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Abstract

Treatment of patients with thyroid cancer is usually
successful, and most patients are cured of the disease.
However, we do not have effective therapies for patients
with invasive or metastatic thyroid cancer if the disease is
not surgically resectable and does not concentrate radio-
iodine. Conventional external beam radiotherapy and
chemotherapy are of marginal benefit. In other types of
cancer, new therapies are being developed that take
advantage of our knowledge of cancer pathogenesis to
interfere with the activity of specific oncoproteins believed
to be important in disease causation. Because these
approaches are being considered for thyroid cancer, I will
briefly describe in this review examples of recent break-
throughs in medical therapy of certain hematological
malignancies and some solid tumors using drugs that work

in this fashion, focusing in particular on compounds that
block the enzymatic activity of specific tyrosine kinase
oncoproteins. It should be noted, however, that cancers
commonly harbor mutations or other disruptions of many
genes, each of which could conceivably play a role in
disease pathogenesis. This makes the choice of molecular
target a difficult and critical decision if these approaches
are to succeed. Here I will argue that priority should be
given to blocking the function of oncoproteins activated
early in tumor development. We have a fairly good
understanding of the genetic changes involved in thyroid
cancer initiation, and hence these cancers may prove to be
particularly well suited for oncoprotein-specific therapies.
Journal of Endocrinology (2004) 183, 249–256

The emerging field of targeted cancer therapies

Targeted cancer therapies attempt to disrupt pathways that
are inappropriately activated in cancer cells while leaving
normal cells relatively unscathed. Although we still
have limited clinical experience with these agents, there
has been enough time to draw some useful conclusions.
The most notable initial success has been with Gleevec
(imanitib) in Philadelphia chromosome/BCR-ABL (+)
chronic myelogenous leukemia (CML) (Druker et al.
2001). The BCR-ABL translocation results in expression
of a BCR-ABL fusion protein, leading to constitutive
activation of abl kinase activity and unregulated prolifer-
ation and survival of a primitive hematopoietic cell clone.
Imanitib is a relatively selective inhibitor of abl kinase, and
induces high rates of remission in patients with CML.
Imanitib is also effective in patients with gastrointestinal
stromal tumors, which are associated with activating

mutations of the tyrosine kinase (TK) receptor C-KIT
(Heinrich et al. 2000, Joensuu et al. 2001), and for
metastatic dermatofibrosarcoma protuberans, believed to
be dependent on the activity of the platelet-derived
growth factor receptor kinase. In both cases, imanitib has
been shown to have potent inhibitory activity on the
activity of these receptor kinases, likely explaining
the beneficial effects in patients with these conditions.
Another success story in targeted therapies is that of
patients with acute promyelocytic leukemia associated
with a chromosomal translocation leading to expression of
the PML-RAR� fusion protein, leading to overexpression
of the retinoic acid receptor �. A significant proportion of
these patients respond well to treatment with all-trans
retinoic acid (ATRA) (Fenaux et al. 2000). Despite
these favorable results, numerous other compounds have
failed at early phases of clinical development, dampening
some of the initial enthusiasm with targeted therapies
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(Katsnelson 2004). Some of the difficulties encountered
likely stemmed from inappropriate choice of molecular
targets, undesirable side effects or problems with trial
design.

Target selection: role of tumor-initiating events

A notable feature of some of the early successes in targeted
therapies is that compounds such as imanitib and ATRA
inhibit the activity of gene products believed to be early
events in tumorigenesis. Thus, BCR-ABL and PML-
RAR� are thought to occur early in leukemogenesis
(Brown et al. 1997). Their central role in leukemia
development is demonstrated by their ability to induce
myeloid proliferation when selectively overexpressed in
myelocytes of transgenic mice. Recent studies in patients
with CML who developed resistance to treatment with
the abl kinase inhibitor imanitib showed that many of
these had selected and/or acquired tumor clones with
point mutations coding for substitutions within the
imanitib-binding pocket of BCR-ABL, which interfered
with binding and conferred resistance to the antagonist
(Hochhaus et al. 2002, Shah et al. 2002). This illustrates
two important points. First, that when placed under
selective pressure, CML has potential for recurrence by
reactivating the same pathway involved in tumor develop-
ment (i.e. abl kinase activation) through acquisition of new
somatic mutations. Secondly, that the abl kinase is indeed
a major driving influence required for survival and expan-
sion of the tumor clone. Because of these considerations, it
is possible that oncoproteins implicated in tumor initiation
may be particularly well suited as targets for development
of inhibitory compounds. This is not to say that interfering
with initiation events is all that will be needed, since it
may ultimately be necessary to use combination therapies
to block multiple pathways. We propose that oncoproteins
activated by tumor-initiating mutations are likely to re-
main essential drivers of tumor expansion even after
accumulation of numerous additional genetic changes.
This premise, which has major implications for the poten-
tial effectiveness of targeted therapies, remains to be
proven as a general principle, and in specific tumor types.

