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Discovery of new pharmaceutical substances is currently boosted by the possibility of

utilization of the Synthetically Accessible Virtual Inventory (SAVI) library, which includes

about 283 million molecules, each annotated with a proposed synthetic one-step route

from commercially available starting materials. The SAVI database is well-suited for

ligand-based methods of virtual screening to select molecules for experimental testing.

In this study, we compare the performance of three approaches for the analysis of

structure-activity relationships that differ in their criteria for selecting of “active” and

“inactive” compounds included in the training sets. PASS (Prediction of Activity Spectra

for Substances), which is based on a modified Naïve Bayes algorithm, was applied since

it had been shown to be robust and to provide good predictions of many biological

activities based on just the structural formula of a compound even if the information in

the training set is incomplete. We used different subsets of kinase inhibitors for this case

study because many data are currently available on this important class of drug-like

molecules. Based on the subsets of kinase inhibitors extracted from the ChEMBL 20

database we performed the PASS training, and then applied the model to ChEMBL 23

compounds not yet present in ChEMBL 20 to identify novel kinase inhibitors. As one may

expect, the best prediction accuracy was obtained if only the experimentally confirmed

active and inactive compounds for distinct kinases in the training procedure were used.

However, for some kinases, reasonable results were obtained even if we used merged

training sets, in which we designated as inactives the compounds not tested against the

particular kinase. Thus, depending on the availability of data for a particular biological

activity, one may choose the first or the second approach for creating ligand-based

computational tools to achieve the best possible results in virtual screening.
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INTRODUCTION

Discovery of novel pharmaceutical agents with improved safety
and efficacy is the perpetual task of medicinal chemistry
(Pammolli et al., 2011). In addition to the traditional methods
of chemical synthesis and pharmacological studies of various
drug-like substances, in recent years substantial attention has
been paid to the analysis of the general chemical-biological
space (Lipinski and Hopkins, 2004; Baell and Holloway, 2010;
Bon and Waldmann, 2010; López-Vallejo et al., 2012; Deng
et al., 2013; Medina-Franco et al., 2013; Buonfiglio et al., 2015;
Rodriguez-Esteban, 2016; Horvath et al., 2017). Such approaches
significantly increase the diversity of the studied chemical
libraries as well as the chances to identify the pharmaceutical
agents interacting with multiple molecular targets and causing
additive or synergistic desired pharmacological action (Sidorov
et al., 2015; Lauria et al., 2016).

Nowadays, available chemical libraries can be divided
into four categories: (1) databases containing information
about structure and properties of publicly disclosed chemical
compounds, e.g., PubChem (Li et al., 2010; Wang Y. et al.,
2014) and ChEMBL (Bento et al., 2014); (2) databases containing
information about structure of commercially available chemical
samples, e.g., ZINC (Sterling and Irwin, 2015); (3) databases
of virtually generated structures comprehensively covering the
particular chemical space, e.g., GDB-17 (Ruddigkeit et al., 2012);
(4) databases of virtually generated, synthetically accessible,
structures with data on starting materials and proposed synthetic
routes, e.g., SAVI (Synthetically Accessible Virtual Inventory)
(Pevzner et al., 2017). Although GDB-17 is one of the largest1

currently known libraries of chemical structures containing
166.4 billion possible molecules up to 17 atoms of C, N, O,
S, and halogen, SAVI looks more attractive for utilization in
drug discovery because of the synthesability of its molecules.
Furthermore, it was shown (Pevzner et al., 2017) that the overlap
between the 93 million structures from PubChem with the 238
million SAVI database is only about 0.03%. Thus, SAVI represents
a significant previously unexploited reservoir of novel structures,
presumably useful for drug discovery.

To reveal the hidden pharmacological potential of the
synthesizable molecules from SAVI, computer-aided virtual
screening could be applied (Jorgensen, 2004; Nettles et al.,
2006; Bajorath, 2014; Fujita and Winkler, 2016; Lee et al.,
2016). Although structure-based methods are widely used now,
ligand-based methods have important advantages (Leelananda
and Lindert, 2016). In several case studies, machine learning
approaches were shown to surpass the performance of both
chemical similarity assessment and reverse docking (Anusevicius
et al., 2015; Druzhilovskiy et al., 2016; Murtazalieva et al., 2017).

Thus, it is reasonable to analyze the probable biological
activity of SAVI molecules using our computer program PASS

1The Danish biopharmaceutical company Nuevolution announced that it had
created a library of 40 trillion uniquemolecules (C&EN, 2017, 95: 28–33); however,
the web site (https://nuevolution.com/technology) states that the company enables
DNA encoded synthesis of billions of chemically diverse drug-like small molecule
compounds.

that recently received high marks: “One of the earliest and
most widely used examples of data-mining target elucidation is
the continuously curated and expanded Prediction of Activity
Spectra for Substances (PASS) software, which was assimilated
from the bioactivites of more than 270,000 compound-ligand
pairs” (Mervin et al., 2015). The PASS development started
more than 25 years ago (Poroikov et al., 1993; Filimonov
et al., 1995), and during this time its performance has
continuously and significantly improved. PASS in its 2017 version
predicts over 7,000 kinds of biological activity with an average
accuracy of 94% based on the analysis of structure-activity
relationships for more than 1 million known biologically active
compounds.

