
Ricerche di Matematica
https://doi.org/10.1007/s11587-022-00691-8

How the nature of behavior change affects the impact
of asymptomatic coronavirus transmission

Mohammed H. Alharbi1 · Christopher M. Kribs2

Received: 20 April 2021 / Revised: 13 December 2021 / Accepted: 22 March 2022
© Università degli Studi di Napoli "Federico II" 2022

Abstract
SARS-CoV-2 has caused severe respiratory illnesses and deaths since late 2019 and
spreads globally.While asymptomatic cases play a crucial role in transmittingCOVID-
19, they do not contribute to the observed prevalence, which drives behavior change
during the pandemic. This study aims to identify the effect of the proportion of asymp-
tomatic infections on the magnitude of an epidemic under behavior change scenarios
by developing a compartmental mathematical model. In this interest, we discuss three
different behavior change cases separately: constant behavior change, instantaneous
behavior change response to the disease’s perceived prevalence, and piecewise con-
stant behavior change response to government policies. Our results imply that the
proportion of asymptomatic infections which maximizes the spread of the epidemic
depends on the nature of the dominant force driving behavior changes.

Keywords Infectious disease · Mathematical modeling · Asymptomatic cases ·
Behavior change · COVID-19

Mathematics Subject Classification 92D30 · 91D99

1 Introduction

Beta coronavirus (β-CoV) has caused three severe epidemic outbreaks over the last
20 years (SARS-CoV, MERS-CoV, and COVID-19). β-CoV is one of four genera of
coronavirus (CoV), (alpha-, beta-, gamma-, delta-CoV), and divided into four lineages:
lineage A (e.g., OC43 and HKU1), lineage B (e.g., SARS-CoV and SARS-CoV-2),
lineage C (e.g., MERS-CoV), and lineage D (e.g., HKU9) [1–3]. Coronavirus disease
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2019 (COVID-19) is caused by a coronavirus called severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). It is spread through close contact from one individual to
another (within about 6 feet), airborne respiratory droplets (coughs, sneezes, or talks),
and aerosol transmission [4].

A serial interval is defined to be the duration from illness onset in a primary case
(infector/infective) to illness onset in a secondary case (infectee). An incubation period
is defined to be the period between infection and the emergence of symptoms [5, 6].
Recent studies showed that the median serial interval for COVID-19 was estimated at
4.0 days (95% credible interval [CrI]: 3.1, 4.9), and the median incubation period 5.2
days (95% confidence interval [CI], 4.1 to 7.0) [7, 8]. This difference signals that more
cases may occur through pre-symptomatic transmission than through symptomatic
transmission [7, 9].

Asymptomatic cases are defined as patients who have shown no symptoms for
the whole course of the infection. There is mixed evidence on the proportion of
asymptomatic cases. Recent studies from Italy and China estimated the proportion
of asymptomatic infections at up to 75% and 80%, respectively [10–12]. Other
studies have shown a smaller proportion of asymptomatic infections: 41.6% among
Japanese nationals evacuated from Wuhan [13], 18% among passengers on the Dia-
mond Princess cruise ship [14], and 10% among children [15]. Several studies have
shown that asymptomatic and symptomatic infections have the same relative infectiv-
ity [14, 16–18].

Asymptomatic infections are likely to play a significant role in the transmission
of COVID-19 for different reasons. First, to predict disease burden when the virus
spreads within a population, the proportion of asymptomatic infections is crucial [14].
Second, comprehending how asymptomatic infections contribute to transmission is
fundamental to the success of control strategies [19]. In the initial spread of COVID-
19, asymptomatic cases can affect the estimated basic reproduction number [20].

Individuals change their behavior during an epidemic, and their behavior has been
intricately linked with the spread of infectious diseases historically [21]. Infected
individuals may reduce their contact with others due to either illness requiring self-
quarantine, isolation upon diagnosis, or government officials’ orders to stay home to
prevent new cases. Susceptible individuals may take precautionary measures to reduce
the number of contact with others to avoid the risk of being infected. Mitigation strate-
gies based on behavior changes, whether individual-based or government-imposed,
are (along with contact tracing for limited outbreaks) the primary options available in
the early stages of an emerging epidemic. Evidence on behavior changes had strong
effects during past pandemics [22–25].

The COVID-19 global pandemic has prompted researchers to analyze and predict
its evolution. Mathematical models are a useful tool that can help to predict the epi-
demic’s dynamic and control infectious diseases. A recent systematic review shows
that forecasts made by mathematical models are beneficial to understand the pan-
demic course and guide policy-making [26]. An early study by Wu et al. presented an
SEIR meta-population model to simulate the COVID-19 infection across China. They
included non-infectious pre-symptomatic cases, but no transmission without symp-
toms [27]. Another study used the SEIR mathematical model with a quarantine class
and governmental intervention measures to mitigate disease transmission. They sug-
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gest that governmental intervention strategies can play an essential role in reducing
COVID-19 transmission [28].

A recent study by Dobrovolny determined the role of asymptomatic cases in the
spread of COVID-19 by using an SAIR mathematical model. Dobrovolny used a
different infection rate for asymptomatic individuals determined by a proportionality
constant, and a fraction of individuals remain asymptomatic for the whole course of
the infection. She concluded that the relative infectiousness of individuals with no
symptoms has more impact than asymptomatic proportion on the time course and size
of the epidemic [29].