Tumor-initiation events in thyroid cancer: the
RET/PTC oncogenes

Thyroid cancers stand out among solid tumors because
many of the tumor-initiating genetic events have been
identified. Notable among them are the RET/PTC
oncogenes, which are believed to play a causative role in
the pathogenesis of a significant proportion of papillary
carcinomas of the thyroid (PTC), in particular those
arising after radiation exposure, and in pediatric cancers.
Chromosomal rearrangements linking the promoter and
N-terminal domains of unrelated gene/s to the C-terminal

fragment of RET result in the aberrant production of a
chimeric form of the receptor in thyroid cells that is
constitutively active (Santoro et al. 2002). Several forms
have been identified that differ according to the 5� partner
gene involved in the rearrangement, with RET/PTC1
and RET/PTC3 being the most common. RET/PTC1 is
formed by a paracentric inversion of the long arm of
chromosome 10 leading to fusion of RET with a gene
named H4/D10S170. RET/PTC3 is also a result of an
intrachromosomal rearrangement and is formed by fusion
with the RFG/ELE1 gene. Multiple lines of evidence
point to RET/PTC as one of the key first steps in thyroid
cancer pathogenesis (Fig. 1): (i) Thyroid-specific over-
expression of either RET/PTC1 (Jhiang et al. 1996,
Santoro et al. 1996) or RET/PTC3 (Powell et al. 1998) in
transgenic mice leads to development of tumors with
histological features consistent with papillary thyroid
carcinoma, indicating that these oncoproteins can recreate
the disease in an animal model. (ii) There is a high
prevalence of RET/PTC expression in occult or micro-
scopic PTC (Viglietto et al. 1995, Sugg et al. 1998, Corvi
et al. 2001), pointing to the activation of this oncogene at
early stages of tumor development. (iii) Exposure of cell
lines (Ito et al. 1993) and fetal thyroid explants (Mizuno
et al. 1997) to ionizing radiation results in expression of
RET/PTC within hours, supporting a direct role for
radiation in the illegitimate recombination of RET. (iv)
The breakpoints in the RET and ELE1/RFG genes
resulting in the RET/PTC3 rearrangements of radiation-
induced pediatric thyroid cancers from Chernobyl are
consistent with direct double-strand DNA break resulting
in illegitimate reciprocal recombination (Nikiforov et al.
1999). Moreover, the H4 and RET genes, although lying
at a considerable linear distance from each other within
chromosome 10, are spatially juxtaposed during interphase
in thyroid cells and presumably present a target for
simultaneous double-strand breaks in each gene after
ionizing radiation, thus giving rise to the RET/PTC1
rearrangement (Nikiforova et al. 2000). These data provide
evidence that ionizing radiation, the major risk factor for
development of papillary thyroid cancer, can directly
induce RET recombination events, and link environ-
mental events to tumor initiation through this genetic
pathway.

Mapping of signaling pathways used by RET/PTC
to induce thyroid cell transformation provides
clues for discovery of new thyroid oncogene