Initially, in the PASS training set a molecule is designated
as “active” if reliable information about some biological activity
is found in a authoritative source (publication in a peer-
reviewed journal, record in curated database, etc.); otherwise, it
is designated as “(conditionally) inactive.” This would seem to
be a reasonable approach as it has been found that if the same
set of chemical compounds is studied against the same molecular
target in the three different assays, only 35% of active compounds
completely coincided (Lipinski and Hopkins, 2004).

Since no one chemical compound has been tested for all
known biological activities, this may appear to be the incorrect
designation in some cases. However, it has been shown that PASS
provides reasonable estimates of structure-activity relationships
despite the incompleteness of information in the training set
on both chemical structures and biological activities, due to the
robustness of the Naïve Bayes approach in general (Rish, 2001;
Rennie et al., 2003) and the MNA descriptors and the biological
activity representation used in PASS in particular (Poroikov et al.,
2000).

Quantitative data on structure and activity of many chemical
compounds freely available from ChEMBL and PubChem
databases allow one to consider alternative approaches for
creating training sets that may improve the performance of
machine learning methods. Such possibilities were recently
considered in several studies (Heikamp and Bajorath, 2013;
Smusz et al., 2013; Kurczab et al., 2014; Afzal et al., 2015; Mervin
et al., 2015).

In this work we evaluated the PASS performance in virtual
screening for kinase inhibitors with training performed using
three approaches, which differ with respect to what compounds
were selected as inactives: (1) only experimentally validated
(“true”) inactives; (2) combining true and conditionally inactives;
(3) only conditionally inactives. The first and second approaches
have the drawback that they require enoughdata on true inactives.

These training strategies are both related to the multi-label
classification (Tsoumakas et al., 2010; Cherman et al., 2011; Afzal
et al., 2015) and positive unlabeled learning (Kilic and Tan, 2012),
because one and the same classifying object may simultaneously
belong to several categories [have multiple labels, i.e., inhibit
more than one kinase (Martin et al., 2011) in our case study]
and the problem of inactives’ selection may be solved using more
than one method. In contrary to various approaches of inactives’
selection described by the authors (Kilic and Tan, 2012), we used
only straightforward approaches, since in chemoinformatics we
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are forced to deal with extremely sparse data about ligand-protein
interactions and, thus, introduction of data about target-to-target
relations during the training may lead to strong overfitting.

The kinases were chosen for this study because of the strong
family ties among kinases that manifest themselves through
common structural features and predispose kinase inhibitors to
polypharmacological action (Knight et al., 2010; Gani et al., 2015;
Sidorov et al., 2015). Thus, the aforementioned differences in the
training set formation may lead to visible changes in the virtual
screening performance. Although this class of protein targets has
a privileged place in contemporary drug discovery and there are
thus many compounds that have been assayed against several or
even numerous kinases (Fedorov et al., 2007; Gao et al., 2013;
Christmann-Franck et al., 2016; Elkins et al., 2016), multitarget
action is found only for a small and diverse subset of the whole
chemical-biological space (Jasial et al., 2016).

Therefore kinases and their inhibitors represent an interesting
and challenging case that provides useful insights into the
influence of the multitarget action of chemical compounds
on the success of virtual screening studies (Merget et al.,
2017). Moreover, since the multitarget action is by definition
an attribute of thoroughly studied compounds, such as FDA-
approved drugs (Law et al., 2014), whereas most known
compounds are not thoroughly studied, our results may be
extrapolated to the target classes (Barelier et al., 2015; Munoz,
2017) less extensively studied compared to kinases, to help
achieve better results in virtual screening of a huge chemical
library.

MATERIALS AND METHODS

Brief Description of PASS
PASS (Filimonov et al., 2014) is a computer program for
analysis of structure-activity relationships (SAR) that allows
users to perform ligand-based virtual screening for ligands
of multiple targets and/or compounds with desired biological
activities (Abdou et al., 2017; James and Ramanathan, 2017;
Stasevych et al., 2017; Yildirim et al., 2017). Structures of
chemical compounds are represented in PASS as a set of 2D
atom-centric substructural descriptors called MNA (Multilevel
Neighborhoods of Atoms). It was previously shown that MNA
descriptors are suitable for implementation in a wide range
of qualitative (classification) SAR studies and reflect structural
features important for ligand–target interactions (Filimonov
et al., 1999). PASS predicts biological activity profiles for
chemical compounds in standardized representation: uncharged,
single-component, containing at least three carbon atoms, with
molecular mass not exceeding 1,250 Da. The majority of drug-
like molecules fulfill these conditions and clipping of the non-
drug-like compounds allows us to avoid dealing with non-specific
and atypical biological activities. The mathematical approach
of PASS is based on a naïve Bayes classifier and its particular
realization in PASS has been previously described in detail
elsewhere (Filimonov et al., 2014).

