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Minimum Bayes factors are commonly used to transform two-sided P

values to lower bounds on the posterior probability of the null hypothe-

sis. Several proposals exist in the literature, but none of them depends on

the sample size. However, the evidence of a P value against a point null

hypothesis is known to depend on the sample size. In this paper we con-

sider P values in the linear model and propose new minimum Bayes factors

that depend on sample size and converge to existing bounds as the sample

size goes to infinity. It turns out that the maximal evidence of an exact two-
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sided P value increases with decreasing sample size. The effect of adjusting

minimum Bayes factors for sample size is shown in two applications.

Key Words: Evidence, F-Test, Minimum Bayes factor, P value, t-Test, Sample size

1. Introduction

A common misconception of applied researchers is the widespread belief that the P

value is the (posterior) probability of the null hypothesis, for some discussion see

e.g. Freeman (1993); Goodman (1999a); Held (2013); Greenland and Poole (2013). Of

course, this is not true and it is now well discussed in the literature that two-sided

P values overstate the evidence against the null hypothesis. This can be shown using

replication probabilities (Goodman, 1992) or using the concept of Bayes factors (Berger

and Sellke, 1987; Sellke, Bayarri, and Berger, 2001). For some recent discussion on the

use and misuse of P-values see the supplementary material of Wasserstein and Lazar

(2016).

In this article we focus on Bayes factors and consider a point null hypothesis H0:

θ = θ0 with prior probability π = Pr(H0), so Pr(H1) = 1− π is the prior probability of

the alternative hypothesis H1. The alternative hypothesis may be simple, i. e. H1 : θ =

θ1 6= θ0 or composite, usually H1 : θ 6= θ0. The Bayes factor BF transforms the prior

odds Pr(H0)/Pr(H1) to the corresponding posterior odds Pr(H0 |data)/Pr(H1 |data)

in the light of the data:

Pr(H0 |data)

Pr(H1 |data)
= BF × Pr(H0)

Pr(H1)
. (1)

In (1), the Bayes factor

BF =
f (data | H0)

f (data | H1)
(2)

is the ratio of the likelihood f (data | H0) under the null hypothesis H0 and the likeli-
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hood (or marginal likelihood for composite alternatives) f (data | H1) under the alter-

native hypothesis H1 (Kass and Raftery, 1995). Thus, the Bayes factor provides a direct

quantitative measure of whether the data have increased or decreased the odds of H0.

The Bayes factor (or its logarithm) is therefore often referred to as the “strength of evi-

dence” or “weight of evidence” (Bernardo and Smith, 2000). In this paper we focus on

the evidence against a point null hypothesis provided by small Bayes factors BF < 1.

To categorize such Bayes factors, we use the (admittedly somewhat arbitrary) scale

provided in Table 1, adapted from Kass and Raftery (1995) and Goodman (1999b).

[Table 1 about here.]

A P value is a quantitative measure of the degree of conflict of the data with the

null hypothesis (Goodman, 1992). A transformation of a P value to a Bayes factor is

possible, but reflects a fundamental change in interpretation from aleatory to epistemic

uncertainty. Indeed, the Bayes factor shows how the probability of the null hypothesis

changes after the data (with associated P value) have been observed.

It has long been recognized that for a given P value, Bayes factors also depend

on the sample size (Spiegelhalter, Abrams, and Myles, 2004; Wagenmakers, 2007). For

example, if the alternative hypothesis is simple, the evidence of a given P value against

the null hypothesis has been shown to increase with decreasing sample size (Royall,

1986). For a composite alternative hypothesis the Bayes factor will depend on the prior

on θ and there is in general no monotonic relationship between the Bayes factor and

sample size for a given P value (Spiegelhalter et al., 2004, Section 4.4.3). However, it is

possible to compute lower bounds on the Bayes factor, so-called minimum Bayes factors

(Edwards, Lindman, and Savage, 1963; Berger and Sellke, 1987; Sellke et al., 2001).

They quantify the maximal evidence of a P value against the null hypothesis within a

certain class of prior distributions for θ, but all the minimum Bayes factors suggested

in the literature (see the above references for details) do not depend on the sample size

- in the sense that a fixed P value is transformed to the same minimum Bayes factor
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no matter what the underlying sample size is.

