
How to Analyze Large Programs Efficiently and Informatively

Dhananjay M. Dhamdhere* Barry K. Resent F. Kenneth Zadeck$
dmd @ kailash.ernet .in bkr @ watson.ibm.com fkz @ cs.brown.edu

Elimination of partial redundancies is a powerful optimiza-

tion that has been implemented in at least three important

production compilers and has inspired several simdar opti-
mization. The global data ffow analysis that supports this

family of optimization includes some bidirectional prob-

Jems. (A bidirectional problem is one in which the global

inform ation at each basic block depends on both control
flow predecessors and control flow successors.) This paper

contributes two ways to simplify and expedite the analysis,

especially for large programs.

e For each global data flow question, we examine only the

places in the program where the question might have

an answer different from a trivial default answer. In a
large program, we may examine only a small fraction

of the places conventional algorithms would examine.

e We reduce the relevant bidirectional problems to sim-

pler unidirectional problems. These bidirectional prob-

lems can be solved by applying a quick correction to a

unidirectional approm”m ation.

1 Introduction

Elimination of partial redundancies (EPR) [MR79] is a

powerful optimization that has been implemented in at least

three import ant production compilers (COMPASS Compiler

Engine, MIPS, and IBM PL.8) and has inspired several

similar optimization [Cho88, JD82 a, JD82b]. While these
optimizat ions have been useful in practice, they account

for a significant portion of the time and space devoted to

optimization. This paper contributes two ways to simplify
and expedite the data flow analysis that supports this family

of optimizations, which we call EPR-lzke.

“Dept. of Computer Science and Engineering, Indian Institute

of Technology, Powai, Bombay 400076 INDIA

t Mathematical Sciences Dept., IBM Research Division, P,O.

Box 218, Yorktown Heights, NY 10598 USA

i Computer Science Dept., P.O. Box 1910, Brown University,

Providence, RI 02912 USA This author was supported in

part by the Office of Naval Research and the Defense Advanced

Research Projects Agency (under Contracts NOO014-83-K-0146

and ARPA order 6320, and NOOO14-91-J-4o5 2 and ARPA Order

8225) and in part by the National Science Foundation under grant

CCR-9015988.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, raquires a fee

and/or specific parmisaion.

ACM SIGPLAN ’92 PLDi-6/92/CA

@l1992 ACM 0.8979 ~-476 .7/92 /0006/02J 2...$1.50

For each global data flow question, we examine only the

places in the program where the question might have

an answer different from a trivial default answer. For
reasons explained later in this section, the technique

is called slotwise analysis and is also useful for some

less powerful but more common optimization. For
EPR-like optimization, where most expressions are not
redundant and move only a short dist ante, the potential

savings from using a sparse method such as slotwise
analysis can be substantial.

We show how to reduce the bidirectional problems
posed by the various EPR-like optimization to simpler

unidirectional problems. (A bidirectional problem is
one in which the global information at each basic block

depends on both control flow predecessors and control
flow successors.) These bidirectional problems can be

solved by first solving a unidirectional approximation
and then applying a quick correction.

These contributions are described below and more fully ex-
plained in the following sections, which also discuss relevant
previous work in detail.

Standard algorithms for data flow analysis [ASU86] pro-
cess a program of size n in 0(TZ2) bit-vector stepa (worst case)

or O(n) bit-vector steps (typical cases). In the most natural

formulations of many problems, the lengths of the bit vectors

are proportional to the size of the program and each bit-
vector step takes O(n) time. For example, a program of size

n has about n candidates for redundancy elimination. Each
candidate deserves its own slot in a bit vector. (Slots are also

known as “components” or “elements” or “positions”.) With
long bit vectors, standard algorithms are O(ns) at worst and
0(n2) at best. The algorithm presented here is 0(n2) at
worst. For some problems, our algorithm is effectively O(n)
despite the fact that n vectors of length n would have a total
of n2 slots.

More precisely, the time devoted to the i-th slot is
O(p,), where p; < n is the size of the part of the program
visited while computing the i-th slot of each of the bit vectors

at some of the basic blocks in the program. Each slot is
computed only in its own relevant part of the program,

Elsewhere, it is known to take on a given default value.
Our method is thus a member of the broad family of sparse
algorithms. Let p be the average of pi as i varies over n
slots. Then the total time is O(pn), with p = n at worst.
For some problems, p is typically a small fraction of n.
In particular, for EPR-like problems, experience with the

COMPASSCompiler Engine suggests that bit vectors typically
have the default value for about 99% of the bits.1

On a machine with 32-bit words, treating each slot
separately will be faster than standard bit-vector methods

- We thank Bob Morgan (personal communication, November

7, 1990) for this information.