The result of PASS prediction is a list of probable biological
activities arranged in descending order of Pa-Pi values, where Pa
is the probability of belonging to the class of “actives,” while Pi is
the probability of belonging to the class of “inactives”. By default,

Pa-Pi > 0 is considered as the cutoff for discrimination between
“active” and “inactive” molecules. The result of PASS-based
virtual screening for a chemical library is the list of molecules
predicted as “actives”; and these could be recommended for
biological testing.

Training and Test Datasets
Data Acquisition
Every dataset used in this study was formed based on the data
contained in the ChEMBL database. We chose ChEMBL because
this is one of the largest freely available sources of experimental
bioactivity data, its data are well-organized and documented, they
are easy to acquire (via graphical web interface or API), and easy
to manipulate by setting-up a local version of the database. We
used the list of protein kinases and their IDs that is available
via the ChEMBL web interface by browsing targets by assigned
protein classes to select the subset of targets for this case study.

The training set of chemical structures and activities of
chemical compounds tested for inhibition of protein kinases was
extracted from the 20th version of the ChEMBL database. The
ChEMBL SQL-format file dump (dump itself and instructions are
available from here: ftp://ftp.ebi.ac.uk/pub/databases/chembl/
ChEMBLdb/releases/chembl_20/)was handled in MySQL, SQL
queries and PHP scripts were used to manipulate the data and
write them to external SD files. Basic validation and comparison
of the virtual screening performance were executed using 5-fold
cross-validation.

The external test sets contained data from the up-to-
date 23rd version of ChEMBL on structures and activities
not present in ChEMBL 20 (ftp://ftp.ebi.ac.uk/pub/databases/
chembl/ChEMBLdb/releases/chembl_23/). ChEMBL 23 contains
1 154 583 new data on activities, among which we searched
for those related to the targets involved in our study using the
following procedure:

- We extracted the list of pairs of identifiers of chemical
compounds and biological targets from both ChEMBL 20 and
23.

- Intersections between the lists (identical pairs) were excluded.
- We used the remaining pairs to perform virtual screening and
compare the results obtained using the three aforementioned
approaches.

Data Preparation
It is known that some noise and various contradictions are stored
in, and migrate from one source of bioactivity data to another,
along with correct records (Kramer and Lewis, 2012; Kalliokoski
et al., 2013; Tiikkainen et al., 2013; Papadatos et al., 2015). Thus,
it is necessary to filter the data before using them in order to
eliminate incorrect data and records that are inconsistent with
the goal of the virtual screening study (Fourches et al., 2016).
To achieve this goal, we used the procedures described in our
previous work (Pogodin et al., 2015) with slight differences,
designed to reflect the peculiarities of the targets selected for this
study.

Training data preparation
First, chemical structures were filtered to eliminate incorrect
molecular representations and to provide PASS with
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unambiguous (in the given feature space of MNA descriptors)
examples for training and validation. We used an in-house
command-line utility (SDF-check) to check structures for PASS
compatibility and remove unsuitable ones. In addition to this, we
identified structures having different ChEMBL IDs, but the same
sets of MNA-descriptors, i.e., equivalent structures. We treated
such structures as a single one. Thus, data on their activities were
joined together, and all structures except first one encountered
were deleted from the set.

After the filtering and preparation of the structures, data
on bioactivities were processed to remove unreliable and
inconsistent data points. In this study we used the following
endpoints: Ki, Kd, IC50, Potency—assessed as concentration of
compound that induces the given response; Activity, Inhibition
and Residual Activity—assessed as response of the kinase,
induced by the given concentration of the compound. In addition
to duplicates and incomplete records, the following data were
excluded:

- Records related to mutated kinases. Kinases with mutations
can have different sensitivity to inhibitors, i.e., quantitatively
they may really represent distinct targets, but in general they
do not have their own ChEMBL IDs. This fact, taken together
with the large number of different mutated forms, makes use
of such data difficult and redundant in the context of this
study.

- Records related to the (Q)SAR and docking studies of
kinase inhibitory activity without experimental validation
of the results provided. Unfortunately, calculated values
of kinase inhibitory activities may be found in databases
along with those measured experimentally, since data are
collected automatically using text mining procedures. Even
the subsequent curation of the collected data does not allow
removal of all questionable data due to the large amount of
diverse data.We searched for such records and excluded them,
since semi-supervised learning (Rosenberg et al., 2007) was
not planned to be studied in this work.

