lipoprotein profile but
may also require treatment for depressive symptoms and amen-
orrhea [179–181].

6 Conclusion

CVD is the number one cause of deaths globally, with the obesity
epidemic being amajor contributor. The increasing prevalence of
AAS use, particularly in youngmales, will exacerbate the current
CVD rates. Chronic use of AAS leads to increased skeletal mus-
cle hypertrophy and improved performance by binding to the
AR. Activation of the AR by AAS leads to enhanced gene tran-
scription, second messenger signalling, and satellite cell activa-
tion leading to increased muscle protein accretion and synthesis
and possibly decreased catabolism. However, chronic AAS use
not only leads to impaired cardiac function but also MetS and
associated dysregulated metabolic health (IR, dyslipidaemia,
VAT and BP) which is more commonly related with the
sedentary/obese population. Effective management of AAS and
AAS-related polypharmacy use in the first place, together with
appropriate guidance on AAS cessation is key, both of which
may be managed by education and psychological interventions
to ultimately improve health. Therefore, further research is war-
ranted on the long-term effects of AAS use and cessation on
markers of metabolic health to provide accurate information on
the potential harms in males and females. Further research is also
required for treatments to aid AAS cessation and combat adverse
metabolic health in this population.
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