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Abstract

Entrainment, where oscillators synchronize to an external signal, is ubiquitous in nature. The transient time leading to
entrainment plays a major role in many biological processes. Our goal is to unveil the specific dynamics that leads to fast
entrainment. By studying a generic model, we characterize the transient time to entrainment and show how it is governed
by two basic properties of an oscillator: the radial relaxation time and the phase velocity distribution around the limit cycle.
Those two basic properties are inherent in every oscillator. This concept can be applied to many biological systems to
predict the average transient time to entrainment or to infer properties of the underlying oscillator from the observed
transients. We found that both a sinusoidal oscillator with fast radial relaxation and a spike-like oscillator with slow radial
relaxation give rise to fast entrainment. As an example, we discuss the jet-lag experiments in the mammalian circadian
pacemaker.
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Introduction

Biological rhythms are ubiquitous in nature and are found in

diverse systems, from spiking neurons to animal populations with

periods ranging from milliseconds to years. Our everyday life

exhibits many behavioral and physiological oscillations that

interact with the external fluctuating environment. Biological

pacemakers typically interact with other oscillators including for

example coupled rhythms of heart, respiration and movement [1],

vocal fold oscillations [2] and singing duets of birds [3]. These

interactions can lead to mutual synchronization as in the collective

blinking of fireflies [4] and entrainment in which oscillators

synchronize to a common signal. An example of this is the left and

right birdsong control nuclei HVc that show synchronization in

the absence of interhemispheric connections [5]. Another example

is the entrainment of plant-leafs movements to the light-dark and

cold-warm cycles [6]. Complex interactions between multiple

oscillators are observed in the mammalian suprachiasmatic

nucleus (SCN), where mutual synchronization and entrainment

are combined. These tiny nuclei situated in the anterior

hypothalamus are responsible for controlling endogenous circadi-

an rhythms. Many different body functions like sleep-wake cycles

and body temperature rhythms are regulated by centrally

generated neuronal and hormonal activities. The SCN consists

of two nuclei of about ten thousand densely packed neurons and

generates a stable robust period of about 24 h. The SCN has the

striking ability of fast reentrainment as observed in jet-lag type

experiments, where after an abrupt phase shift of 6 h, the SCN

can be almost completely reentrained within one cycle [7–9]. Also

from the induced loss of rhythmicity in SCN slices after

application of tetrodotoxin (TTX, a voltage gated sodium channel

blocker), the SCN cells resynchronize within one cycle [10]. When

TTX is applied, the oscillations are lost at a single cell level but

after washing TTX out, the cells start oscillating again in a

synchronized manner after 1 day. Such short transients times are

remarkable, bearing in mind the large number of coupled

oscillators involved and the diversity of their initial conditions

and periods [11,12]. How synchronization and entrainment

mechanisms work within the SCN neurons is one of the main

open problems in the field of circadian rhythms. Furthermore, in

jet-lag and shift work schedules, the reentrainment time is of major

relevance and has been associated to a number of diseases, ranging

from sleep disorders to cancer [13–15].

Several mathematical models of SCN cells have been proposed

with an increasing complexity (using 7 up to 73 differential

equations [16–18]), none of which describes the short reentrain-

ment times in detail. Our goal in this present paper is to unveil the

specific dynamics that can lead to ultrafast entrainment. We

present a generic model to characterize transient times leading to

entrainment. This model is governed by two basic properties of the

oscillator: (a) the radial relaxation timescale and (b) the phase

velocity distribution around the limit cycle. When an oscillator is

perturbed, the radial relaxation timescale determines the rate of

convergence back to the unperturbed amplitude and it can hence

be associated with robustness towards amplitude fluctuations. The

phase velocity distribution determines the waveform of the

oscillation.

Studying the transient time as a function of these two properties

will give us a general understanding of how fast can entrainment

be reached. Those two basic properties are inherent in every

oscillator and, therefore, such a concept can be applied to many

biological systems to predict the transient time to entrainment.
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Even more interestingly, one can infer properties of the underlying

oscillator from the observed transient times as we will show later.

Helpful insights derived from transients of an oscillatory system

have already been applied in heart cells studies [19]. Although we

focus on biological applications, the presented theory can be

applied to many other oscillatory systems undergoing entrainment.