- Records where Activity, Inhibition, or Residual Activity values
were provided for a concentration other than 1µM.

- Records where activation of kinases was provided instead of
inhibition.

- Records related to non-standard types of action: inhibition
of unphosphorylated kinases (without ATP or prior to
ATP addition), allosteric and covalent inhibition, substrate-
competitive inhibition (PPI, [protein-protein interaction]).
Such cases were excluded since structure-activity relationships
for inhibitors of such types may differ (Cortés-Ciriano et al.,
2015; Bosc et al., 2017) from the ATP-competitive inhibitors,
which represent the majority of known inhibitors.

- Records where kinase inhibitory activities were assigned to the
compounds on the basis of their influence on the phenotype
of various cells and tissues. Biochemical studies are better
suited for the purpose of our study, since they allow to
precisely measure the effect of a chemical compound against
the particular protein kinase.

- Data on inhibition of non-human kinases were also excluded.

Measurements assessed as response of the kinase
(Activity, Inhibition, Residual Activity), induced by the

given concentration of a chemical compound were transformed
to Inhibition for convenience. The problem with the “Activity”
records is their ambiguity. Such records may mean both
Inhibition and Residual Activity. We clarified the meaning
based on the content of the assay description field. Residual
Activity and Inhibition are unambiguously connected (Residual
Activity = 100 − Inhibition) and it was easier for us to deal with
only one (Inhibition) type of measurement.

Records on the bioactivities were filtered semi-automatically,
utilizing the content of the “Description” field from the “Assays”
table. Distinct “Description” fields were reviewed and, in the
cases of detection of ambiguous data, analogous records were
found using suitable set of words or regular expressions. Thus,
identified suspicious entries were inspected using the original
publications and deleted, if the suspicions were confirmed.

To improve the validation reliability, we included in the study
only those kinases that had at least 100 actives and 100 inactives
(determined at the concentration 1µM). These limitations also
help with the creation of accurate classifiers, which may be used
for their primary purpose: to search for novel kinase inhibitors.
Attempts to balance sets in terms of actives to inactives ratio were
not conducted, not in the least because the assessment of the
difference in the quality of classifiers built on the training data
with a different ratio of actives to inactives was of interest, since
two of the studied approaches for the training set creation may be
considered as a method to fight skewed training data distribution
(Rennie et al., 2003).

After the filtering of the bioactivities, different measurements
of the inhibitory activity were used to create overall qualitative
assessments for each compound designating it as active or
inactive against the particular kinase. As it was mentioned
earlier, we had different types of data on activities in our set
for some compounds. Within these types (percentage of kinase
inhibition and compound concentration producing response),
median values were calculated in case a given kinase-ligand pair
had multiple assessments. If concentrations of compound were
available and it was less than or equal to 1µM, we designated
it as active against the particular kinase. In cases where data
on concentration of compound were absent we designated it
as active if inhibition of the particular kinase produced by this
compound was greater than or equal to 50%. Otherwise the
compound was designated as inactive.

Initially we extracted from ChEMBL 458 863 records on
kinase inhibition. After the completion of the all procedures
described above we were left with 173 275 data points on kinase
inhibitors evaluated relative to the cut-off value of 1µM (62 309
on true actives and 110 966 on true inactives at given cut-off).
These data characterize interactions of 55 162 compounds with
one or more of 152 human protein kinases selected for this study.
These kinases represent all major families of human kinases. Our
data cover a significant portion of the human kinome and allow
one to search for inhibitors for all kinase families (Figure 1).

External test data preparation
Preparation of the data for external test set was performed in the
same way as for the training set data, except for the following
differences:
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FIGURE 1 | Distribution of targets from the set over the human kinome tree. Illustration reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com).

- Chemical data were not filtered, since done automatically by
PASS.

- Potency was excluded from the list of the relevant activity
types, since the majority of such activity records do not
contain any data in the field “standard_relation.”

- Activity was excluded from the list of the relevant activity
types, since the majority of such activity records do not fulfill
the requirement of absence of mutations, and/or compound
concentration is not relevant to the selected cut-off.

- Nominimumnumbers for actives and inactives were imposed.

In total, we were able to identify 81 563 new activities against
the kinases involved in this study in the 23rd version of ChEMBL.
After filtering, 35 317 activities describing the action of 23 004
compounds against kinases remained.

Training set formation approaches
Filtered training set data on kinase inhibitors were stored in the
local MySQL database and used to create three different training
sets described below and presented in Figure 2. In addition,
each training set was divided into the five non-overlapping
and equivalent subsets for subsequent stratified 5-fold cross-
validation (5-f CV).