The RET/PTC rearrangements result in illegitimate ex-
pression of chimeric proteins consisting of an N-terminal
fragment donated by one of the heterologous gene partners,
fused to the intracellular TK domain of RET. The fusion
proteins dimerize in a ligand-independent manner due to
motifs present in the N-terminal domains. This results in
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constitutive activation of the TK function of RET, auto-
phosphorylation at selected tyrosine residues, and initia-
tion of intracellular signaling by engagement with effectors
through specific tyrosine-phosphorylated domains of the
receptor. Three RET protein variants (RET9, RET43
and RET51) have been shown to be generated by
alternative splicing. They have identical primary structures
until amino acid 1063, followed by unique C-terminal
sequences (Myers et al. 1995). Three sites of tyrosine
phosphorylation are common to all these variants, and
have been shown to function as docking sites for signaling
molecules. pY905 mediates the recruitment of the SH2
domain-containing proteins Grb7 and Grb10. Phospho-
lipase C � associates with RET via pY1015 (Borrello et al.
1996), and Shc and Frs2 interact with pY1062 (Arighi
et al. 1997, De Vita et al. 2000, Melillo et al. 2001).
Regardless of its phosphorylation state, Y1062 also inter-
acts with the Enigma protein, which targets RET/PTC
isoforms to the inner surface of the plasma membrane
(Durick et al. 1998). Several investigators have explored
the contribution of signaling effector pathways activated
via Y1062 of RET on cell growth and transformation,
primarily in NIH3T3 cells and in the rat pheochromo-
cytoma cell line PC12 (Asai et al. 1996, De Vita et al.

2000, Segouffin-Cariou & Billaud 2000). In these cells,
RET-Y1062, acting via either PI3K or MAPK, is re-
quired for the effects of RET on cell transformation,
survival and migration. In thyroid follicular cells, RET/
PTC requires Y1062 (for clarity, amino acid numbering
corresponds to that of wild-type RET) to activate Shc-
Ras-Raf-Mek-Erk, and this pathway is in turn required
for RET/PTC-dependent stimulation of DNA synthesis
(Knauf et al. 2003).

Buckwalter et al. (2002) investigated the contribution of
these signaling pathways to RET/PTC1-induced thyroid
tumor formation in vivo by characterizing transgenic mice
expressing thyroid-targeted RET/PTC1 mutants with
phenylalanine substitutions at either Y905, Y1015 or
Y1062. Tumor formation was significantly decreased in all
of the mutants, but in particular by RET/PTC1 Y905F.
This points to significant contributions mediated by all
of these pathways to RET/PTC-induced thyroid cell
transformation. The interpretation of these experiments
is complicated by the fact that RET/PTC expression in
thyroid cells causes primary hypothyroidism through
impaired expression of many of the specialized proteins
required for thyroid hormonogenesis, and the degree
of hypothyroidism and of the consequent thyrotropin

Figure 1 RET/PTC rearrangements are involved in papillary thyroid carcinoma initiation. Several lines of evidence support the concept
that RET/PTC is an early genetic event predisposing to development of papillary thyroid cancer. (A) Thyroid-specific expression of
RET/PTC1 (Jhiang et al. 1996, Santoro et al. 1996) or RET/PTC3 (Powell et al. 1998) in transgenic mice result in development of tumors
with cellular features resembling papillary thyroid carcinoma. (B) RET/PTC expression is detected in human thyroid micropapillary
carcinomas (Viglietto et al. 1995, Sugg et al. 1998, Corvi et al. 2001). (C) External irradiation of human thyroid fetal explants and human
carcinoma cell lines results in detectable RET/PTC rearrangements after short time intervals (Ito et al. 1993). Elements of this Figure are
reproduced with permission from Powell et al. (1998) and Corvi et al. (2001).
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elevation may have varied in severity between the mice
expressing the different RET/PTC mutants. Neverthe-
less, this study indicates that none of these RET/PTC
tyrosine residues alone is absolutely required for tumor
formation, and all appear to contribute to some extent to
the ultimate phenotype.

By contrast, in vitro data in thyroid cells point to an
absolute requirement of Y1062 for RET/PTC-induced
dedifferentiation, as determined by decreased expression of
thyroid-specific gene products such as the sodium iodide
symporter, thyroglobulin or PAX-8. RET/PTC-mediated
dedifferentiation requires activation of Shc-RAS-RAF-
MAP kinase (Knauf et al. 2003), thus providing a good

rationale to explore the contribution of mutations of other
effectors in this pathway to thyroid cancer pathogenesis
(Fig. 2).