Results

Timescales of entrainment
When a system is entrained, it reaches a stable phase relation

with the external rhythm and thus their phase difference becomes

constant (see Materials and Methods). The transient time it takes

to reach this stable phase relation depends on the initial conditions

(ICs), the entrainment signal and the properties of the oscillator.

An example of these transients for a generic circadian oscillator is

shown in Figure 1. Each initial condition has an associated initial

phase (see gray dots in Figure 1B and C), different initial phases

can lead to big differences in the transient time to entrainment.

Figure 1A shows the time evolution of two initial conditions,

ICslow and ICf ast, leading to a long transient (pink) and a short

transient (blue) respectively. This can also be observed in a phase

evolution plot where ICslow needs 8 days to achieve a stable phase

relation whereas ICf ast only 1 day (see Figure 1B). The

dependence on initial conditions for a specific circadian oscillator

model has already been studied [20]. A self-sustained oscillator is

Figure 1. Basic mechanisms involved in the entrainment of an oscillator. (A) Time series for two initial conditions, ICslow and ICfast, leading
to a long transient (pink) and a short transient (blue), respectively. The green bars represent the entrainment signal. (B) Phase evolution for both
initial conditions. ICfast entrain after 1 day while IC slow needs 8 days (fig. 1) (C) Oscillator limit cycle representation with 24 marked initial conditions
(gray). (D) Schematic representation of the entrainment region as a function of the entrainment amplitude and period (often termed 1:1 ‘‘Arnold
tongue’’). Gray scale represents different transients to entrainment zones within the entrainment region. The green dots represent the section of the
entrainment region (entrainment range) for a certain entrainment amplitude and in (E) their associated entrainment times are plotted as a function of
the entrainment period. Computational details of A,B and E are given in Materials and Methods.
doi:10.1371/journal.pone.0007057.g001
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able to entrain just to certain combinations of entrainment

amplitudes and periods that define the so-called entrainment

region or 1:1 ‘‘Arnold tongue’’ (see Figure 1D). In other words,

each entrainment amplitude entrains the system within a certain

period range, from a minimum Tminð Þ to a maximum Tmaxð Þ
entrainment period, known as range of entrainment. Typically, at

the borders of this entrainment region the transients leading to

entrainment are much longer than those at the center (see

Figure 1E). In the following we focus on those inherent properties

of the oscillator that determine the transients.

Generic oscillator model
As will be seen, our results indicate that two characteristics of

the oscillator determine the transients: the radial relaxation time

and the phase velocity around the limit cycle. To better illustrate

the dependence of transient times on these two properties, we

introduce a simple model oscillator that can mimic various

oscillators. We use a generic circular oscillator of radius 1 and

period 1 (arbitrary units) so the results can be easily rescaled to

other systems. As a specific model, we introduce a variation of the

Poincaré oscillator [21], given by

dr

dt
~lrn 1{rð Þ, ð1Þ

dw

dt
~f wð Þ~e cos2 pw

� �
zoffset: ð2Þ

This oscillator can be smoothly switched from a sinusoidal

shape to a spike-like oscillator, while the radial relaxation can be

independently controlled (see Figure 2). Equation 1 describes the

radial evolution and has a stable orbit at r~1, with a radial

relaxation controlled by the parameters n and l. For n~0 the

radial relaxation is exponential and for n§1 the radial relaxation

is nonlinear. For l%1 the radial relaxation time, tr~
1

l
, is long

and for l&1 the radial relaxation time is short, sometimes referred

to as ‘‘sloppy’’ and ‘‘rigid’’ oscillators respectively (see Figure 2E

and F). Equation 2 describes the phase evolution or, in other

words, the velocity around the limit cycle, where e controls the

velocity difference between the fastest (w~0) and slowest (w~0:5)

points. The ‘‘offset’’ is a small positive constant and guarantees

that the velocity is never zero (
dw

dt
=0). For e~0 (i.e.,

dw

dt
~offset),

there are no velocity variations along the limit cycle, and the

oscillator is sinusoidal (see Figure 2A and B). For e&1, we have

large velocity differences along the limit cycle, leading to a spike-

like behavior (see Figure 2C and D).