Mathematical models have been used for some time to study the effects of behav-
ior change on the spread of epidemics. In recent decades a substantial literature has
developed around the behavioral epidemiology of infectious diseases. A 2010 review
by Funk et al. [30] proposed classifying models by (1) whether the information source
driving behavior change is globally or only locally available, (2) whether the informa-
tion source is based on prevalence or on beliefs, and (3) whether the behavior changes
individual disease state, parameter values, or contact structure. Later reviews proposed
additional classifications, such as whether the behavior change is modeled explicitly
or implicitly, i.e., with or without defining a new variable to measure the behavior [31,
32]. Some of the earliest studies used behavior-implicit models in which individuals
reduce exposure risk as a function of current infection prevalence (e.g., [33, 34]), which
led to sometimes complex dynamics including limit cycles and bistability. Behavior
changes which wane with decreasing prevalence can lead to oscillations. Poletti et al.
used a behavior-explicit SIR model to investigate spontaneous behavioral change, fol-
lowing cost/benefit considerations, on the spread of an epidemic. Theirmodel accounts
for multiple waves and can show asymmetric waves when the behavioral changes and
disease dynamics occur on vastly different time scales. They also found that behavioral
dynamics results in the reduction of the final attack rate [35]. d’Onofrio, Manfredi and
colleagues generalized the basis for exposure-related behavior change to an informa-
tion index or variable incorporating not only present but past (historical) prevalence
levels as well [31, 36, 37]. Buonomo has applied this idea to coronavirus transmis-
sion, finding that when the information coverage is high enough, the overall incidence
is reduced [38]. Bauch et al. focused review of behavior-explicit models on game-
theoretic approaches [31]. A recent systematic review showed that individual-level
models are also increasingly used and useful to model behavior changes [39]. For
instance, Del Valle et al. used simple and agent-based models incorporating behav-
ioral changes and noted that a second wave of infection can occur when interventions
are stopped too soon [40].

In this theoretical study, we consider how varying the proportion of asymptomatic
(but equally infectious) cases in an epidemic may affect its size when individuals
change their risk behavior, using the current COVID-19 outbreak as a case study. Pre-
vious published COVID-19 studies have described at most a single wave of preventive
measures to the best of our knowledge. Asymptomatic cases play an essential role in
the transmission, but they also do not contribute to the perceived disease prevalence,
which drives behavior change during an epidemic. Behavior change can be continu-
ous in response to daily news, or discrete as governments announce policies that last
for a month or longer. We seek to identify the theoretical impact of the proportion
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of asymptomatic COVID-19 infections on the magnitude of an epidemic under three
different behavior change scenarios. To this end, we develop a compartmental model
using a nonlinear dynamical system.

2 Model development

We use a modified SEIR model, but with three possible courses of infection: [perma-
nently] asymptomatic, mild symptomatic, and severe symptomatic cases. All of these
are assumed equally infectious, but only severe cases are at risk of hospitalization.
We distinguish between asymptomatic (infectives who never develop any symptoms)
and pre-symptomatic individuals (who will eventually develop symptoms). We con-
sider the case where asymptomatic and symptomatic infections have the same relative
infectivity. The constant population size, N , is classified into eight epidemiological
classes: susceptible class (S), exposed class (E), pre-symptomatic infectious class
(AP ), asymptomatic infectious class (AL ), infective with mild symptoms class (IM ),
infective with severe symptoms class (IS), hospitalized class (H ), and recovery class
(R, assumed permanent). We also define terms τ and θ to describe the behavior
changes (average reduction factors for infectious contact) by individuals with and
without (respectively) symptomatic infections. These terms can be taken as constant
or time-dependent according to the nature of the behavior change (see more below).
The model is described as follows (illustrated in Fig. 1):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = � − βS

N [θ(AL + AP ) + τ(IM + IS)] − μS,
dE
dt = βS

N [θ(AL + AP ) + τ(IM + IS)] − (η + μ)E,
d AL
dt = pηE − (γA + μ)AL ,
d AP
dt = (1 − p)ηE − (δ + μ)AP ,

d IM
dt = qδAP − (γM + μ)IM ,
d IS
dt = (1 − q)δAP − (ε + μ)IS,
dH
dt = ε IS − (γH + μ)H ,
dR
dt = γA AL + γM IM + γH H − μR.

(1)

Here β is the human-to-human infection rate (modified by τ or θ ). η is the
rate at which an individual departs the exposed class by becoming infectious
(pre-symptomatic, symptomatic, or asymptomatic); p is the proportion of infected
individuals who remain asymptomatic for the whole course of the infection. δ−1 is
the mean time from onset of infectivity to onset of symptoms, for those infectives
who eventually develop symptoms; q is the proportion of pre-symptomatic infected
who eventually develop mild symptoms. ε is the average at which infected with severe
symptoms become isolated or hospitalized. γA, γM , and γH are the recovery rates
of asymptomatic, infected with mild symptoms, and hospitalized individuals, respec-
tively. To consider how the timespan of a potentially extended outbreak affects the
epidemic, we include some demographic effects in the model (not represented in Fig.
1). There is a proportional natural mortality rate μ in each of the eight classes, and �
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Fig. 1 Flowchart of model (1)