212

whenever 32p < n, and in some other cases as well. Details

are given in ~2, which also discusses the few other sparse

algorithms in data flow analysis.

one important application is treated in detail here:

placement analysis to support elimination of partial redun-
dancies. (Moving invariant code out of loops is an important

special case of this optimization.) The standard equations

for this problem are bidirectional: along a control flow edge
(x, ~), some of the information flows forward (from z toy)

while some of it flows backward (from g to o), Most efficient

analysis algorithms deal only with unidirectional flow, as in
the forward-only flow of ordinary redundancy elimination.

We show how to perform placement analysis by a unidirec-
tional approximation followed by a quick correction. This

unidirectional approximation uses our slotwise analysis.

Solving an arbitrary bidirectional problem would re-
quire multiple corrections, but placement analysis and the
other EPR-like problems are not arbitrary. The complicated

equations have some simple properties that imply quick con-
vergence, if one is careful about where to start. Details are

in $3, which is formulated to be read either from a bit-vector
viewpoint or from a general lattice-theoretic viewpoint. An

example is worked in $4. The techniques applied in $4 to
one particular formulation of placement analysis are equally

applicable to other formulations and to the other EPR-like
optimizations [Cho88, JD82a, JD82b]. Finally, $5 explains

how our method of placement analysis can be exploited by
a compiler that detects second-order effects: elimination of

partial redundancies involving one expression can create new

opportunities involving other expressions.

2 Classical Bit-Vector Problems

Being a sparse algorithm, slotwise analysis for each bit-
vector slot visits only the nodes where the bit in that one slot
might be different from a trivial default value. Depending
on the problem in question, the default is either Oor 1, To
handle both cases simultaneously, we review three ways to
classify problems.

1.

2.

3.

Information may flow either forward or backward along

edges. In each classical problem, the flow is in only
one of these possible directions. Section 2.1 treats
forward flow in detail. The backward case is an easy

transformation of the forward case, as $2.2 explains.

At a join node (in a forward problem) or at a branch
node (in a backward problem), previous algorithms

need to merge together information propagated to the

node along several edges. The merge operation (de-

noted 11) is either bitwise AND (denoted A) or bitwise
OR (denoted V). Let J_ be the bit value that controls

the merge: for any x, cfl~ = -L, Thus, 1 = Oif n is A
but 1 = 1 if n is V. In both cases, let T be the other

bit value. The merge rule defines a partial ordering of
the bit vectors, with a G y whenever each slot with T

in z has T in y.

At the Entry node (in a forward problem) or at the Exit
node (in a backward problem), each slot has a given

dejazdt value. For example, the problem of availableex-
pressions has the default EntryInfo = O = 1 because
nothing is available at Entry.2 On the other hand,

2This standard assumption is adopted here for ease of pre-

sentation but is not important to our method. More extensive

optimization is sometimes possible with other assumptions. For

2.1

the problem of reaching definitions has the default

EntryInfo = O = T because nothing reaches Entry.

The same bit O has different significance in these two

problems because the merge operators are different,

Forward Problems

Associated with each edge (z, y) is a flow finction f =

Flow(a, y) that tells how to transform a bit vector (at z
to a bit vector q at y when control flows from z to y. The

equations to be solved are

Info(Entry) = EntryInfo

and, for each node y # Entry,

The desired solution to these equations is the one that could
be obtained by iterating from an initial guess of all T bits.