Individual sets (I-sets)
The tested compounds for each kinase were sorted from the most
active to the most inactive and, in this order, they were written to

the five SD files: the first compound in the rank was placed into
the first subset, the second compound into the second subset, the
fifth compound into the fifth subset, the sixth then again into the
first subset and so on; until each compound was placed into the
each corresponding subset. The subsets were created in this way
to be equivalent in terms of the total number of compounds and
similar to each other in the degree of inhibitory activity of the
placed compounds.

Merged actives and inactives set (MAI-set)
Then, we merged the first, second etc. subsets for each of the 152
kinases. If identical compounds were found in different subsets,
only the structural formula was retained with all its kinase
inhibiting activity data. As a result, we obtained 5 combined
MAI-subsets, which were equivalent to the I-subsets because
these subsets contained the same active compounds.

Merged actives set (MA-set)
This set was created in the same manner as MAI-set, but the true
inactives were excluded.

Quality Metrics
We used the following metrics to evaluate the results of our
ligand-based virtual screening of kinase inhibitors:

SENSITIVITY(RECALL) = TP/(TP + FN) (1)

SPECIFICITY = TN/(TN + FP) (2)
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FIGURE 2 | Scheme describing how the training sets were created in accordance with the different approaches. Initial data on kinase inhibitors are represented via

bipartite graph using all kinases and subset (∼ 6 000) of tested compounds. Initially for 152 kinases 5x152 I-sets had been created; then, MA- and MAI-set were

created as described in section Merged Actives and Inactives Set (MAI-set) and Merged Actives Set (MA-set).

BALANCED ACCURACY =
1

2
∗(

TP

TP + FN
+

TN

TN + FP
) (3)

PRECISION = TP/(TP + FP) (4)

F1 = 2 ∗
PRECISION ∗ RECALL

PRECISION + RECALL
(5)

ROCAUC = P
(

Rankactivei < Rankinactivei
)

in Uniform distribution (6)

BEDROC = P
(

Rankactivei < Rankinactivei
)

in exponential Probability Density

Function (PDF) with parameter α, IF α∗Ra << 1

(7)

Metrics (1–6) are appropriate for the evaluation of the
performance of the classification procedure, which determines
the upper limits of the virtual screening quality under

condition where every compound predicted as active is screened
experimentally.

Boltzmann-Enhanced Discrimination of Receiver Operating
Characteristic (BEDROC) (Truchon and Bayly, 2007) (Equation
7) represents the adaptation of ROC AUC metric to conditions
under which detection of maximal number of TPs in a certain top
fraction of the set is more important than general recognition.
Thus, it is designed to evaluate the early detection rate, i.e., to
assess the quality of virtual screening under the limitation that
it is possible to evaluate experimentally only small fraction of
top rated compounds from the whole library. Parameter α in the
BEDROC AUC is inversely related to the size of the top fraction
that will contribute to 80% of the score value while the other 20%
will come from the assessment of the remaining part of the set.
Values of α that were used in this study, and the corresponding
top fractions of the sets, are given in Table 1.
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TABLE 1 | Values of BEDROC parameter α and corresponding top fractions of

sets.

Top fraction BEDROC α Actives rate α * actives rate

1.00% 160.9 0.001 0.161

3.00% 53 0.054

5.00% 32.2 0.032

8.00% 20 0.020

10.00% 16.1 0.016

16.10% 10 0.010

20.00% 8 0.008

Performance Assessments
Stratified 5-Fold Cross-Validation
The training data had been divided into the five subsets in such
a way that the average numbers of actives and inactives were
approximately equal in all subsets (Refaeilzadeh et al., 2009). Four
subsets from each set were used for the training, while one subset
was used as the external test set. This procedure was repeated five
times; each time a different subset was used as the external test
set. The main differences from the standard 5-fold CV were:

- Corresponding individual subsets were always used as test,
regardless of set type utilized for training.

- Compounds were placed into the subsets not on a random
basis, but according to their degree of inhibitory activity.

The overall scheme for performance evaluation is given in
Figure 3.

Such validation procedure provides reliable quality
assessments for classifiers, since every compound in the
test sets had experimental test results against a particular
kinase. Besides, such an approach provides the conditions for
comparison that are close to those observed in real research
projects when one tries to find novel activity for a compound
already included in the training set with some other activities.
Such situations occur in drug repurposing projects or in in silico
toxicological studies (Wang Y. J. et al., 2014).

The results of the predictions were assessed using the metrics
described in theMaterials andMethods section. Unfortunately, at
least one of them, BEDROC,may suffer from saturation. To avoid
this, the ration of actives to inactives for a set (Ra in Formula 7)
must be low enough to fulfill the condition given in Formula 7.