Table 1 State variable and parameter definitions and their units

Notation Definition

S(t) Number of susceptible individuals at time t

E(t) Number of exposed individuals at time t

AL (t) Number of asymptomatic infected individuals who remain asymptomatic
for the whole course of infection at time t

State AP (t) Number of pre-symptomatic infected individuals at time t

variables IM (t) Number of symptomatic infected individuals with mild symptoms at time t

IS(t) Number of symptomatic infected individuals with severe symptoms at time
t

H(t) Number of hospitalized infected individuals at time t

R(t) Number of recovered individuals at time t

� Recruitment rate (individual/time)

μ Per capita natural mortality rate (1/time)

β COVID-19 infection rate (1/time)

θ Reduction factor for asymptomatic infection (dimensionless)

τ Reduction factor for symptomatic infection (dimensionless)

p The proportion of individuals who remain asymptomatic for the whole
course of infection (dimensionless)

q The proportion of infected with mild symptoms (dimensionless)

Parameters η 1/The duration time from exposure to onset of infectivity (1/time)

δ 1/The infectiousness period while individuals are pre-symptomatic
(1/time)

ε 1/Average hospitalized period for infected with severe symptoms (1/time)

γA Recovery rate of asymptomatic infected individuals (1/time)

γM Recovery rate of individuals infected with mild symptoms (1/time)

γH Recovery rate of hospitalized infected individuals (1/time)

represents the constant inflow of susceptible individuals. Also, in the absence of data
on hospital circulation, we assume perfect isolation in the hospital compartment. In
this type of model, individuals within the same compartments are considered homoge-
neous. That is, individuals do not differ based on characteristics such as infectiousness
period, behavior changes, age, and or other characteristics. In this model, we consider
population-level trends (Table 1).
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Fig. 2 Relationship between θ

and τ

Since there are not anymeasurements for howasymptomatic and symptomatic cases
reactwhile they are infected,we assume that non-symptomatic individuals change their
behavior less than symptomatic individuals do: non-symptomatic individuals reduce
their potentially infectious contact rate by a factor of θ , while symptomatic individuals
reduce it by a factor of τ , with 0 ≤ τ ≤ θ ≤ 1.We consider the two factors connected,
θ(τ ). These factors may remain constant, or may vary over the course of an epidemic,
due either to individual reactions to news or to government policies, according to the
different scenarios to be considered.

To describe behavior change, we begin by relating θ and τ . First, we assume that
non-symptomatic individuals change their behavior less than symptomatic individuals
do: non-symptomatic individuals reduce their potentially infectious contact rate by a
factor of θ , while symptomatic individuals reduce it by a factor of τ , with 0 ≤ τ ≤
θ ≤ 1. These factors may remain constant, or may vary over the course of an epidemic,
due either to individual reactions to news or to government policies, according to the
different scenarios to be considered. Second, we fix the relationship between them by
considering θ as a function of τ , θ(τ ), with θ(0) = 0, θ(1) = 1, and θ > τ otherwise.
Specifically, we choose an exponential function of the form θ(τ ) = 1 − (1 − τ)r

for appropriate r . Third, to derive a value for r , we assume that when symptomatic
individuals reduce their contact by 50% (τ = 0.5), asymptomatic individuals only
reduce their contact by 1% (θ = 0.99). In thisway, onlywhen symptomatic individuals
reduce their contact by more than 50%, do asymptomatic individuals reduce their
contact significantly. The value of r which fits the (τ, θ) values (0,0), (0.5,0.99) and
(1,1) is 6.6439, leading to the relation (shown in Fig. 2):

θ =
(
1 − (1 − τ)6.6439

)
.

We consider three different behavior change scenarios in this study. Case one is
constant reduction factors,where an environment that is not influencedby the gravity or
the magnitude of the epidemic is assumed. It is based on background information that
the community has, so it is a constant reduction. This case could represent a scenario
where an infection is circulating in other (possibly) nearby communities. Individuals
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Fig. 3 τ as a function of the
believed prevalence

in the study community adapt their behavior in response before the outbreak reaches
them, thus constant over time once the outbreak arrives.

Case two assumes reduction factors as a function of the instantaneous prevalence.
In this case, we have a completely individual-based or media-based reduction factor,
whichmodels the impact of just individuals seeing the news every day andmaking their
decisions. In this case, the symptomatic contact reduction factor (τ ) is considered a
function of the believed (symptomatic) prevalence I/N , where I (t) = IM (t)+ IS(t)+
H(t). The function τ(I/N ) should be 1 when I = 0 and decrease thereafter. Again
we choose an exponential function, of the form

τ(t) = ek
I (t)
N (t) , (2)

where k is the fright parameter describing the intensity of the behavior change. Finally,
to fit a value for k, we assume a 50% contact reduction when the perceived prevalence
hits 5%, i.e., τ = 0.5 when I/N = 0.05. The resulting value is k = −13.2803 (see
Fig. 3).