By solving for each slot in Info separately, we simplify
the flow functions. There are only four ways to map from
{O, 1} to {O, i}, and only three of them make sense in data

flow analysis. Along any edge (z, g), the flow function is

one of those displayed in Figure 1. For example, consider

function behavior comment

OH I
START

1++1
constant at 1

0%0
STOP

1!+0

constant at O

OH’O
PROPAGATE

lH1
paases erg. along

Figure 1. Possible flow functions on a single bit.

whether an expression E is available on entry to a basic
block. The code within the block x may STARTavailability

of E by computing E and not assigning to any operand

of E thereafter. Otherwise, x may STOP availability of E
by assigning to an operand of E or may just PROPAGATE

to y whatever was true on entry to x. With only three

possibilities to consider, we can examine the flow functions
to help decide the order in which to visit nodes. Standard
algorithms, on the other hand, consider n slots at once and

cannot enumerate 3Wpossibilities,
In order to treat problems with 1 = O and problems

with 1 = i simultaneously, it is convenient to stipulate that

LOWERis whichever of START,STOPhas value 1 and RAISEis
whichever of START,STOPhas value T. Edges are considered
to be PROPAGATEedges by default. Local analysis for the slot

of current interest flags the exceptional (RAISE and LOWER)
edges and puts them in two lists. At the end of global

analysis for the current slot, these lists are traversed and

the flags are reset, so as to be ready for local analysis of the

next slot. Similar resetting is done for other information.
In particular, the global bit of information for each basic

example, an expression whose only variables are local temporaries

may be considered available at Entry. Without int erprocedural

information, on the other hand, the standard assumption is defi-

nit ely needed for any expression whose only variables are globals

or parameters.

213

block defaults to the given value lh!ry~n~o associated with

the Entry node. This value may be either T or 1, but we

assume it is the same for each slot. The general case is easily

handled by applying our method twice, once for slots with

EntryInfo = T (high information) and once for slots with
EntryInfo = 1 (low information).

2.1.1 High Information at Entry

Initialize the set NL of visited nodes to hold all targets of
LOWERedges. Initialize a worklist to hold these same nodes.
Whenever a node is taken off the worklist, every successor
z reached by a PROPAGATEedge is examined. If z is not
already in IVl, then z is put in N1 and put on the wo,rklist.

Let NObe the full set of nodes. Then .Info(z) = T for

z ~ NO – N1 and Injo(z) = 1 for x E N1. Thus all the
Info bits have been determined at cost 0(IINI1]), where the

eztended size II...II of a set of nodes counts edges that touch

the nodes as well as the nodes themselves.

2.1.2 Low Information at Entry

Initializethe first set fil of visited nodes to hold all targets of
RAISEedges. Initialize a worklist to hold these same nodes.
Whenever a node is taken off the worklist, every successor
z reached by a PROPAGATEedge is examined. If z iwnot
already in N1, then z is put in N1 and put on the worklist,

Let NObe the full set of nodes. We already know that
Info(z) = 1 for z E No– N1, so there is no need to examine
these nodes. Nodes in N1 might have either 1 or T. These

nodes are classified by a second worklist search. Initialize
the second set Nz of visited nodes to hold every node y E
N1 such that, for some inedge e = (z, ~), either e LOWERS

information or ~ @ N1 and e does not, RAISE information.

Initialize a worklist to hold these same nodes y. Whenever a

node is taken off the worklist, every successor z reached by a

PROPAGATE edge is examined. If z is in i~l but is not already

in N2, then z is put in N2 and put on the worklist. Once

the second search is complete, we know that Info(z) = T

for z E NI – N2 and Info(z) = 1 for a E N2. Thus all the

Inj o bits have been determined at cost 0(I]NLII), with Slbout

twice as much work as in the easier case of high information
at entry,

2.2 Backward Problems

With both forward and backward problems, it is customary
to say that the global information “at” a basic block is
what is known on entry to the block, so the flow function
associated with an edge from z to y is determined by the

code inside z and has nothing to do with the code inside y.
After the flow functions have been found, backward problems

are solved by the mirror image of the lmethod for forward

problems. Whenever a node is taken off the worklist, its

predecessors (rather than successors) are examined. The
Exit node plays the role of Entry. The given value 17zit,~n~o

may be either T or 1. Just as with forward problems, T

needs one search while 1 needs two.

2.3 Discussion

After dkcussing proper accounting for lengths of bit vectors
when analyzing various rdgorithms for live (also known as
“upwards-exposed”) variables, Kou [Kou77] proposed that
live variablesbe found by the backwards version of the sim-
ple worklist algorithm in $2.1.1. Apart from more elaborate
(but still quadratic) algorithms oriented toward incremental
analysis [MR90, Zad84], Kou’s algorithm has had little
influence. Standard algorithms are effectively quadratic in

practice, and the 32-way parallelism of standard bit vector

operations is still attractive, even when the vectors are long.