In this paper we propose adjusted minimum Bayes factors that depend on sample

size. In Section 2 we first show that two commonly used minimum Bayes factors are

special cases of so-called test-based Bayes factors (TBFs). Using results on minimum

Bayes factors in the linear model, we derive in Section 3 adjusted minimum Bayes

factors that do incorporate the sample size n. It turns out that for exact (two-sided)

P values, these sample size adjusted minimum Bayes factors are monotonic functions

of the sample size that converge to the traditional minimum Bayes factors for large

sample size. Interestingly, the sample size adjusted minimum Bayes factors decrease

with decreasing sample size, which means that the maximal evidence of an exact

P value increases with decreasing sample size. The effect of sample size adjusted

minimum Bayes factors is shown in Section 4 in two applications. We close with some

discussion in Section 5.

2. Methodology

2.1. Minimum Bayes factors

Consider a point null hypothesis H0: θ = θ0 and the composite alternative hypothesis

H1: θ 6= θ0, where a prior distribution f (θ | H1) has to be specified to compute the

marginal likelihood

f (data | H1) =
∫

f (data | θ, H1) f (θ | H1) dθ.

The Bayes factor (2) will thus depend on the prior f (θ | H1). To eliminate this depen-

dency on the prior, an upper bound on f (data | H1) is often derived within a certain

class of priors, which can be transformed to a lower bound on the Bayes factor.

For example, suppose a two-sided P value p has been computed based on a normally
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distributed observation x with known mean θ = θ0 (the null hypothesis H0) and

known variance σ2. For the class of normal priors on θ under H1, centered around θ0,

the corresponding minimum Bayes factor is

minBF(p) =











√
z exp(−z/2)

√
e for z = z(p) > 1

1 otherwise,
(3)

see Edwards et al. (1963); Berger and Sellke (1987). Here z = z(p) = t2 = Qχ2(1)(1 −

p) is the squared normal test statistic t = (x − θ0)/σ, Qχ2(d)(.) denotes the quantile

function of the χ2-distribution with d degrees of freedom and e is Euler’s number. The

original derivation of (3) is described in Appendix A. Note that the setting considered

here is not as restrictive as it seems, since many statistical test procedures are often

based on Gaussian approximations (Goodman, 1999b). For example, x could represent

a mean outcome, a difference between means, or a proportion, say. Of course, the class

of all normal prior distributions with mean θ0 is perhaps too restrictive, so Berger and

Sellke (1987) have also derived minimum Bayes factors in more general classes of

prior distributions. The most general case is the class of all possible prior distributions

(Edwards et al., 1963), on which we comment in Section 5.

Another popular calibration, see for example Bayarri, Benjamin, Berger, and Sellke

(2016), directly links a two-sided P value p to a lower bound on the Bayes factor, as

first proposed in Vovk (1993, Section 9):

minBF(p) =











−e p log p for p < 1/e

1 otherwise.
(4)

Sellke et al. (2001) describe a simple derivation of (4). Briefly, under the null hypoth-

esis H0, p is known to be uniformly distributed. Under the alternative hypothesis

small P values are expected, so a class of beta prior distributions with monotonically
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decreasing density functions is considered for p. The minimum Bayes factor (4) can

then be derived as outlined in Appendix B.

2.2. Test-based Bayes factors

The above minimum Bayes factors (3) and (4) are based on a test statistic (z) (or a P

value p) and they are special cases of so-called (minimum) test-based Bayes factors

(TBFs) (Johnson, 2005, 2008). Suppose a P value p has been obtained from a likelihood

ratio test statistic (or deviance) z = zd(p) = Qχ2(d)(1 − p) with d degrees of freedom.