Case three uses piecewise constant reduction factors. This case reflects changes by
government mandate, which typically do not bounce back and forth instantaneously
from one day to another. They tend to be rolled out in phases. In the real world,
some asymptomatic cases will be diagnosed, but we assume an environment in which
testing is not universal. This model includes the hypothesis of limiting testing avail-
ability. Here we assume, for simplification, the government does not know about
any of the asymptomatic cases, and policies are made based on the believed preva-
lence (symptomatic infection prevalence only). The first phase of the outbreak occurs
only at the beginning of the infection, where the believed prevalence does not exceed
0.1% (the first threshold). In this phase, there is no reduction in symptomatic infection
(τ = 1). The second phase occurs once the believed prevalence exceeds 0.1% (the first
threshold). Therefore, a lockdown starts. The government policy is for symptomatic
individuals to quarantine completely, but we assume this quarantine (as implemented)
is only 95% effective (τ = 0.05). The lockdown remains activated until the believed
prevalence rate goes below 0.01% (the second threshold). Thenceforward the lock-
down is released gradually, and the believed prevalence rechecked every 30 days. For
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Table 2 The behavior change scenarios considered in this study

Case Cause Implementation

1 prior knowledge τ constant

2 spontaneous fear of prevalence τ = e−13.2803 I/N

3 government-mandated initially τ = 1 while I/N < 0.001

lockdown with monthly then τ = 0.05 until I/N < 0.0001

adjustments then τ = 0.1n for 30 days if I/N < 0.001 for 30n days (n ≤ 10)

the first 30 days, τ = 0.1, and for the next 30 days (if the believed prevalence does not
exceed the first threshold) τ = 0.2, etc. In this manner, the lockdown will continue to
be released gradually until the first threshold is reached; thereafter, another lockdown
will be activated.

The three cases are summarized in Table 2. In the framework of Funk et al. [30],
only case two qualifies as a BEIDmodel, since behavior is considered constant in case
one, and imposed by governmental constraints rather than spontaneous individual
decisions in case three. However, note that in both cases two and three, τ(t) provides
an explicit, time-varying description of average risk behavior coupled to infection. The
information source, perceived (symptomatic) prevalence, is assumed globally known.

When new, behavior-related variables describe the result of the behavior, a model is
considered phenomenological. When those variables describe the process of making a
decision (often discrete, typically binary), it is termed mechanistic. In this regard, the
models in this study, like others which describe the collective effects of such decisions
using information indices, are phenomenological.

3 Analysis

The control reproduction number,Rc, is one of the most significant thresholds, which
measures the infection’s ability to spread. We use Rc instead of using the basic
reproduction number, R0, because we incorporate control measures (τ and θ ) in the
model. Although reproduction numbers are defined for outbreakmodelswith no demo-
graphics, the next-generation approach we apply is not, as it requires a non-isolated
disease-free equilibrium. We, therefore, retain recruitment (�) and natural mortality
(μ) for our analytical work because they are necessary to avoid having infinitely many
non-isolated disease-free equilibria. They can then be set to zero if desired when cal-
culating numerical values for Rc. For case two and three, in which behavior change
only starts after the outbreak reaches a certain level, the initial values of θ and τ are
taken to be one, which simplifies Rc toR0.

The point where no disease is present in the population (the DFE) occurs for model
(1) when AL = AP = IM = IS = 0. Setting all differential equations in (1) equal to
zero, we find the DFE of the form (�

μ
, 0, 0, 0, 0, 0, 0, 0).

To drive theRc formodel (1), we use the next-generation operatormethod proposed
by Diekmann and Heesterbeek [41].We begin with separating the model’s classes into
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uninfected (X), noninfectious infected (Y), and infectious (Z) classes;

X =
(
S
R

)

, Y =
(
E
H

)

, Z =

⎛

⎜
⎜
⎝

AL

AP

IM
IS

⎞

⎟
⎟
⎠ .

After substituting the equilibrium values of the noninfectious infected classes (Y)
into the differential equations for the infectious (Z) classes, we compute the Jacobian
matrix

A = ∂

∂Z

(
∂Z

∂t

)

.

Computing A at the DFE for model (1), we obtain A= M - D, with

M =

⎛

⎜
⎜
⎜
⎝

βηθ p
η+μ

βηθ p
η+μ

βηpτ
η+μ

βηpτ
η+μ

βηθ(1−p)
η+μ

βηθ(1−p)
η+μ

βη(1−p)τ
η+μ

βη(1−p)τ
η+μ

0 δq 0 0
0 δ(1 − q) 0 0

⎞

⎟
⎟
⎟
⎠

,

and

D =

⎛

⎜
⎜
⎝

γA + μ 0 0 0
0 δ + μ 0 0
0 0 γS + μ 0
0 0 0 ε + μ

⎞

⎟
⎟
⎠ .

The control reproduction numberRc is obtained as the spectral radius of M · D−1,
precisely,

Rc = 1

2

(
a +

√
a2 + 4b

)
, (3)

where

a = βηθ p

(η + μ) (γa + μ)
+ βηθ(1 − p)

(δ + μ)(η + μ)
,

b = βδη(1 − p)qτ

(δ + μ)(η + μ) (μ + γs)
+ βδη(1 − p)(1 − q)τ

(δ + μ)(η + μ)(μ + ε)
.