The condition of low fraction of actives in the set seems
acceptable and reasonable in the context of high throughput
screening, which typically provides a number of hits below 5%
(Murray and Wigglesworth, 2017). However, the data on kinase
inhibitors from our set do not fulfill this condition. Thus, the
saturation effect on BEDROC was expected to affect the results
of our study. To avoid BEDROC saturation, we implemented the
procedure of random sampling with replacement as realized in R
package mlr (Bischl et al., 2016) applied to the prediction results.
We undersampled the portions of actives and oversampled the
portions of inactives for each kinase. Factors to under- and
oversample actives and inactives were chosen in such a way that
numbers of actives and inactives in the resampled set became

equal to approximately 60 and 60 000, respectively (Formulae 8,
9). Thus, we maintained the same actives rate in the resampled
sets, which was chosen to be approximately 0.001. This rate is low
enough to calculate BEDROC values for each α level selected for
this study without the risk of saturation.

Factor actives = 60/Number of actives (8)

Factor inactives = 60 000/Number of inactives (9)

The resampling procedure was repeated 5 000 times
for each type of sets and each kinase to achieve statistical
significance in the subsequent assessment of differences
between the results. BEDROC values were calculated on the
resampled data using the R package enrichVS (http://cran.
r-project.org/web/packages/enrichvs/index.html) for each
resampled set. ROC AUC was also calculated using the R
package pROC (Robin et al., 2011). To increase the speed of
obtaining resampling results, we performed calculations in
parallel mode using R package “parallel” (https://stat.ethz.ch/
R-manual/R-devel/library/parallel/doc/parallel.pdf). Values of
the classification quality metrics achieved in cross-validation
and training set composition could be found in Supplementary
Table 1.

Virtual Screening of the External Test Set
Prepared data from 23rd version of ChEMBL was used for
forming the test sets according to the procedure used for
preparation of the training I-sets. During the external validation
(Chen et al., 2012) with these sets we calculated BEDROC values
for the resampled prediction results. Values of the classification
quality metrics achieved in external validation and training set
composition could be found in Supplementary Table 2.

Comparison of the Results Obtained Using
Different Training Approaches
The Tukey honest significant difference (HSD) test was used
along with the analysis of variance to compare the quality of
the created PASS classifiers based on the different types of
training sets. These quality parameters include BEDROC for
the resampled results; sensitivity, specificity, balanced accuracy,
precision, F1 score and ROC AUC for the original results.
The analysis was performed at a P-value < 0.05 using the
functions “aov” and “TukeyHSD” from the R standard library.
This provides the ranked lists for three PASS classifiers, which
allows one to evaluate their performance.

RESULTS

Stratified 5-Fold Cross-Validation
All classification metrics values averaged over all kinases except
the sensitivity values were slightly higher for the results achieved
by classifiers trained on I-sets. Statistical analysis indicates that
results obtained using the I-sets differ significantly from those
obtained with the MA and MAI sets (Figure 4). The results of
classifiers trained on the MA- and MAI-sets do not differ at the
given level of significance from each other.
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FIGURE 3 | Scheme for performance evaluation. I-subset was always used as a test set, thus corresponding MA- and MAI-subsets were just excluded from training.

FIGURE 4 | Comparison of the results obtained using different types of sets.

Results that are significantly different (P-value < 0.05) from one another are

colored by distinct shades of gray. Results were obtained using stratified 5-f

CV. Points correspond to the results achieved for the distinct kinases, shape of

the points corresponds to the type of the training set.

We used the resampled results to calculate values of BEDROC
at different degrees of early recognition of TP (via varying values
of α). These values were grouped according to the types of sets
used for the training, and then averaged over the kinases in a
manner similar to the way the original results were obtained.
Statistical analysis of these data shows that classifiers trained
on I-sets significantly outperform classifiers trained on MAI-sets
and those, in turn, outperform classifiers trained on MA-sets
(Figure 5) for any α value used in the study.

Also, using the resampled results, we were able not only to
compare different approaches for the training by averaging values
of the selected metrics across kinases, but to select the most
adequate approach for each kinase individually. This was because

FIGURE 5 | Comparison of BEDROC values of resampled results for different

kinases. In this case results obtained using different type of training sets were

significantly different from each other (P-value < 0.05) for any value of α.

Results were obtained using 5-f CV.

after the resampling procedure repeated 5,000 times, we had
enough data points to estimate the statistical significance. Such
estimation was performed as follows: at the level of the P-value
chosen earlier, less than 0.05, we found that for most of the
kinases the best approach for training is to use I-sets; nonetheless,
for some kinases it is better to use MA- or MAI-sets (Figure 6)
according to our evaluation. In total, we depicted 13 kinases for
which the classifiers trained using MA- or MAI-sets performed
better in early recognition of TP at at least three levels of α.