Under certain assumptions, Johnson (2008) has shown that the minimum test-based

Bayes factor (minTBF) for such likelihood ratio test statistics is

minTBFd(p) = min

{

( z

d

)d/2
exp

(

− z − d

2

)

, 1

}

. (5)

It is easy to see that for d = 1, (5) reduces to (3), i. e. minTBF1(p) =
√

z exp(−z/2)
√

e

for z = z1(p) > 1. Moreover, Held, Sabanés Bové, and Gravestock (2015, Appendix B)

show that for d = 2, (5) is equivalent to (4), so minTBF2(p) = −e p log p for p < 1/e.

However, the minimum test-based Bayes factor (5) does not depend on the sample

size n. Indeed, derivation of (5) is based on the asymptotic distribution of the likeli-

hood ratio test statistic, so n is assumed to be large. In Section 3 we propose to replace

(5) with the corresponding minimum Bayes factors in the linear model to obtain min-

imum Bayes factors adjusted for sample size. This step is based on the fact that the

assumptions in Johnson (2008) are equivalent to the generalized g-prior (Sabanés Bové

and Held, 2011) in generalized linear models (Held et al., 2015). The generalized g-

prior reduces to the ordinary g-prior in the linear model (Copas, 1983; Zellner, 1986),

where a minimum Bayes factor is analytically available and depends on the sample

size n (Liang, Paulo, Molina, Clyde, and Berger, 2008). To make a fair transformation

of P values to minimum Bayes factors it is necessary to assume that the P value has
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been computed with the exact global F-test, which also takes sample size into account,

rather than with the approximate χ2-distribution of the deviance, which holds only

for large sample sizes. Note that the F-test is for d = 1 equivalent to the commonly

used two-sided t-test.

3. Adjusting minimum Bayes factors for sample size

Consider the standard linear model

y = α1 + Xβ + ǫ, (6)

where the response vector y is of length n, the regression coefficient vector β is of

dimension d and the errors ǫ are assumed to be independent and normally distributed

with unknown residual variance σ2. Under the g-prior for β | σ2 ∼ N(0, g σ2 (XTX)−1)

(Zellner, 1986) combined with a reference prior f (α, σ2) ∝ σ−2 for the intercept α and

the residual variance σ2, the Bayes factor of the null model (with intercept only) against

the linear model (6) has the form

BFd = (g + 1)−(n−d−1)/2
{

1 + g(1 − R2)
}(n−1)/2

, (7)

here R2 is the usual coefficient of determination (Liang et al., 2008). BFd is minimized

for ĝ = max {F − 1, 0} where

F =
R2/d

(1 − R2)/(n − d − 1)
(8)

is the usual F-statistic for testing H0: β = 0, see, e.g. Liang et al. (2008, equation (9)).

By plugging-in ĝ into (7) it then follows that the minimum Bayes factor (for n ≥ d + 2)
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is

minBFd(n) =











(n − 1)(n−1)/2
(

R2

d

)d/2 (

1−R2

n−d−1

)(n−d−1)/2
for R2

>
d

n−1

1 otherwise.
(9)

We now explain how the minimum Bayes factor (9) can be used to transform a P

value p to a minimum Bayes factor that depends on sample size n. Since (9) depends

on sample size n, a fair comparison requires to apply an exact frequentist procedure,

taking into account sample size as well. For H0: β = 0 in the linear model (6) this is

the F-test, so we transform a P value p to the corresponding F value F = Fd(p, n) =

QF(d,n−d−1)(1 − p) of the F-test, here QF(d1,d2)(.) denotes the quantile function of the

F(d1, d2)-distribution with degrees of freedom d1 and d2. The F value can then be

transformed to R2 via inversion of (8),

R2 =

(

1 +
n − d − 1

d
F−1

)−1

, (10)

and R2 is finally inserted into (9). The procedure is illustrated in Figure 1.

[Figure 1 about here.]

Consider first a P value obtained from a standard two-sample t-test (d = 1). Since

there is no analytic formula for the quantile function of the F(1, n − 2)-distribution,

there is no explicit formula for the minimum Bayes factor minBF1(p, n) as a function

of p and n. However, we can still calculate F = QF(1,n−2)(1 − p) numerically and

transform F to the minimum Bayes factor using (10) and (9).