The way compilers use information about available

expressions differs in three ways from the way they use infor-

mation about live variables for tasks like register allocation:

1.

2.

3

The information in any one slot can be computed, used,

and discarded before computing the inform ation in any

other slot. To eliminate redundant computations of an

expression E, we only need availabllit y information for
E. To build an interference graph for register alloca-

tion, on the other hand, we need liveness information

for all variables.

The information in many of the slots is the default bit

value at many of the basic blocks in a large program.

Many expressions E are unavailable throughout much

of the program.

The default value is -L. The information at Entry (since
this is a forward problem) is O in every slot, and O is
the cent rolling value for the merge operation.

Differences 1 and 2 make a slotwise approach much more

attractive, while difference 3 makes the previous slotwise

approach [Kou77] inapplicable. Our new algorithm in $2.1.2
handles difference 3. Difference 1 has the interesting con-
sequence that using the information for one expression may

improve the information for another expression. Details are
in $5.

The following subsections compare slotwise analysis
with two other nontraditional approaches.

2.3.1 Incremental Analysis

Incremental analysis has a focus quite unlike that of slotwise

(or any other sparse) analysis. An incremental algorithm
assumes that the data flow information (and perhaps some

auxiliary information) has already been computed every-

where. It tries to respond to a change in the input with

work related more to the corresponding change in the output

than to the size of the whole problem. A sparse algorithm,
on the other hand, has no previous solution of the problem

to update: it starts from scratch.

2.3.2 Building Sparse Graphs

Choi, Cytron, and Ferrante [CCF91] generalized static single
assignment form [CFR+91] to derive a sparse representation

of any given problem. The original graph is replaced by
a collection of smaller graphs such that many of the flow
functions in each graph are either constants or the identity

function. The combined cost of constructing all of the sparse

graphs and solving the problem separately on each of them

may be less than the cost of solving the problem directly.

Building sparse graphs is much more complicated than

slotwise analysis and is asymptotically slower. When

an analytic mistake inherited from [CFR+ 89] is cor-
rected [CFR+ 91], the worst-case complexity for constructing
each sparse graph is O(ns). Slotwise analysis is o(nz) for
solving the entire problem. 3 Most bit-vector problems are

more amenable to either slotwise or traditional analysis than
to building sparse graphs.

One important potential advantage of sparse analysis,
however, is its algebraic generality. The information at each

3The pessimism in worst-case bounds is more severe for build-

ing sparse graphs than for slotwise analysis, so the real difference

may be less than the worst-case bounds suggest.

214

Info(v) = f’(y) n B(y) (1)

{

Ent7yInfo if y = Entry

F(y) ‘=’
n [~o~w~~ow(z,v)](~~fo(z)) if y#Entry (2)

z G F%ed(y)

{

EzitInfo if y = Exit

B(y) ‘=f n [13add’h(y,~)](InfO(~)) if Y # Exit. (3)

.s e Succ(y)

Figure 2. The information at y is the merge of auxiliary information propagated forward and backward TO y.

slot in a vector is not required to be a bit. For data flow

analysis problems like degrees of availability y [Ros8 1], where

bit vectors are inappropriate but slots can be partitioned to

yield many identity or constant flow functions, it is likely

that building sparse graphs would be useful.

3 Bidirectional Problems

As defined here, bidirectional problems are a natural gener-

aliz ation of the classical unidirectional problems. Section 4

shows that this generalization covers some important prac-

tical problems. As with any formal definition, however,

the possibility y remains that an intuitively “bidirectional”

problem may not fit the definition. Indeed, one such problem

is considered briefly at the end of this section. Our formal

definition is an appropriate one, and it would be futile to

agonize over the appropriate one.

Notations like n or L in this section may be read in two

ways:

1.

2.

The information assigned to each node is a pair of bits,

and not ations from $2 are overloaded in the natural

way. The Boolean operations applied by a flow function

may A or V the argument with local information, but

may not negate the argument. This reading covers

placement analysis ($4.1) and the other analyses that

support other EPR-like optimizations [Cho88, JD82a,

JD82b].

The information assigned to each node is an element

of a lattice4 where every descending chain is of finite

length and there are designated top (T) and bottom

(1) elements. The flow functions are monotonic: if

(L q then f(~) L f(q).