B-RAF: the most prevalent thyroid oncogene

There are three isoforms of the serine-threonine kinase
Raf in mammalian cells: A-Raf, B-Raf, and C-Raf or
Raf1. C-Raf is expressed ubiquitously, whereas B-Raf is
expressed at higher levels in hemopoietic cells, neurons
and testis (Daum et al. 1994). B-Raf is also the predomi-
nant isoform in thyroid follicular cells (L Zhang, N

Figure 2 Mutations of three genes that signal in tandem implicate constitutive activation of the Ras-RAF-MAP kinase pathway in PTC
pathogenesis. Several in vitro studies point to a critical role of RET Y1062, signaling via Ras and Raf, in cell transformation and thyroid
cell dedifferentiation. Recent analysis of human papillary thyroid cancers demonstrate the presence of mutually exclusive mutations of
either RET/PTC, RAS or BRAF, with little overlap between them, providing compelling genetic evidence for the critical role of this
pathway in pathogenesis of these cancers.
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Mitsutake, J A Knauf & J A Fagin, unpublished observa-
tions). Although all Raf isoforms activate MEK phos-
phorylation, they are differentially activated by oncogenic
Ras. In addition, B-Raf has higher affinity for MEK1 and
MEK2 and is more efficient in phosphorylating MEKs
than other Raf isoforms (Peyssonnaux & Eychene 2001).
BRAF somatic mutations were recently reported in a high
proportion of benign nevi (Pollock et al. 2003) and
malignant melanomas (Davies et al. 2002), and in a smaller
subset of colorectal and ovarian cancers (Davies et al.
2002). A total of 98% of the mutations in melanomas
resulted from thymine-to-adenine transversions at nucleo-
tide position 1796, resulting in a valine-to-glutamate
substitution at residue 600 (V600E), formerly designated as
V599E. Recent resolution of the crystal structure of the
wild-type and B-Raf V600E kinase domains helps under-
stand the mechanisms of mutational activation of the
protein (Wan et al. 2004). B-Raf exhibits the characteristic
bilobar structure of protein kinases. In its inactive confor-
mation, B-Raf residues G596-V600 in the activation loop
form hydrophobic interactions with residues G464-V471
in the ATP-binding site (P loop), resulting in a structure
that is not aligned for binding to ATP or substrate.
Oncogenic mutations in the activation loop or the P loop
disrupt their interaction and destabilize the inactive con-
formation. Most, but not all of known oncogenic B-Raf
substitutions allow the formation of new interactions that
fold the kinase into a catalytically competent structure
(Dhillon & Kolch 2004). Paradoxically, some of the
oncogenic Braf mutants impair in vitro kinase activity
(Wan et al. 2004). Despite this, these low-activity kinase
Braf mutants induce ERK phosphorylation, which is due
to activation of Raf1, presumably by heterodimerization
(Wan et al. 2004).

The BRAFT1796A mutation is the most common
genetic change in PTC, and present in about 36–69% of
cases (Cohen et al. 2003, Fukushima et al. 2003, Kimura
et al. 2003, Namba et al. 2003, Nikiforova et al. 2003,
Soares et al. 2003, Xu et al. 2003, Trovisco et al. 2004).
BRAFT1796A mutations are unique to PTC, and not found
in any other form of well-differentiated follicular neoplasm
arising from the same cell type. There is practically no
overlap between PTC with RET/PTC, BRAF or RAS
mutations, which altogether are found in about 70% of
cases (Kimura et al. 2003, Soares et al. 2003). The lack of
concordance for these mutations provides compelling
genetic evidence for the requirement of this signaling
system for transformation to PTC (Fig. 2). As these
signaling proteins function along the same pathway in
thyroid cells, this represents a unique paradigm of human
tumorigenesis through mutation of three signaling effec-
tors lying in tandem (Fig. 2). BRAF mutations can occur
early in development of PTC, based on evidence that they
are present in microscopic PTC (Nikiforova et al. 2003).
Moreover, PTC with BRAF mutations have more aggres-
sive properties, present more often with extrathyroidal

invasion and at a more advanced clinical stage. The
tall-cell variant papillary thyroid cancers, widely regarded
as more aggressive, have a particularly high prevalence of
BRAF mutations (Nikiforova et al. 2003). Undifferenti-
ated or anaplastic carcinomas arising from preexisting
papillary thyroid cancers have a significant prevalence of
BRAF mutations, whereas those arising from preexisting
follicular carcinoma do not (Namba et al. 2003, Nikiforova
et al. 2003). These data indicate that BRAF mutations
may be an alternative tumor-initiating event in papillary
thyroid cancer, and that tumors with this genotype carry a
less favorable prognosis. The role of oncogenic Braf as a
tumor-initiating event has been confirmed in mice with
targeted expression of BRAFV600E in thyroid cells. These
animals develop papillary thyroid cancers with high
penetrance early in life, and progress to dedifferentiation,
capsular and microvascular invasion, confirming many of
the features found in the human tumors (J A Knauf,
N Mitsutake, L Zhang, Y E Nikiforov & J A Fagin,
unpublished observations).