For d = 2, an analytic formula for the quantile function of the F(2, n − 3)-distribution

is available:

F = QF(2,n−3)(1 − p) =
n − 3

2

(

p−2/(n−3) − 1
)

. (11)

A derivation of (11) is given in Appendix C. Transforming (11) to R2 via (10) yields
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R2 = 1− p2/(n−3) and inserting this into (9) gives an analytic formula for the minimum

Bayes factor as a function of the P value p and the sample size n:

minBF2(p, n) =











1
2

(

(n−1)(n−1)

(n−3)(n−3)

)1/2 (

1 − p2/(n−3)
)

p for p < ( n−1
n−3 )

−(n−3)/2

1 otherwise.
(12)

This formula can be further simplified using the Stirling approximation nn ≈ en n!/
√

2π n

applied to

(

(n − 1)n−1

(n − 3)n−3

)1/2

≈
(

e2
√

(n − 1)(n − 3)(n − 2)

)1/2

≈ e (n − 2)

to obtain

minBF2(p, n) ≈











e
2 (n − 2)

(

1 − p2/(n−3)
)

p for p < ( n−1
n−3 )

−(n−3)/2

1 otherwise.
(13)

Note that (n − 2)(1 − p2/(n−3)) ↑ −2 log(p) as n → ∞ so that - for fixed P value

p < 1/e - the approximate minimum Bayes factor (13) converges monotonically from

below to the asymptotic minimum Bayes factor (4). It is easy to check that the exact

minimum Bayes factor (12) is even slightly smaller than (13). We therefore conclude

that the “−e p log(p)” Bayes factor (4) is not necessarily “a best-case scenario for the

strength of the evidence in favor of H1 that can arise from a given p-value” (Bayarri

et al., 2016). In fact, once the sample size n is incorporated, the adjusted Bayes factor

bound (12) is always smaller than (4).

[Figure 2 about here.]

Figure 2 compares the sample size adjusted minimum Bayes factor minBFd(p, n) for

d = 1 (left) and d = 2 (right) and n = 5, 10, 20 to the asymptotic bounds (3) and (4),

respectively. The x-axis in Figure 2 gives a (two-sided) P value p from the t- (left) or
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F-test (right) for the null hypothesis H0: β = 0. Of note, not only for d = 2, but also for

d = 1 the minimum Bayes factors increase with increasing sample size. For example,

for p = 0.05 and d = 1 the minimum Bayes factor (3) is 0.47, while the finite sample

sizes minimum Bayes factors (9) are 0.44, 0.40 and 0.30 for n = 20, 10, 5. So according

to Table 1, only for n = 5, p = 0.05 from a standard t-test provides moderate evidence

against the null hypothesis, whereas the evidence is weak for n = 10 or larger. For

p = 0.05 and d = 2 the minimum Bayes factor (4) is 0.41, while both the exact (equation

(12)) and approximate (equation (13)) finite sample sizes minimum Bayes factors are

0.36, 0.31 and 0.19 for n = 20, 10, 5. Again taking the categorization from Table 1,

p = 0.05 now provides moderate evidence against H0 for n = 10 and n = 5, but only

weak evidence for n = 20 and larger.

We have also investigated the dependence of minBFd(p, n) on n for larger values of d

and have always observed the same pattern: the minimum Bayes factors for a given P

value p converge (for n → ∞) monotonically from below to the asymptotic minimum

Bayes factor (5).

4. Applications

4.1. Bayesian interpretation of P values

We revisit Table 1 in Goodman (2001), who has used the “−e p log(p)” calibration (4)

to transform the P values p = 0.1, 0.05, 0.03, 0.01 and 0.001 to minimum Bayes factors

and eventually to lower bounds on the posterior probability of the null hypothesis.

From the results presented in Section 3 it is clear that these bounds are valid for large

n, but will be too large for small sample size. To illustrate the effect of a small sample

size, we therefore extend Table 1 in Goodman (2001) using the sample size adjusted

Bayes factors (12) with sample size n equal to 20 or 10.

[Table 2 about here.]
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Note that we have added a P value of 0.005 to the original Table in Goodman (2001).