The first term of a refers to the contribution of asymptomatic individuals, who
remain asymptomatic for the whole course of the infection, while the second term of
a refers to pre-symptomatic infection. Furthermore, the first and second terms of b
refer to the contribution to infection by individuals with mild and severe symptoms.
Numerical simulation will be performed on Rc in the next section using estimated
parameter values.
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Table 3 Summary of estimated
model parameters

Par. (unit) Value Range

� (individual/day) 0 –

μ (days−1) 0 –

β (days−1) 0.399322 0.299216–0.530679

η (days−1) 0.668558 0.641876–0.822624

δ (days−1) 0.269961 0.183754–0.346695

q (dimensionless) 0.8 [42, 43] –

ε (days−1) 1/10 [44] –

γA (days−1) 1/7 1/9 – 1/6

γM (days−1) 1/21 –

γH (days−1) 1/14 –

4 Numerical simulation

We find parameter values either from previous literature or by estimation.We consider
three different behavior change cases, τ , in this section-the first casewhen τ is constant
over time, the second case when τ is continuously changing over time, and the third
case when τ is piecewise constant changing over time.

4.1 Parameter estimates

Some parameter values were obtained directly from previously published studies, as
listed in Table 3, while the others were estimated in this study.

The average time to recovery ranged from seven to 32 days for mild cases and 21
to 32 days for severe cases [43, 45–48]. We pick seven days as the recovery time for
asymptomatic cases (γA = 1/7), 21 days for mild cases (γM = 1/21), and 24 days for
severe cases. After applying the average isolation days for severe cases (ε = 1/10),
we get γH = 1/14.

To estimate the remaining parameters in this model (β, η, and δ), we use the average
reported basic reproduction number (averaged from published estimates ofR0 is 3.28
[49]), serial interval (estimated at 4.0 days [7]), and incubation period (estimated at 5.2
days [8]) forCOVID-19. Then,weuse a two-part process: first linking these parameters
to each other, then using a back-estimation approach to calculate those parameters.
The serial interval is the average waiting time before the first infection happens (1/β),
adding to the average duration time from exposure to infectivity onset (1/η). The
incubation period is 1/η, adding to the infectiousness period, while individuals are
pre-symptomatic (1/δ). Therefore, we use the relation 1

η
+ 1

β
= 4 and 1

η
+ 1

δ
= 5.2

to obtain β and δ as functions of η. This made (3) an equation to a function of η alone
(with τ = θ = 1). This allows us to obtain estimates for η, β and δ. All the parameter
estimates are summarized in Table 3.
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(a) (b)

Fig. 4 Contour plot of CRN over p and τ

4.2 Case one: constant reduction in contact factors

When behavior change is constant, independent of the course of the epidemic, Rc

provides one measure of its initial growth. We, therefore, consider howRc is affected
by the proportion of asymptomatic infections (p), in conjunction with the magnitude
of behavior change as represented by τ . By substituting parameter values from table
2 into CRN and considering τ and p to be constants that vary between zero and one,
contour plots of ∂Rc

∂ p andRc over p and τ were generated, Fig. 4a and b, respectively.
Figure 4a shows the contour plot of the partial derivative of Rc with respect to p

as τ and p vary. In this figure, there are three regions. Region one, when τ is between
0.5 and one, shows that as p increases, ∂Rc

∂ p decreases with negative slopes. Region

two, when τ is between 0.05 and 0.5, indicates that ∂Rc
∂ p goes up as p goes up with

positive slopes. Lastly, region three, when τ is between 0 and 0.05, depicts the same
behavior as region one.

Figure 4b shows the contour plot ofRc over p and τ . By applying the three regions
from Fig. 4a, we get the top region where symptomatic individuals do not reduce
their contacts by more than 50%, and almost no behavior change in individuals with
no symptoms (i.e., τ ∈ (0.5,1), θ ∈ (0.99,1)). In this region, we notice that Rc is
the highest when p = 0. Plus, as p increases, Rc decreases. In this connection,
symptomatic individuals are contributing more to the initial spread of the disease than
asymptomatic individuals.

In the next region, region two, as in reality, when people aware of the outbreak,
symptomatic individuals will be isolatedmore since initial recommendationswere that
people who have symptoms should isolate themselves. In this matter, symptomatic
individuals are reducing their contacts more than 50%, while individuals with no
symptoms are reducing their contacts, but less than individuals with symptoms (τ ∈
(0.05,0.5) and θ ∈ (0.3,1)). In this region, we discern that as p increases,Rc increases.
Thus, asymptomatic individuals are contributing more to the initial spread of the
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(a) (b)

Fig. 5 Height of prevalence with different amount of p when τ = 0.25 for case one

disease than symptomatic individuals. Further, symptomatic individuals are reducing
their contacts by a higher factor than their ability to spread the disease better.

In region three, individuals with symptoms are reducing their contacts bymore than
95%, while asymptomatic individuals are reducing their contacts by more than 70%
(τ ∈ (0,0.05) and θ ∈ (0,0.3)). In this setting, as p increases, Rc decreases. Further,
symptomatic individuals are contributing more than individuals with no symptoms.

We also perform numerical simulations of the model to see how the entire course of
the epidemic varies depending on p and τ , using our best estimates of the parameter
values. We computed the number of active cases throughout the outbreak, for different
values of p and τ . Figure 5 illustrates the range of results over time for all values of p,
for τ = 0.25, a representative value from region two inwhich symptomatic individuals
reduce their contact rate by a factor of four.