Small molecule kinase inhibitors in thyroid cancer

Protein kinases are involved in transmitting intracellular
signals that eventuate in all biological properties of cancer
cells, including growth, survival, motility, invasion and
metastasis. It is no surprise that these signaling effectors
have been considered prime targets for interference by
anticancer therapies. This approach, initially greeted with
skepticism because of concerns of lack of specificity due to
common catalytic mechanisms and structural similarity
between kinases, has now shown clinical value with the
emergence of the abl kinase inhibitor imanitib. Most of the
protein kinase antagonists in development are directed
towards the ATP-binding site. However, there are other
potential approaches to inhibit specific kinases, by inter-
fering with expression of the kinase, folding of the mature
protein or interaction with substrates (Dancey & Sausville
2003). Among solid cancers, thyroid carcinomas represent
a particularly promising paradigm for targeted therapy
because some of the key oncogenic events are activating
mutations of genes coding for TKs, and these occur early
in cancer development.

RET is a logical target for selective inhibition in both
medullary and papillary thyroid cancers. Several groups
have published preclinical studies with compounds show-
ing inhibitory effects on RET kinase activity at low
nanomolar concentrations, and impairment of cell growth
in vitro and in mouse xenografts (Carlomagno et al.
2002a,b, 2003, Lanzi et al. 2003, Strock et al. 2003)
(Table 1). At least one of these compounds, ZD6474,
originally developed as an anti-angiogenic agent through
its inhibition of the vascular endothelial growth factor
receptor KDR (Hartman et al. 2002), is now entering
clinical trials for patients with medullary thyroid cancer.
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B-Raf represents an attractive target for treatment of
papillary thyroid cancers because of its possible role in
tumor initiation, its high prevalence, and its association
with tumors presenting at an advanced stage. The com-
pound BAY43–9006 is a potent and effective Raf inhibi-
tor in vitro and in mouse xenografts, and is presently in
clinical trials for other forms of cancer (Karasarides et al.
2004). Other Raf inhibitors, in the form of small molecule
kinase inhibitors as well as antisense oligonucleotides, are
also in development (Dancey & Sausville 2003). In due
course it is likely that at least one of these compounds or
others with similar properties will be tested in patients
with advanced papillary thyroid cancer. It should be noted
that other signaling pathways and molecular targets
(Braga-Basaria et al. 2004), although not directly activated
through genetic mutations, may prove to be crucial
for thyroid cancer progression and thus appropriate for
targeted inhibition.

Conclusions

We are finally seeing the emergence of new approaches for
development of thyroid cancer therapies, and there is
reason for optimism that we may soon have new options
for our patients. A note of caution is still in order. The
activity of the oncogenic kinases may no longer be
required once the tumors have progressed to highly
malignant cancers and accumulated numerous other
genetic changes. Some have suggested that at least some
thyroid cancers may not be entirely clonal for the mutated
kinase, raising the prospect of resistance to therapy. The
latter can also take place through somatic development
of new mutations within the respective kinase genes,
rendering the oncoproteins resistant to the inhibitory
compounds. Certain mutations of BCR-ABL, including
some resulting in substitutions within the imanitib-contact
sites in the ATP-binding pocket, have been associated
with imanitib resistance and CML recurrence (Hochhaus
et al. 2002, Shah et al. 2002). In the case of RET, an
oncogenic point mutation in codon 804 present in some

patients with MEN2 is associated with resistance to many
of the known RET antagonists (Carlomagno et al. 2004).
Finally, inhibition of kinase activity may induce cyto-
static effects rather than cell death, and/or require
co-administration of other therapies for beneficial effects
to manifest.
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