This is the significance threshold recently proposed by Johnson (2013) instead of the

conventional 0.05 threshold. Applying the categories from Table 1 to Table 2, p = 0.005

represents substantial evidence against H0 with minimum Bayes factor 1/17 (0.06) for

n = 20 and 1/25 (0.04) for n = 10. This correspond to a decrease in the probability of

the null hypothesis from 75% a priori to no less than 15% (for n = 20) and no less than

11% (for n = 10) a posteriori, respectively. If n is large, then the minimum Bayes factor

is 1/14 (0.07) and the decrease is from 75% to no less than 18%.

4.2. Reverse-Bayes analysis

In Bayesian inference, posterior information is obtained by combining prior informa-

tion and observed data. Given a certain posterior and the data, one can back-calculate

the prior that would yield this posterior. Such a reasoning is called a "reverse-Bayes

analysis". Several authors have recently suggested to use a reverse-Bayes analysis to

check the plausibility of scientific findings (Matthews, 2001; Greenland, 2006, 2011).

Held (2013, Section 3) applies a reverse-Bayes analysis to derive an upper bound on

the prior probability of the null hypothesis assuming the posterior probability of the

null hypothesis equals the P value. He shows that the common misinterpretation of

the P value as (posterior) probability of the null hypothesis implies strong and often

unrealistic assumptions on the prior probability of H0.

Held (2013) uses different calibration schemes for converting P values to minimum

Bayes factors, including (3) and (4). Having obtained sample size adjusted versions

for these two calibrations in the linear model in Section 3, we can now derive upper

bounds for the prior probability π = Pr(H0) of the null hypothesis H0 which depend

on the sample size n. To this end, note that the assumption Pr(H0 |data) = p leads to

the inequality

π

1 − π
≤ 1

minBFd(p, n)

p

1 − p
,

11



which gives the desired upper bound on the prior probability π of H0. For d = 2, we

obtain a simple analytic upper bound on π using the approximate formula (13) for

minBF2(p, n):

π ≤ 1/
{

1 +
e

2
(n − 2)

(

1 − p2/(n−3)
)

(1 − p)
}

.

For large n this upper bound on π converges to 1/{1 − e(1 − p) log(p)}, which is the

asymptotic upper bound derived in Held (2013). For example, if p = 0.01 and n = 10,

the prior probability π of the null hypothesis must have been no more than 11.3% to

obtain a posterior probability of the null hypothesis equal to 1%, i. e. equal to the P

value. It will depend on the scientific context if such a small prior probability can be

considered as reasonable. For n = 20 the upper bound for π reduces to 9% and for

large n it is only 7.5%.

[Figure 3 about here.]

Figure 3 shows the upper bound on the corresponding difference π − p (in percent-

age points) as a function of the P value p and n = 5, 10, 20 for the two calibration

schemes considered in this paper. Now the exact formula (12) is used for d = 2. The

upper bound increases with decreasing sample size to values around 12 percentage

points for d = 1 and around 20 percentage points for d = 2 (both for n = 5). This

implies that the common misinterpretation of the P value as posterior probability of

the null hypothesis requires less stringent assumptions on the corresponding prior

probability π for smaller sample size n.

5. Discussion

In this paper we have derived minimum Bayes factors for point null and composite

alternative hypotheses, that depend on the sample size n. The work thus extends

methods originally proposed by Edwards et al. (1963), Berger and Sellke (1987) and
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Sellke et al. (2001) to the finite sample setting. We have shown that the maximal

evidence of an exact P value against a point null hypothesis increases with decreasing

sample size. The results will be useful to adjust P value calibration methods for sample

size, for example the P value nomogram proposed by Held (2010).

We note that the same relationship between evidence and sample size has been

observed for point alternative hypotheses (Royall, 1986). However, point alternative

hypothesis tests are rarely used in applications. For composite alternatives, Spiegel-

halter et al. (2004, Section 4.4.3) observe a non-monotonic relationship of Bayes factors

to sample size for fixed P value assuming a normal likelihood and a normal prior on

the mean. Also the Bayes factor (7) in the linear model under the unit-information

prior (Kass and Wasserman, 1995) with g = n shows such a non-monotonic relation-

ship. However, the corresponding minimum Bayes factor does have a simple monotonic

relationship to sample size, as we have shown in this paper.