We have a couple of results that may appear to contradict the control reproduction
number (CRN). One is that the height of the peak of prevalence decreases with p
(especially, if τ ∈ region 2 see Fig. 5a). Further, the fraction of individuals who never
get infected increases with p for all values of τ (see Fig. 5b when τ ∈ region 2). These
results seem to contradict the contour plot of the CRN andwhat has been said about the
three regions (see Fig. 4b). However, the CRN describes the rate of spread of disease at
the edge of an outbreak. Figure 5a is representing the peak of an epidemic, which is far
away from the boundary of the epidemic. Namely, the CRN is not a good measure of
how well the disease spreads when there are many infected individuals. In addition to
that, the fraction of asymptomatic individuals is more significant away from the edge
of the epidemic. Thus, the CRN tells about the spread of the disease at the beginning
of the outbreak. The peak of prevalence and the final fraction of susceptibles depend
on events far away from the beginning of the epidemic. So, they do not necessarily
follow the same pattern as the CRN.

Therefore, there are multiple possible measures by which we may take an optimum
value of p. By saying an optimum value of p, we refer (implicitly) to the evolutionary
perspective of the pathogen. Hence, the optimum value of p means the most infection
possible, which is chosen to maximize the CRN, maximize the peak of prevalence,
and minimize the fraction of susceptibles at the final time. Consequently, the value
of p that maximizes CRN is zero for τ in regions one and three and one for τ in
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region two. However, to maximize the height of prevalence and minimize the fraction
of susceptibles at the final time, p should be zero for all values of τ .

Hence, most pathogen success measures are maximized when p is zero, which
implies that there are no asymptomatic infections, except when τ in region two. When
τ is in region two, p = 1 maximizes only the outbreak’s initial spread since asymp-
tomatic infections remain less infectious than symptomatic infections.

4.3 Case two: continuous infection reducing factors as a function of the
prevalence

Figure 6a indicates the prevalence over time of all infected with varying proportions
of asymptomatic infections (p) between zero and one. The height of the peak of the
prevalence increases for p between 0 and 0.59, and then it decreases for higher p.
For lower p, we notice that the epidemic’s shape is asymmetric because most of the
cases are observed. Moreover, for high values of p, most of the cases are unobserved
and, therefore, there is not much behavior change; consequently, we see the shape
of the epidemic is symmetric. The optimum value, p = 0.59, maximizes the highest
peak of the epidemic since behavior changes react to less than half of the infections.
In contrast, when p = 0, behavior changes work at the best capacity. Lastly, when
p = 1, there are no behavior changes.

Figure 6b illustrates the fraction of susceptibles, who never get infected, at the final
time with varying p between zero and one. The lower curve depicts the case with no
behavior change, which is similar to case one. The upper curve shows the case two
with behavior changes. In this case, the final fraction of susceptibles increases for
p between zero and 0.52, but then it turns around and gets low for higher p until it
reaches the lowest point at p = 0.885. For p between 0 and 0.52, behavior changes
workwell with the gradual increases of p tominimize the final fraction of susceptibles.
On the other hand, when p is between 0.52 and 0.885, more than half of the infection is
unobserved, indicating fewer behavior changes. For p > 0.885, most of the infection
is asymptomatic, so the final fraction of susceptibles is approaching to match the case
with no behavior change. From the pathogen’s evolutionary perspective, the lower the
uninfected fraction at the final time, the stronger the outbreak was.

Unlike case one, we notice in case two that a higher peak does not necessarily mean
the worst outbreak, i.e., the height of the prevalence peaks when p = 0.59 whereas
the lowest fraction of susceptibles is when p = 0.885. Behavior change reduces the
infection more when p is low since the symptomatic prevalence represents most of
the infections. The entire course of the epidemic produces the highest peak with the
smallest overall outbreak for p between 0.52 and 0.59. For p = 0.885, the epidemic
displays a relatively lower peak but with the largest overall outbreak. For p = 1, the
epidemic exhibits both the lowest peak and the smallest overall outbreak.

4.4 Case three: piecewise constant reduction in contact factors

In this case,wemodel the changes by governmentmandate policies.Numerical simula-
tions of the case three model are performed.We compute the total infection prevalence
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with different amounts of the proportion of asymptomatic infection (p) and the behav-
ior changes (τ(t)) by government mandate policies.

Figure 7a indicates the total infection prevalence changes over time due to govern-
ment policies (the lockdown). Regardless of the proportion of asymptomatic infected
(only if p < 1), the government policies invoked during a lockdown produce enough
behavior change (τ(t)) to pull down the total infections to the second threshold. When
p = 0, which means all infected individuals are symptomatic, government interven-
tion policies are well designed to the perceived prevalence. For p > 0.5, the policies
are implemented in response to half or less of the total infections. For higher p, since
perceived prevalence takes a longer time to reach the first threshold, government poli-
cies take a longer time to be implemented. A higher value of p makes the initial
peak higher and later than the lower value of p because the government does not
perceive the asymptomatic infections. Also, a higher value of p means the epidemic
takes longer to spread. However, the duration between waves is shorter when p is high
because the asymptomatic infections do not last as long as symptomatic ones. Further-
more, any effective government policies prolong the outbreak for at least five years
(if p ≤ 0.75), during which time there will continue to be regular peaks. Through the

(a) (b)

Fig. 6 Height of prevalence and fraction of susceptibles at final time with different amount of p when τ

varies over time with the perceived prevalence

(a) (b)

Fig. 7 Height of prevalence and fraction of susceptibles at final time with different amount of p when τ

piecewise constant varies over time
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Fig. 8 The peak of the first wave
as a function of the proportion of
asymptomatic infections (for
0 ≤ p ≤ 0.8)

first five years, the peak of each wave is not diminishing. This isolation behavior will
continue for a long enough time scale that demographics will start to be significant.
For 0.99 < p < 0.997, there are at most two phases of government lockdown, while
for p > 0.9977, hardly any symptomatic infections are noticed, and therefore no
government policy is implemented.