Virtual Screening of External Test Set
Since we did not impose any limitations on the number of actives
and inactives in our external test set, we were not able to calculate
values for all the metrics for each kinase. We excluded such
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FIGURE 6 | Kinases for which inhibitors may be found at top ranks using MA- or MAI-training sets, according to the evaluation based on the resampling technique

(P-value < 0.05). Empty cells correspond to the cases where I-sets still perform better. Illustration reproduced courtesy of Cell Signaling Technology, Inc. (www.

cellsignal.com).

kinases before averaging the values of the classification metrics
across the different training approaches, thus only results for 128
kinases were compared.

The main conclusions of the comparison of Specificity,
Balanced Accuracy, and AUC values are similar to those obtained
using 5-f CV: The training approach I provided significantly
better results than those introducing conditionally inactives (MA
and MAI). No significant difference for the other metrics was
found (Figure 7).

To compare the earliness of actives detection achieved
using different training approaches, we resampled results of
the inhibitory activity prediction for each kinase and calculate
BEDROC values. In this part of the study only results related to
kinases having at least 20 actives and 20 inactives in the external
test set were included. This restriction was imposed to exclude the
influence of extreme cases, where only few actives and inactives
exist. Despite the introduced restrictions, we were forced to
change the resampling protocol in some cases; if the kinase had
less than 60 actives, we used an oversampling procedure instead
of undersampling to make sure we had 60 actives.

The main result of the comparison of BEDROC values was
concordant to those obtained using 5-f CV: at each value of
the criterion α, training using I-sets led to the better results
than training performed using MA- or MAI-set, while MAI-sets
outperformed MA-sets (Figure 8).

FIGURE 7 | Comparison of the results obtained using different types of sets.

Results that are significantly different (P-value < 0.05) from one another are

colored in distinct shades of gray. Results were obtained using external test

set. Points correspond to the results achieved for the distinct kinases, the

shape of the points corresponds to the type of the training set.

Correlations Between the Values of Metrics
and Actives to Inactives Ratio in the Sets
We also analyzed the behavior of the employed accuracy metrics
for different actives/inactives ratios, to be sure that they give an
unbiased picture.

Frontiers in Chemistry | www.frontiersin.org 9 April 2018 | Volume 6 | Article 133

www.cellsignal.com
www.cellsignal.com
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Pogodin et al. Ligand-Based Virtual Screening Optimization

FIGURE 8 | Comparison of BEDROC values of the resampled results for

distinct kinases. In this case results obtained using different type of training

sets were significantly different from each other (P-value < 0.05) for any value

of α. Results were obtained using the external test set.

Values of Precision and F1-score were found to show
correlations with the actives to inactives ratio in the test sets.
Thus, we conclude that sets’ imbalance affects Precision and F1-
score values, while the other metrics are significantly more robust
(see Supplementary Figure 1), especially AUC and Balanced
Accuracy.

Applicability Domain Estimation
To estimate the applicability domain, we calculated the values
of the classification quality metrics for those cases where
compounds had a certain number of new MNA-descriptors not
found in the training set. In this case we merged the results over
all kinases to obtain sufficient numbers of data points.

We showed that in the case of the results achieved using I-sets
for training, the performance of the classifiers decreases linearly
with increasing number of new MNA descriptors. In contrast
to this, for the results achieved using MA- and MAI-sets for
training, we were unable to find a strong dependence between
the number of new MNA descriptors and the performance of
the classifiers. Still, these results should be treated with caution,
since the percentage of data points involved in this assessment
decreases drastically with increasing number of new MNA
descriptors, especially for the classifiers built using MAI- and
MA-training sets (see Figure 9).

In the case of the classifiers built using I-sets for training
we can judge that the applicability domain includes those
compounds which have 4 or fewer new MNA descriptors, since
the average balanced accuracy and AUC exceeded 0.7.

DISCUSSION

In contrast to the many contemporary studies in the field of
the virtual screening, in this work no decoys (Irwin, 2008) were
used to assess the enrichment achieved in virtual screening of
large datasets. Instead, validation and subsequent comparison
of the different training approaches were performed using only
experimentally tested compounds, both actives and inactives.

Today, due to the constant growth of available computational
resources and amount of bioactivity data, it is possible to
do this using 5-f CV and true external test sets. Moreover,
since negative influence of the conditionally inactive compounds
involved in training was shown, this makes us wonder: if
conditionally inactives can do harm during training, are decoys
good for testing? The exact answer is not known yet, but the
risk of reaching wrong conclusions may be mitigated by using
resampling-based approaches in parallel with, or instead of,
decoys.

Our study represents a quantitative assessment of the trade-
off between the initial requirements on the training data and
the quality of PASS-based virtual screening. We have shown that
the most efficient training approach for the ligand-based virtual
screening system is to use the true actives and inactives for each
target. This approach outperformed those where conditionally
inactive compounds were introduced, in both classification
quality and earliness of the detection. Moreover, in this case
we observe a strong dependence of the performance depending
on the number of new descriptors in the structures of the test
compounds.