The proposed methodology was motivated by the correspondence of test-based

Bayes factors in regression models (Johnson, 2008; Hu and Johnson, 2009) to meth-

ods for the calibration of P values. Specifically, we have considered two calibration

schemes, which correspond to minTBFs with d = 1 and d = 2 degrees of freedom,

respectively. Held et al. (2015) have also considered the case d → ∞, which gives the

bound

minBF = exp(−t2/2) (14)

where the standard normal test statistic t = t(p) = Φ
−1(1 − p) now corresponds to a

one-sided test, here Φ(.) denotes the cumulative standard normal distribution function.

The minimum Bayes factor (14) is always smaller than (5) and can be derived in the

class of all possible prior distributions for the population mean θ of a normal obser-

vation (Edwards et al., 1963). Therefore, (14) is the natural choice for a “universal”

bound on the Bayes factor. The minimum is obtained if the alternative hypothesis

has all its prior density at the Maximum Likelihood estimate (MLE) of θ. Because the

13



MLE is always on one side of the null hypothesis, a one-sided rather than a two-sided

P value is usually used (Edwards et al., 1963). However, if (14) is viewed as the limit

of the minimum Bayes factor (5) for d → ∞, the sample size n ≥ d + 2 is implicitly

also assumed to be infinite, so a finite sample size adjustment of this universal bound

is not possible with our approach.

We close with some cautionary comments. First, the Bayes and minimum Bayes

factors discussed in this paper assume - explicitly or implicitly - a normal prior on the

regression coefficients β centered around the null value. Other priors on β will lead

to other (minimum) Bayes factors. Secondly, we have repeatedly emphasized that it is

important to make a fair comparison and to transform exact P values obtained from

the classical F test to (exact) sample size adjusted minimum Bayes factors, as shown in

Figure 1. We have shown that minimum Bayes factors then decrease with decreasing

sample size. If instead P values are transformed to the deviance z = Qχ2(d)(1− p) and

inserted into (9) using R2 = 1 − exp(−z/n), the minimum Bayes factors increase with

decreasing sample size. This is a consequence of equation (17) in Held et al. (2015),

which - transformed to minimum (rather than maximum) Bayes factors - states that

(9) is always larger than (5) if we evaluate both at the same P value. However, sample

size adjustments need to be made both for the P value and the minimum Bayes factor

to find the exact relationship between P values and minimum Bayes factors.

Acknowledgments

This work was supported by the Swiss National Science Foundation [project #159715].

We thank an Associate Editor and several referees for numerous comments that im-

proved the presentation of the results in this article.

14



References

M. J. Bayarri, D. J. Benjamin, J. O. Berger, and T. M. Sellke. Rejection odds and re-

jection ratios: A proposal for statistical practice in testing hypotheses. Journal of

Mathematical Psychology, 2016. in press.

J. O. Berger and T. Sellke. Testing a point null hypothesis: The irreconcilability of P

values and evidence (with discussion). Journal of the American Statistical Association,

82:112–139, 1987.

J. M. Bernardo and A. F. M. Smith. Bayesian Theory. Wiley Series in Probability and

Statistics. John Wiley & Sons, Chichester, 2000.

J. B. Copas. Regression, prediction and shrinkage. Journal of the Royal Statistical Society.

Series B (Methodological), 45(3):311–354, 1983.

W. Edwards, H. Lindman, and L. J. Savage. Bayesian statistical inference in psycho-

logical research. Psychological Review, 70:193–242, 1963.

P. R. Freeman. The role of p-values in analysing trial results. Statistics in Medicine, 12:

1443–1452, 1993.

S. N. Goodman. A comment on replication, P-values and evidence. Statistics in

Medicine, 11(7):875–879, 1992.

S. N. Goodman. Towards evidence-based medical statistics. 1.: The P value fallacy.

Annals of Internal Medicine, 130:995–1004, 1999a.

S. N. Goodman. Towards evidence-based medical statistics. 2.: The Bayes factor. Annals

of Internal Medicine, 130:1005–1013, 1999b.