Figure 7b shows the fraction of susceptibles, after the third wave of the infection,
with varying p between zero and one. In contrast to cases one and two, the fraction
of susceptibles decreases with p since the behavior change reacts less with more
asymptomatic infections. For p between zero and 0.75, the fraction of susceptibles
decreases slowly to reach 0.9 due to behavior changes, which indicates that only less
than 10% of individuals have been infected. Meanwhile, if 0.75 < p < 0.95, the
fraction of susceptibles decreases from 0.9 to 0.6 since the behavior changes only
respond to less than 25% of the total infection. For p > 0.9977, there is no behavior
change, and the final fraction of susceptibles is approaching the case with no behavior
change.

We further compute the highest point of the first wave’s prevalence as a function
of the proportion of asymptomatic infections (p). Figure 8 shows that the general
trend of the peak is going up with p. However, as p increases in a tiny amount, the
peak goes up and down, not in a monotone way because of the discretization of the
lockdown’s starting day. The lockdown day is not the exact instant of passing the first
threshold; it is at the next integer value day after. Moreover, as p increases in a tiny
amount, the increased proportion of asymptomatic cases reduces the first wave’s peak,
making the graph go down until the point where the government policy is implemented
a day later causing the sudden jump. The peak prevalence decreases gradually with
small increases in p because the asymptomatic infections spread the virus less than
symptomatic infections. However, at some point, the decrease in perceived prevalence
postpones the onset of behavior changes by a day, causing an abrupt jump in Fig.
8. Therefore, the time elapsed between the instant in time when it passed the first
threshold and the next day when the census is taken varies as p varies in tiny amounts.

When the proportion of asymptomatic infections (p) is low, the epidemic spreads
faster. This implies that the control measures are implemented relatively soon, and
the epidemic peak is relatively low. Then, as p increases, the epidemic spreads more
slowly initially, since asymptomatic infections spread it less. Besides, since fewer
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(a) (b)

Fig. 9 Sensitivity analysis for Rc (a) and S∗
tf (b): Sensitivity indices are listed in order of decreasing

magnitude

cases are observed, the lockdown starts even later, which indicates that the peak is
more heightened. Further, when p is high enough, therewill never be enough perceived
cases to initiate the lockdown, and the epidemic matches the case with no behavior
changes.

Although not shown here, we obtained qualitatively identical results for the depen-
dence of symptomatic prevalence and severe cases on p.

4.5 Sensitivity and uncertainty analysis

The goal of this subsection is to verify that our qualitative results are independent of
the parameter values. We performed a sensitivity analysis of the CRN (Fig. 9a) and
the fraction of susceptibles at final time (S∗

tf) (Fig. 9b) to determine how variations in
parameter values impact Rc and S∗

tf. Namely, we increase each parameter by 0.1%
(while preserving other parameters at the baseline values obtained in Table 3) and
calculate the normalized sensitivity index. The results of the sensitivity analysis shown
in Fig. 9 indicate the CRN is most sensitive to the infection rate (β), the reduction
factor for symptomatic infection (τ ), 1/the infectious period while individuals are pre-
symptomatic (δ), the recovery rate of asymptomatic infected individuals (γA), and the
proportion of infected with mild symptoms (q). S∗

tf is also influenced by β, q, τ , the
proportion of individuals who remain asymptomatic for the whole course of infection
(p), γA, and δ. Remarkably, both measures (CRN and S∗

tf) are highly sensitive to τ and
p, which are scrutinized in this study. Among the parameters with higher sensitivity
indices to both (CRN and S∗

tf), the proportion of infected with mild symptoms (q) is
well-known [42, 43, 50].

Using ranges for the serial interval, incubation period, and basic reproductive num-
ber and the same method as Sect. 4.1, we can estimate the ranges of parameter values
(shown in Table 3). Figure 10 indicates the S∗

tf for case one (at the bottom of the figure)
and case two (at the top of the figure) with δ over its range. The qualitative results
for all three cases remain the same, which shows that our results are not dependent
on parameter estimates. Hence, our qualitative results are robust and independent of
parameter values.
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Fig. 10 S∗
tf for case one (bottom)

and case two (top) with δ over its
range: dashed lines indicate the
lower bound for δ; dot-dashed
lines indicate the upper bound
for δ; solid lines indicate the
baseline value for δ

(a) (b)

Fig. 11 a Different functions represent the relationship between θ and τ ; b S∗
tf for case two with different

functions of θ(τ )

Figure 11a indicates three different functions representing the assumed relation-
ship between θ and τ . Indeed, the two new functions work as extreme cases. One
is a less reactive change where asymptomatic individuals only change their behavior
when symptomatic individuals are already nearly wholly isolated, while the other is
the least reactive convex function possible. Figure 11b shows S∗

tf with the different
θ(τ ) functions shown in Fig. 11a. The dot-dashed curve in Fig. 11b (represented by
the piecewise linear function (dot-dashed line in Fig. 11a) shows that the more asymp-
tomatic individuals change their behavior relative to symptomatic individuals (θ(τ )),
the more complex the dependence on p for the size of the epidemic—specifically,
the more pronounced the non-monotone variation is for the epidemic size. All three
functions describing the behavior change of asymptomatic individuals yield the same
type of dependence of S∗

t f on p, showing that our qualitative results are robust.