We use this generic limit cycle model instead of the widely used

phase models because amplitude dynamics will be of fundamental

importance in characterizing transients leading to entrainment. The

phase velocity around the limit cycle determines the temporal shape of

the oscillation (waveform), as illustrated in Figure 2B and D. The radial

relaxation rate l together with the degree of nonlinearity controlled by

the parameter n determines the timescale of convergence of perturbed

solutions to the limit cycle (see Figure 2E and F). It can be associated

with robustness towards amplitude fluctuations.

This oscillator, a modified Poincaré oscillator [21], belongs to the

class of radial isochron limit cycles (RILC) due to its radial

symmetry (see Materials and Methods). Many examples of useful

biological insights based on RILC’s can be found elsewhere

[1,21,22]. Here we use the Winfree definition of isochrons as lines

in phase space leading to the same asymptotic phase. Thus all initial

conditions located on the same isochron will reach the limit cycle

with the same phase [23]. The intersections of the isochrons and the

limit cycle trajectory are the temporal phase points (see the dots in

Figure 2A and C). In the case of RILCs, the isochron structure in

the whole phase space can be deduced from the distribution of

temporal phases. Thus a sinusoidal oscillator has equally distributed

phase points and isochrons (see Figure 2A). A spike-like oscillator,

on the other hand, makes a rapid excursion along the fast branch to

spend most of its time at the slow branch. This time scale separation

generates an asymmetric distribution of isochrons at the limit cycle

by compressing them around the slow branch (see Figure 2C). The

isochron distribution will be essential for the general understanding

of the transient time to entrainment. As mentioned, our model was

designed such that the phase velocity around the limit cycle and the

radial relaxation time can be independently controlled to explore

their influence on transients. For clarity, the oscillator will be

rescaled to a period of 1 day and entrained with pulse-like

perturbations of 1 h length. Square waveform oscillators, like the

van der Pol oscillator in the relaxation regime, are not captured by

this f wð Þ. In order to simulate square waveform oscillators a new

f wð Þ is introduced (see Figure S1 in Supporting Information).

Median time to entrainment
The time to entrainment depends strongly on the period ratio of

external and internal rhythms (detuning) and on the initial phase

(ICs). The internal period, such as the free-running period in

circadian biology, and phase of the oscillators are typically

unknown or difficult to measure. Therefore, we minimize the

effects of detuning and initial conditions by studying ensembles of

different external periods and initial phases. This allow us to

associate a characteristic STeT with specific properties of an

oscillator. The median time to entrainment STeT is the median

value of 12 different Te s. We use 12 different external periods

evenly distributed within the range of entrainment to calculate the

median as shown in Figure 1D and E. Additionally, for each

external period, Te is taken as the median time from 24 uniformly

distributed initial temporal phases (see Figure 1D). By taking both

medians, we reduce the dependence on initial condition and

entrainment period significantly (see Materials and Methods).

We start our results discussion with the exponential radial

relaxation case (n~0 in Equation 1) and describe the nonlinear case

at the end of this section. For the case of exponential relaxation, we

calculate the time to entrainment STeT for different oscillator types

using a broad range of values of phase velocity parameters e and of

radial relaxation rates l, such that STeT shows significant variations

(see Figure 3). The entrainment signal was generated with short and

medium-sized square periodic pulses. Specifically, we used 1 h pulse

length with an amplitude of 0.8. This leads to a ‘‘range of

entrainment’’ similar to that observed in rat locomotor activity

under light pulse entrainment 24+2hð Þ [24]. As mentioned above,

the ‘‘range of entrainment’’ refers to the range of periods that a self-

sustained oscillator is capable of entraining by a 1:1 frequency ratio.

According to Figure 3, the longest time to entrainment is found

when the limit cycle has a sinusoidal temporal pattern and if the radial

relaxation time is long (box 1 in Figure 3). The radial relaxation time,

tr~
1

l
, is in this case much longer than all other involved time scales:

external periods *24 hð Þ, endogenous period h) and pulse duration

(1 h). Such long radial relaxation times allow the entrainment pulses to

considerably perturb the trajectory of the limit cycle, leading to an

expanded entrained orbit (a representative scheme of the mechanism is

shown in Figure 4). Between the pulses, however, the system has not

enough time to relax back to the original unperturbed orbit. A

How to Entrain Fast?
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Figure 2. Limit cycle representations in phase space for a sinusoidal and spike-like oscillator together with their time series. (A)
Sinusoidal oscillator: limit cycle with 12 marked phase points (dots) and isochrons (rays). The intersection of each isochron with the limit cycle
determines the phase. (B) Temporal evolution of x variable with parameters e~0,offset~0:02. (C) Spike-like oscillator, where most isochrons are
concentrated in a small region of the limit cycle. (D) Temporal evolution of the x variable with parameters e~16,offset~0:02. Representations of both
oscillators (sinusoidal or spike-like) with short radial relaxation time (E) and long radial relaxation time (F) are also shown. Computational details are
given in Materials and Methods.
doi:10.1371/journal.pone.0007057.g002
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sinusoidal oscillator (e~0) implies equally distributed isochrons along

the limit cycle and thus all isochrons diverge symmetrically from the

limit cycle center. While the limit cycle expands, the isochrons spread

apart, so phase changes induced by the same pulse size decrease. The

phase change induced by a single pulse can be deduced from the

difference between the starting isochron, where the perturbation starts,

and the final isochron, where the trajectory is located after a given

perturbation (see pink arrows in Figure 4). The combination of limit

cycle expansion and equally distributed isochrons reduces the effect of

each pulse. Very few isochrons are crossed leading to smaller phase

changes per pulse. Consequently, it a rather long time to reach the final

stable phase. For illustrative purposes we use vertical pulses in Figure 4,

but similar features are observed with other types of entrainment

signals.

Surprisingly, the median time to entrainment STeT can be

reduced up to 12-fold in our parameter range by changing

independently e or l. Keeping l%1 but increasing e smoothly,

changes the sinusoidal waveform oscillator into a spike waveform

oscillator (see box 4 in Figure 3). The spike-like oscillator is also

known as relaxation oscillator due to its fast and slow branches.

Figure 3. Median times to entrainment SSSTeTTT as a function of the phase velocity distribution around the limit cycle eeeee and the radial
relaxation constant llllllll. Gray scale encodes the time to entrainment where black represents long STeT and white represents short STeT. Both axes
are plotted on logarithmic scales and n~0 in Equation 1. Computational details are given in the Materials and Methods.
doi:10.1371/journal.pone.0007057.g003

Figure 4. Representative sinusoidal and spike-like limit cycles with long radial relaxation time. Isochrons are represented as thin rays
and perturbation pulses as pink arrows. (A) Unperturbed sinusoidal limit cycle trajectory (dashed small circle) and the expanded entrained limit cycle
(solid large circle) for the sinusoidal oscillator. Initially the pulse generates a phase change up to 4 h, but later the pulse phase shift is reduced to less
than 0.5 h. (B) Unperturbed spike-like limit cycle trajectory (dashed small circle) and the expanded entrained limit cycle (solid big circle) for the spike-
like oscillator. Initially the pulse generates phase advances up to 14 h and, after some pulses, the phase shifts are still 8 h. The original limit cycle
(r0~1) expands here about 7 times. The lower panels show the characteristic time series pattern of a sinusoidal and spike-like oscillator.
doi:10.1371/journal.pone.0007057.g004
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The oscillator spends most of its time on the slow branch, so most

stimuli are received on this branch. Spike-like oscillators have

lower isochron divergence angles from the origin (see Figure 4B).

This small isochron divergence allows considerable phase shifts of

pulses despite the expansion of the limit cycle. This isochron

clustering and, consequently, their low divergence angles allow the

system to reach the final stable phase much faster.

As shown in Figure 3, an increase in the relaxation rate l leads to a

drastic reduction in the median transient time STeT as well. In this

case, the radial relaxation time is much shorter than the period keeping

the trajectory to the unperturbed limit cycle with keeping the trajectory

to the unperturbed limit cycle with r0~1. Thus pulses induce

considerable phase shifts for every given pulse and phase shifts are not

reduced due to limit cycle expansion (compare box 2 in Figure 3).

The spike-like oscillator with short radial relaxation time is

optimal as far as time to entrainment is concerned, because

isochrons are concentrated in the slow branch without suffering

from limit cycle expansion (see box 3 in Figure 3). In this case,

perturbations induce large phase jumps, leading quickly to a stable

phase from almost any initial condition.