S. N. Goodman. Of P-values and Bayes: a modest proposal. Epidemiology, 12(3):295–

297, 2001.

15



S. Greenland. Bayesian perspectives for epidemiological research: I. foundations and

basic methods. International Journal of Epidemiology, 35:765–775, 2006.

S. Greenland. Null misinterpretation in statistical testing and its impact on health risk

assessment. Preventive Medicine, 53:225–228, 2011.

S. Greenland and C. Poole. Living with p values: Resurrecting a Bayesian perspective

on frequentist statistics. Epidemiology, 24:62–68, 2013.

L. Held. A nomogram for P values. BMC Medical Research Methodology, 10(1):21, 2010.

L. Held. Reverse-Bayes analysis of two common misinterpretations of significance

tests. Clinical Trials, 10:236–242, 2013.

L. Held, D. Sabanés Bové, and I. Gravestock. Approximate Bayesian model selection

with the deviance statistic. Statistical Science, 30(2):242–257, 2015.

J. Hu and V. E. Johnson. Bayesian model selection using test statistics. Journal of the

Royal Statistical Society. Series B (Methodological), 71(1):143–158, 2009.

V. E. Johnson. Bayes factors based on test statistics. Journal of the Royal Statistical Society.

Series B (Methodological), 67(5):689–701, 2005.

V. E. Johnson. Properties of Bayes factors based on test statistics. Scandinavian Journal

of Statistics, 35(2):354–368, 2008.

V. E. Johnson. Revised standards for statistical evidence. Proceedings of the National

Academy of Sciences, 110(48):19313––19317, 2013.

R. Kass and A. Raftery. Bayes factors. Journal of the American Statistical Association, 90

(430):773–795, June 1995.

R. E. Kass and L. Wasserman. A reference Bayesian test for nested hypotheses and its

relationship to the Schwarz criterion. Journal of the American Statistical Association, 90

(431):928–934, 1995.

16



F. Liang, R. Paulo, G. Molina, M. A. Clyde, and J. O. Berger. Mixtures of g priors for

Bayesian variable selection. Journal of the American Statistical Association, 103(481):

410–423, 2008.

R. Matthews. Methods for assessing the credibility of clinical trial outcomes. Drug

Information Journal, 35:1469–1478, 2001.

R. M. Royall. The Effect of Sample Size on the Meaning of Significance Tests. The

American Statistician, 40(4):313–315, Nov. 1986.

D. Sabanés Bové and L. Held. Hyper-g priors for generalized linear models. Bayesian

Analysis, 6(3):387–410, 2011.

T. Sellke, M. J. Bayarri, and J. O. Berger. Calibration of p values for testing precise null

hypotheses. The American Statistician, 55:62–71, 2001.

D. J. Spiegelhalter, K. R. Abrams, and J. P. Myles. Bayesian Approaches to Clinical Trials

and Health-Care Evaluation. Wiley, New York, 2004.

V. G. Vovk. A logic of probability, with application to the foundations of statistics

(with discussion and a reply by the author). J. Roy. Statist. Soc. Ser. B, 55(2):317–351,

1993.

E.-J. Wagenmakers. A practical solution to the pervasive problems of p values. Psy-

chonomic Bulletin & Review, 14(5):779–804, 2007.

R. L. Wasserstein and N. A. Lazar. The ASA’s statement on p-values: context, process,

and purpose. The American Statistician, 2016. in press.

A. Zellner. On assessing prior distributions and Bayesian regression analysis with

g-prior distributions. In P. K. Goel and A. Zellner, editors, Bayesian Inference and

Decision Techniques: Essays in Honor of Bruno de Finetti, volume 6 of Studies in Bayesian

17



Econometrics and Statistics, chapter 5, pages 233–243. North-Holland, Amsterdam,

1986.