5 Conclusion

Weanalyzed a deterministic compartmentalmodel to evaluate and predict the impact of
the proportion of asymptomatic infections (p) under three different behavior change
scenarios finding that p plays a large role in changing the size and the time of the
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epidemic. Although themodel is still too simplistic in directly guiding policymakers to
mitigate the effects of p, and it is not intended to do so, the qualitative trends predicted
by our simulations can be beneficial in designing studies to quantify the influence
of these asymptomatic infections. Our parameter estimates suggest that symptomatic
infections spread the disease more than asymptomatic ones because the infectious
period lasts longer, even considering effective isolation following diagnosis.

If behavior change is considered constant, which may occur based on background
information that a community has, then the epidemic size is maximized, and the final
fraction of susceptibles is minimized, when p is low. On the other hand, a high value
of pmaximizes only the outbreak’s initial spread when the behavior change (τ ) ranges
between 0.05 and 0.5.

If, instead, behavior change occurs due to an instantaneous response to the disease’s
perceived prevalence, then the highest peak with the smallest overall outbreak occurs
when p is between 0.52 and 0.59. Further, the epidemic reveals a relatively lower
peak but with the largest overall outbreak when p = 0.885. The lowest peak with the
smallest epidemic is shown when p = 1.

Finally, if behavior change occurs in response to government policies, then a higher
value of p plays a significant role in changing the epidemic’s duration, and maximizes
the epidemic size. In contrast, a lower value of p means a significant behavior change
is implemented since most of the infected individuals are observed. Therefore, the
epidemic shows both the lowest peak and the smallest overall outbreak.

If p is high, thatmaximizes the epidemic size and plays a significant role in changing
the epidemic’s duration under scenario case three. Furthermore, a higher value of p
contributes only to the infection’s initial spread of the disease if the behavior change
(τ ) remains constant and ranges between 0.05 and 0.5. Moreover, if the behavior
change is considered changing continually as in case two, then a higher value of p
minimizes the disease’s initial spread and the epidemic size.

A lower value of p maximizes the epidemic size if the behavior change (τ ) is a
constant (case one). Suppose τ is considered to be as in case two and three. In that
case, a lower value of p means a significant behavior change is implemented since
most of the infected individuals are observed. Therefore, the epidemic shows both the
lowest peak and the smallest overall outbreak.

Intermediate values of p, which are essential only under instantaneous behavior
change, produce the highest peak and minimize the epidemic size.

In reality, behavior change occurs through all three of these mechanisms. There is a
priori information. There are instantaneous behavior changes when individuals make
their own decisions. There are also behavior changes that individuals may make when
mandated by government policies. In this study, we have seen the effects of each of
those forces separately. As the COVID-19 pandemic has spread across the world, we
have seen government policies and individuals’ behavior vary significantly from one
country to another and from one state to another within the United States. It is essential
to understand that the pandemic will play out differently depending on the dominant
force behind people’s behavior change.

In [35], the authors used a time scale argument and asymptotic expansion to show
when the spontaneous behavioral changes and diseases dynamics occur on vastly dif-
ferent time scales, then their model observes multiple epidemic waves. In our model,
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delays in behavior change are necessary to show many waves within the same out-
break and asymmetric shapes of the epidemic, i.e., rising and decaying phases of
the epidemic are different in shape, similar to [35]. Further, the present study model
shows that the final fraction of susceptibles varies as p varies with significant behav-
ior change. Our results are consistent with [40] that the second wave of infection,
in case three, can occur when interventions are stopped too soon. Note that in [38],
Buonomo’s vaccination rate is composed of a constant part, like our case one model,
plus a prevalence-dependent part, similar to our case two model but with memory.

One of the limitations of this study is that we have assumed a consistent government
policy. However, we have seen in the United States and some other countries that there
aremultiple waves, but they differ. The secondwave is higher than the first one because
the government policies have been changing throughout the outbreak. Government
policies have been inconsistent, making the shape of the pandemic irregular. Another
limitation is that little to nothing was known about the characteristics of SARS-CoV-2
at the beginning of the current outbreak,which has produced a great variety of estimates
about the disease’s epidemiological characteristics as recovery time and proportion of
asymptomatic infections. This limits the quantitative accuracy of our predictions, but
the qualitative results hold even for other parameter values. In the future, we hope to
extend our model to include two different diseases under different behavior change
scenarios. Varying the relative infectiousness between asymptomatic and symptomatic
infection is also a potential extension of this study. AnAgent-BasedModel (ABM) can
be developed to allow such variations in individuals in epidemiological characteristics
and behavioral. Further, models like our case two model can be extended to include a
degree of memory using such an information index.
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