In the present example, we used entrainment pulse amplitudes

of 0.8, but qualitatively similar results are also observed with

smaller amplitudes and also with sinusoidal perturbations (see

Figure S2 in Supporting Information). As shown in Figure S2, the

entrainment signal amplitude and waveform do not play a major

role in determining the transient to entrainment.

Oscillators with highly nonlinear radial relaxation exhibit a much

shorter median time to entrainment STeT as shown in Figure S2C

and D in Supporting Information. This property is captured by our

model using n~1,2,3 . . . in Equation 1. The normal form of limit

cycles arising via supercritical Hopf bifurcations corresponds to

n~2. Due to this strong nonlinearity, perturbations to the limit

cycle trajectory relax rapidly back to the unperturbed limit cycle

reducing considerably the limit cycle expansion effect (see Figure

S2D). In the following, we relate our theory to a specific biological

rhythm to gain insight into the properties of the system.

Fast entrainment in the mammalian circadian pacemaker
Physiological and behavioral processes in most organisms are

synchronized with a 24 h day-night rhythm. Mammals have a

central pacemaker located in the hypothalamic suprachiasmatic

nucleus (SCN) that orchestrates circadian rhythms for the whole

body. The SCN consists of two nuclei of about ten thousand

densely packed neurons and generates a stable robust period of

circa 24 h. This stable neuronal and hormonal rhythm regulates

many different body functions. Cells within the SCN have an

endogenous molecular clock based on a network of interlocking

feedback loops of genes and proteins. The intercellular coupling

between individual neurons generates not only a robust 24 h

collective self-sustained rhythm under constant conditions (com-

plete darkness) but also confers robustness against mutations [25].

The suprachiasmatic nucleus has a heterogeneous complex

architecture. There is spatial heterogeneity, and individual

neurons differ in their neuropeptide expression, light responsive-

ness, phase, and free running period [11,12,26]. For example,

individual periods of dispersed cells span over 20 to 30.9 h with an

average period of 24:1+1:4 h mean+SDð Þ. In organotypic slice

cultures, periods range from 22.4 to 26.7 h with an average of

24:2+0:7 h [12]. Surprisingly, despite this complexity, the SCN

exhibits fast reentrainment. In jet-lag type experiments the SCN

can be almost completely reentrained within one day after an

abrupt phase shift of 6 h [7–9]. Advanced microscopic techniques

allow single cell bioluminescence measurements of clock proteins

at intervals as short as 20 min. These measurements display almost

sinusoidal oscillations [10,25]. However, bioluminescence mea-

surements provide only smoothed time series of specific reporter

constructs and thus it is not entirely clear how sinusoidal the

underlying core oscillator is. From our generic model, we predict

that the observed fast reentrainment can be achieved in the

following ways: (i) Sinusoidal waveform oscillator with relative

short radial relaxation times (box 2 in Figure 3); (ii) spike-like

oscillations with long relaxation time (box 4 in Figure 3); or (iii) a

spike-like waveform and short radial relaxation time (box 3 in

Figure 3). If SCN cells are self-sustained sinusoidal oscillators, we

predict that the SCN cell oscillators have a short radial relaxation

time. The radial relaxation time can be experimentally determined

via a nonlinear fit to a time series in which an amplitude relaxation

can be observed as in Figure 1A. The nonlinear fit can be done

with the ansatz tð Þ~e{lt: sin
2pt

T
zw0

� �
, where t is time, T is the

oscillation period, w0 the initial phase difference and l is the radial

relaxation from which the radial relaxation time tr~
1

l
can be

directly obtained. In the vicinity of the limit cycle, the radial

relaxation rate can be directly connected to the Floquet exponents.

Large Floquet exponents (short radial relaxation times) have

already been predicted on the basis of robustness studies using

different clock models [27] and by optimizing a specific feedback

model [28]. Our generic approach is based on one single

characteristic, namely, the transient time to entrainment, and

thus our prediction is independent of specific model assumptions.

Most SCN cell models assume self-sustained oscillation, but

experimental data [29,30] and theoretical predictions [31,32]

suggest an alternative scenario, where most SCN cells might

behave as damped oscillators. Detailed characterization of the

transient time to entrainment with a mixture of sustained and

damped oscillators is beyond the scope of the present work.