Appendix

A. Derivation of (3)

Consider a normal likelihood for the observation x with mean θ and variance σ2 and

the null hypothesis H0 : θ = θ0. Under the alternative H1 we choose a normal prior

with mean θ0 and variance τ2
> 0 for θ. Then, the marginal likelihood under the

alternative is normal with mean θ0 and variance σ2 + τ2. The Bayes factor is therefore

BF =

1
σ ϕ

(

x−θ0
σ

)

1√
σ2+τ2

ϕ
(

x−θ0√
σ2+τ2

) =
ϕ(t)

αϕ(αt)
,

where ϕ denotes the density of the standard normal distribution, t = (x − θ0)/σ is the

normal test statistic and

α =
σ√

σ2 + τ2
∈ (0, 1).

The explicit form of the Bayes factor as a function of α and t is thus

BF =
1

α
exp

[

−1

2
(1 − α2)t2

]

(15)

and minimizing this function with respect to α for fixed t gives

α =











|t|−1 for |t| > 1

1 otherwise.
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Plugging the above value of α into (15) yields the minimum Bayes factor (3) with

z = t2.

B. Derivation of (4)

Under the null hypothesis H0, an exact two-sided P value p is known to be uniformly

distributed on the unit interval, so the likelihood f (p | H0) is one. Under the alternative

hypothesis, small P values are expected, so the density of p should be monotonically

decreasing. A class of decreasing densities on the unit interval is the class of Be(ξ, 1)

densities with parameter ξ ∈ (0, 1). The density of a Be(ξ, 1)-distribution has the form

f (p | ξ) = ξ pξ−1 with MLE ξ̂ML = −1/ log(p) if p < 1/e and 1 elsewhere. It is then

easy to see that the marginal likelihood

f (p | H1) =

1
∫

0

f (p | ξ) f (ξ)dξ (16)

has the upper bound

f (p | ξ̂ML) = 1/(−e p log p) (17)

if p < 1/e and 1 elsewhere, for any prior distribution f (ξ). The upper bound (17) is

obtained from (16) if f (ξ) is a point mass prior at ξ̂ML. With f (p | H0) = 1 it directly

follows that the minimum Bayes factor is

minBF =











−e p log p for p < 1/e

1 otherwise.

C. Derivation of the quantile function (11)

If the first parameter of the F-distribution is equal to 2, then the corresponding density

function has a simpler form than in the general case. We take advantage of this fact to

19



derive an analytic formula for the quantile function of the F(2, m) distribution in this

special case. Indeed, the density of the F(2, m) distribution can be written as

f (x) =

(

1 +
2x

m

)−(1+m/2)

and the cumulative distribution function turns out to be

F(x) = 1 −
(

1 +
2x

m

)−m/2

.

The inverse function of F is then the quantile function

QF(2,m)(p) =
m

2

{

(1 − p)−2/m − 1
}

.

Setting m = n − 3 and replacing p by 1 − p then yields (11).
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Figure 1: Schematic illustration how to compute minimum Bayes factors for a given
P value p. The lower path to minTBFd(p) is the traditional way and does
not take the sample size n into account. The upper path to minBFd(p, n) is
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Bayes factor BF Strength of evidence against H0

1 to 1/3 Weak
1/3 to 1/10 Moderate
1/10 to 1/30 Substantial
1/30 to 1/100 Strong
1/100 to 1/300 Very strong

< 1/300 Decisive

Table 1: Categorization of Bayes factors BF < 1 into levels of evidence against H0
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Minimum Bayes factor

Decrease in probability
of the null hypothesis

from 50% to no less than

Decrease in probability
of the null hypothesis

from 75% to no less than

P value n large n=20 n=10 n large n=20 n=10 n large n=20 n=10

0.1 0.63 0.58 0.52 38% 37% 34% 65% 64% 61%
0.05 0.41 0.36 0.31 29% 27% 24% 55% 52% 48%
0.03 0.29 0.25 0.21 22% 20% 17% 46% 43% 38%
0.01 0.13 0.1 0.08 11% 9% 7% 27% 23% 19%

0.005 0.07 0.06 0.04 7% 5% 4% 18% 15% 11%
0.001 0.02 0.01 0.01 2% 1% 1% 5% 4% 3%

Table 2: Bayesian interpretation of P values. Table adapted from Goodman (2001). For
large n, calibration (4) was used and for n = 20, 10 calibration (12)
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