According to the analysis of the data from our training set, the
higher the number of kinases for which compounds are tested,
the more activities are found. Thus, using MA and MAI sets for
training, some unknown actives could be treated as conditionally
inactives (Figure 10). This may shed some light onto the problem
of promiscuity of kinase inhibitors, which are often discussed as
polypharmacological drugs. However, analysis of the content of
bioactivity databases such as ChEMBL has shown that the average
degree of promiscuity of such compounds is not so high (Hu
et al., 2014). According to our results there is no contradiction
between these points of view: kinase inhibitors tend to show
promiscuity, but at the moment most of them have been studied
against only a rather limited number of kinases.

Nevertheless, using MA and MAI approaches, it is possible
to achieve good virtual screening results too, despite the softer
requirements on the amount and quality of the training data.
These approaches may be implemented in cases when only few
active compounds are known, even in the absence of inactives,
which helps expand the druggable target space and find new
modes of action for existing molecular targets.

From this perspective it is surprising that we also found 13
kinases for which virtual screening may be performed more
efficiently using training approaches introducing conditionally
inactive compounds. This means that using machine learning
it is easier to distinguish between inhibitors of these kinases
and compounds tested against other kinases, than between
their inhibitors and inactives at the given concentration cut-
off. This fact can possibly be explained by the systematical shift
in compounds selection for testing against these kinases. Also,
it may indicate the importance of small structural changes in
related targets leading to larger changes in inhibitor potency,
since these 13 kinases are diverse, they belong to different
families represented in our set and, in the case of other members
of their families, introduction of the conditionally inactive
compounds leads to the observed negative consequences. Thus,
we show that virtual screening performance may benefit from
the introduction of conditionally inactive compounds if these
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FIGURE 9 | Influence of the number of new descriptors in the structure of chemical compound on the quality of prediction. (A) Balanced accuracy and AUC assessed

using different types of training sets. (B) Percentage of data points characterizing by the different number of new descriptors.

compounds are unfamiliar to the main target. Unfortunately, this
knowledge is risky to apply to achieve better results in ligand-
based virtual screening, since our knowledge on target-target
relations mediated by common ligands are generally based on
sparse training sets.

We obtained rather good results of both external (quasi
prospective) and cross-validation. However, in case of data on
kinase inhibitors extracted fromChEMBL, one initially deals with
the pre-selected compounds studied in the appropriate biological
activity area, which provides good predictivity, particularly using
the approach based on individual sub-sets.

Big libraries like SAVI contain diverse and previously not
investigated chemical structures, including compounds other
than those possessing known ligand-related target signatures
(Sidorov et al., 2015). To achieve the best predictivity for
such library, it seems reasonable to make pre-selection with
the standard PASS approach using conditionally inactive
compounds. As we already mentioned above, PASS provides
satisfactory results of prediction despite the incompleteness of
data in the training set (Poroikov et al., 2000). Moreover, in
this work, we showed that classifiers created using the merged

training sets did not exhibit the significant dependence between
the prediction quality and the number of new MNA descriptors
contained in the predicted chemical structures.

Consequently, we propose two-steps procedure to analyze the
big and diverse chemical libraries. At the first step, pre-selection
is performed using the general classifier that took into account
the conditionally inactives. At the second step, one may more
thoroughly discriminate between the active hits and putatively
inactive structures using the specific classifier that is based only
on the real actives and inactives.

CONCLUSIONS

In this study, we compared the performance of three approaches
for the analysis of structure-activity relationships that differ in
their criteria for selecting “active” and “inactive” compounds for
the training sets. We used the program PASS to build classifiers
based on different subsets of kinase inhibitors extracted from
ChEMBL 20 (for training and 5f-CV) and ChEMBL 23 (for
external, quasi-prospective validation). The highest classification
and early recognition quality was obtained by using individual
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FIGURE 10 | Positive dependence between the number of tested kinases and number of inhibited kinases in the training set; (A) Relation for the whole set (weak); (B)

Relation for the fraction of compounds tested against less than 80 kinases (moderate); (C) Relation for the fraction of compounds tested against more than 80 kinases

(not observed). X–coordinates correspond to the number of chemical compounds against which compounds were tested, Y-coordinates corresponds to the amount

of kinase against which compounds were found to be active at given cut-off (1µM).

training sets for each kinase containing only experimental data.
Nevertheless, other training strategies can provide acceptable
results even in the absence of data on known inactives, which
is often the case with the novel targets (Russ and Lampel,
2005; Nguyen et al., 2017). We assessed the applicability domain
of our classifiers: while classifiers trained using individual sets
expose strong dependence of the prediction quality on the
predicted compounds’ novelty, training strategies employing
merged sets are much less sensitive to the novelty of predicted
compounds.

Taken together these findings allow us to suggest that
one can benefit most from using combinations of different
training strategies when exploring huge chemical libraries
containing diverse structures of unexplored chemical
compounds.
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