The Goodwin oscillator
The Goodwin oscillator [33] is a minimal model that describes

the oscillatory negative feedback regulation of a protein which

inhibits its own transcription. It provides a basic description of the

central components in the circadian oscillators of Neurospora,

Drosophila, and mammals [31,34]. In this model, a clock gene

mRNA (x) produces a clock protein (y) which, in turn, activates a

transcriptional inhibitor (z). Here we study a version of the

Goodwin oscillator successfully used to model data from dermal

fibroblasts from skin biopsies of human subjects [35]. The aim of

that study was to investigate whether different types of behavior,

early (‘‘larks’’) or late chronotypes (‘‘owls’’), have different clock

properties in dermal fibroblasts. The model equations are:

dx

dt
~V

sn

snzzn
{dxx, ð3Þ

dy

dt
~byx{dyy, ð4Þ

dz

dt
~bzy{dzz: ð5Þ

This model describes the time evolution of mRNA (x), of a

cytosolic clock protein (y) and a nuclear clock protein (z).

Concentrations of these are measured in arbitrary units (a.u.). This

model has mostly linear kinetics with production rate constants

How to Entrain Fast?
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by~0:4 and by~0:06 and degradation rate constants dx~0:12,

dy~0:24, and dz~0:12, all rate constants in h{1. The Hill function,

which expresses the transcription rate that is inhibited by the nuclear

clock protein (z), has a maximal rate V~1 a.u./h, a half-saturation

point s~1 a.u., and a Hill coefficient which we vary between

n~10:8 and n~22:3. Our aim is to compare our generic predictions

discussed above with a biochemical oscillator model. All eight

parameters have an influence on the dynamics of the system. It has

been shown that the Hill coefficient has a strong influence on the

oscillator properties [35]. Therefore, we choose the Hill coefficient as

the parameter to calculate the associated time to entrainment STeT.

Indeed, simulations confirm that the Hill coefficient has a strong

effect on the time to entrainment. In Figure 5A, an increase from

n~10:8 to n~22:3 reduces the time to entrainment 5-fold. The

entrainment signal was applied to all three dynamical variables in

turn: to the cytosolic protein concentration, to mRNA concentration

and to nuclear protein concentration. We observe qualitatively

similar results in all three cases. Furthermore, in order to relate these

transient times to our generic models, we extract for each Hill

coefficient in the Goodwin model the velocity variations along the

limit cycle parameter e and the Floquet exponent associated with the

radial relaxation timescale parameter l. In this way, we can project

these values on our plots for three models of radial oscillators (see

Figure 5B, C and D). Interestingly, the Hill coefficient changes both

velocity variations along the limit cycle e and the radial relaxation

timescale l. Importantly, these two parameters govern the transients

also in this higher-dimensional biochemical model. This is a

demonstration that biochemical models are amaneable for studies

using the concept developed in this paper.

In addition to the results presented above we also checked if our

findings hold for square-waveform oscillators, alternative entrain-

ment signals and the more general scenario of mutually coupled

oscillators (see Figures S1, S2 and S3 in Supporting Information).

In all three cases we obtained qualitatively similar results in

agreement with our concept.

Discussion

To our knowledge, ours is the first study that characterizes the

transient time to entrainment in terms of the oscillator properties.

Figure 5. Median time to entrainment SSTeTT for the Goodwin model and the comparison with three radial oscillators models. (A)
Median time to entrainment for the Goodwin oscillator as a function of the Hill coefficient. STeT was calculated for an entrainment signal applied
separately to each variable: the cytosolic protein concentration (pink), the mRNA concentration (dark violet) and the nuclear protein concentration
(brown). (B) STeT for a linear oscillator and the values of l and e extracted from the Goodwin oscillator (green). (C) STeT for a Poincaré oscillator and
the values of l and e extracted from the Goodwin oscillator (green). (D) STeT for a Hopf-like oscillator and the values of l and e extracted from the
Goodwin oscillator (green). STeT was calculated as in Figure 3 with relative pulse strength 0.4.s.
doi:10.1371/journal.pone.0007057.g005
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Entrainment can be regarded as a particular case of synchroni-

zation with unidirectional coupling between the oscillators.

Therefore, similar features observed in our results might be

expected in other synchronization scenarios (see Supporting

Information S1). The time to synchronization for a network of

oscillators has been studied for several systems using analytical

approaches [36–40] and numerical simulations [41–43]. Most

synchronization studies focused on specific model oscillators at the

network level and derived scaling laws associated with the number

of oscillators. In [41] and [43], the synchronization rate of

different conductance based models (Hodgkin-Huxley type

models) was studied. Both studies showed that, a spike-like

oscillator reached a synchronized state much more rapidly than

a sinusoidal oscillator. Interestingly, it has been shown that

synchronization can be achieved in a few cycles by relaxation

oscillators [44] and by more sinusoidal ‘‘repressilators’’ [45].

Generally in models, the radial relaxation time and the phase

velocity cannot be controlled independently. Therefore, changing

the waveform pattern generally also changes the radial relaxation

time, compounding the contributions of both properties and

confusing the interpretation. Indeed, we observed this in the case

of the Goodwin oscillator while increasing the Hill coefficient (see

Figure 4C). Our goal was to reach a general understanding of the

transient to entrainment based on topological representations. We

use numerical simulations to exemplify our basic ideas. The model

independent results can be related to most previously conducted

studies.

Under the assumption that SCN cells are self-sustained

sinusoidal oscillators, we predict that single cell oscillators have a

short radial relaxation time. However, we cannot exclude that

some SCN cells are spike-like oscillators and exhibit short

transients this way. In fact, each SCN cell is a complex molecular

oscillator and certain variables might exhibit a sinusoidal shape

while others might have a spike-like shape. Perhaps, the pathway

governing transients might be associated with a spike-like

components. Time scale separations that support this view can

be inferred from the rapid reentrainment observed in the SCN.

Experiments with light pulses show that some core components of

the SCN are able to respond to light within 1 h [46,47].

In summary, we have shown how the time to entrainment is

governed by the interplay of the radial relaxation time and the

phase velocity distribution around the limit cycle. The time to

entrainment STeT might be considered as an essential dynamical

feature of an oscillator. In many systems, this quantity can be more

easily extracted from experimental data than other related

dynamical features such as Floquet exponents or isochron

distributions. The median transient time to entrainment can be

used to infer properties of the underlying oscillator from the

observed transient times.

Materials and Methods

Model oscillator
The oscillator was designed to explore how the median time to

entrainment STeT depends on a few generic parameters that are

applicable to a big class of oscillators. In Equation 2, f wð Þ
describes the phase evolution, where the parameter e controls the

ratio between the slowest and fastest velocities around the limit

cycle. For e~0, f wð Þ~offset results in a sinusoidal oscillation

(dashed blue line in Figure 6), for e&1, a spike-like oscillation is

generated (black line in Figure 6) and for a new f wð Þ we obtain a

square-waveform oscillator (pink curve in Figure 6). The

parameter l controls the radial relaxation time independently of

the phase dynamics. In the vicinity of the limit cycle, l can be

associated with the Floquet exponents, and e with the isochron

structure [23] of the limit cycle. This model allows us to create a

spike-like oscillator with arbitrary Floquet exponents.

A modified Poincaré oscillator is also known as radial isochron

limit cycle due to the radial structure of its isochrons. The phase

dynamics f wð Þ is independent of the radial variable r. Isochrons

can be analytically calculated in some simple cases [21] or

otherwise extracted with numerical approaches [48], but these

approaches are not needed here since the isochrons can be

projected directly from the temporal phase points plotted in

Figure 3. Isochrons are a powerful tool to understand the phase

changes induced by perturbations [49].

The simulations were carried out using the equations 1 and 2

with n~0 and in Cartesian coordinates:

dx

dt
~

Tf

24
l:x

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2zy2

p {1

" #
{y e

1

2
z

x

x2zy2

� �
zoffset

� �( )
, ð6Þ

Figure 6. Phase velocity
dw

dt
as a function of the phase for different f wwð Þð Þð Þð Þ. e controls the velocity gap between the fastest and slowest points

and the parameter ‘‘offset’’ guarantees that the velocity is never zero. The black line corresponds to a spike-like oscillator, the pink line corresponds to
the square-waveform oscillator and the dashed blue line corresponds to a sinusoidal oscillator with a constant phase velocity around the limit cycle.
doi:10.1371/journal.pone.0007057.g006
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dy

dt
~

Tf

24
l:y

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2zy2

p {1

" #
zx e

1

2
z

x

x2zy2

� �
zoffset

� �( )

zK : H t{tonð Þ{H t{toffð Þ½ �

ð7Þ

Here Tf , the unscaled period, depends on the parameters l,e

and offset. As discussed below we rescaled the period to 24 h by

choosing an appropriate scaling factor Tf . The entrainment signal

H tð Þ is the Heaviside step function, K is the pulse strength, the

pulse start time is ton~tent
:m, with tent the entrainment period,

m~1,2,3 . . . and toff~tonz1h is the pulse end time.

Time to entrainment
Our numerical experiments were designed to reduce depen-

dencies on initial conditions and entrainment frequency. In

Figure 3 we calculated the STeT for a wide range of l and e
values. Each point of the plot was calculated following the same

numerical protocol: 1) Choose a parameter combination (l,e) of

interest and rescale the system to a period T0~24 h. 2) Calculate

the range of entrainment and choose entrainment frequencies

equidistributed within this range. 3) Choose initial temporal phases

ICi. The 24 h temporal initial phases are located around the

unperturbed limit cycle (gray dots in Figure 1B and C), i.e. each

initial condition is given by ICi~ x wið Þ,y wið Þ½ �, where wi~
T0

24

� �
i

with i~1 . . . 24. 4) Start the simulations with periodic 1 h vertical

pulses and calculate the instantaneous phase difference between

the oscillator and the train of pulses for a total duration of 500 days

(see Figure 1B). 5) The time to entrainment is considered to be

reached if the mean phase difference of eight consecutive cycles is

smaller than 5 minutes. Otherwise, no entrainment is detected. 6)

Repeat steps 3–5 for the 24 different temporal phase initial

conditions and then take their median value Te (see Figure 1C). 7)

Repeat steps 2–6 for 12 evenly distributed frequencies within the

total range of entrainment and then take their median value STeT
(see Figure 1E). 8) Choose another combination of l and e and

restart the protocol.

Supporting Information

Supporting Information S1

Found at: doi:10.1371/journal.pone.0007057.s001 (0.06 MB

PDF)

Figure S1 Square waveform oscillator, its time series and the

median time to entrainment. (A) Square waveform oscillator: limit

cycle with 24 marked phase points (dots) and isochrons (rays). The

intersection of each isochron with the limit cycle determines the

phase and (B) the temporal evolution of x variable with parameters

e= 1, offset = 0.02, n = 0 and (C) the median time to entrainment

,Te. as a function of the phase velocity around the limit cycle, e,
and radial relaxation constant, l, for pulse entrainment. Gray

scales refer to the median time to entrainment, where black

represents long and white short ,Te..

Found at: doi:10.1371/journal.pone.0007057.s002 (0.72 MB TIF)

Figure S2 Median time to entrainment ,Te. for different

entrainment signals and oscillators, under soft-pulses entrainment

and under medium-sized-pulses for a nonlinear oscillator and for a

Hopf oscillator. (A) Entrainment under sinusoidal perturbations

with amplitude 0.05. (B) Entrainment under pulse perturbation

with amplitude 0.4. (C) Entrainment under 1 h pulse perturbation

with amplitude 0.8 for a nonlinear radial relaxation oscillator. (D)

Entrainment under 1 h pulse perturbation with amplitude 0.8 for

a Hopf oscillator. The median time to entrainment is plotted as a

function of the phase velocity around the limit cycle, e, and radial

relaxation constant, l. Gray scales refer to the median time to

entrainment, where black represents long and white short ,Te..

Both axes are plotted using logarithmic scales.}

Found at: doi:10.1371/journal.pone.0007057.s003 (1.23 MB TIF)

Figure S3 Time to synchronization for two coupled oscillators.

(A) Time to synchronization of two coupled ‘‘sloppy’ oscillators as

a function of their transition from sinusoidal to a spike-like

oscillator (B) Time to synchronization of two sinusoidal oscillators

as a function of their transition from ‘‘sloppy’ to ‘‘rigid’ oscillator.

See Supporting Information for model details.}

Found at: doi:10.1371/journal.pone.0007057.s004 (0.83 MB TIF)
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