Informally, the word “bidirectional” is appropriate for

any problem where the information at a node depends on

both predecessors and successors. Just as classical unidi-

rectional analysis restricts attention to the simple way that

Info(y) depends on Info(z) for z c Pred(y) in $2.1, our

bidirectional analysis restricts attention to the simple way

that Info(y) depends on Injo(z) for z 6 Pred(y) and on

Info(z) for z 6 SzLcc(y) in Figure 2. Formally, a bkM-ec-

tional prwbiern associates two flow functions FOTWF1OW(X,y)
and Ba&Ftow(s, g) with each edge (*, y). The equations to

gIf the word ‘{lattice” is unfamiliar, then reading the notations

in terms of pairs of bits is recommended. Though lattices have
been put to good use in data-flow analysis, it is difficult to write

an introduction to lattice theory for these purposes [Ros81].

be solved are as shown in Figure 2, and the desired solution

to these equations is the one that could be obtained by

iterating from an initial guess of Info(y) = T for all y.

For arbitrary bidirectional problems, iteration is much

less attractive than for unidirectional problems. When the

nodes are visited in a well-chosen order [HU75], unidirec-

tional bit-vector problems can be solved in just three or

four passes on the graphs that occur in practice. The cor-

responding strategy for bidirectional problems would be to

visit nodes alternately in postorder and in reverse postorder.

Even an acyclic graph with n nodes needs O(n) passes in

the worst case because a change from T to 1 can propagate

alternately forward and backward along edges. The known

bidirectional problems of practical importance, however, are

all easily shown to satisfy the simple algebraic conditions

explained in !j3. 1, despite the superficial complexity of the

specific equations for each problem. Moreover, the problems

need only be solved for control flow graphs where certain

edges have been split, as explained in $3.2. Edge splitting

and algebra combine to make the important bidirectional

problems easy to solve, as explained in $3.3. An intermediate

step approximates the actual problems as unidirectional

bit-vector problems. These problems (and some auxiliary

unidirectional problems that are solved to determine their

flow functions) have the properties (discussed in 82.3) that

make the slot wise method preferable over standard met hods.

3.1 Algebraic Assumptions

We list three possible assumptions about the flow functions

in Figure 2. Consider any two outedges (z, y) and (z, z) from

a node s. Then

l?ackl’lozo(z, y) = BackFlow(a, z). (4)

Consider any backward function b. Then all ~, q satisfy

b((n q) = b(() n b(q). (5)

Consider any backward function b, any forward function f,

and any result ~ of fl-ing together some values of forward

functions. Then all ~ satisfy

v L -f(b(v)) = .f(b(v) n f)

~ f(b(~) n 1772twITz.fo). {6)

The clustering (4) and distributivitg (5) assumptions are

familiar from unidirectional data flow analysis, where they

are oft en made, seldom really used, and sometimes false.

In this paper, they are both used and true. The assumption

215

that forward functions are largzsh (6) has no obvious intuitive

significance. It just happens to be true for the important

bidirectional problems.

3.2 Edge Splitting

We consider a simple transformation of the control flow

graph underlying the bidirectional problem in Figure 2. To

split a control flow edge (c, y) is to replace (z, y) by two new

edges (z, u) and (u, y), where u is a new node representing an

empty basic block. (In the course of optimization, some code

may be moved into u.) Without any splitting, placement

analysis would yield weaker information that misses chances

to improve the compiled code [MR79, Fig. 6] [RWZ88, p, 18].

Once the principle of splitting has been accepted, there are

still the questions of which edges to split and when to split

them. Our splitting criteria are simple and independent of

the optimizations to be performed:

o Any edge that runs directly from a branch node to a

join node is to be split.

Q Splitting is to be done before analysis begins.

Many papers have considered some form of edge split-

ting, usually with other splitting criteria. Dhamdhere

and Isaac [D180], for instance, considered edge splitting

when placing code in light of execution-frequency informa-

tion. For elimination of partial redundancies, the splitting

criteria given above were used by Rosen, Wegman, and

Zadeck [RWZ88, p. 17] and may have been used earlier.

Sorkin [Sor89] proposed (incorrectly) that splitting to create

loop preheaders would suffice. The fact that splitting is

more widely needed was implicitly recognized by Morel and

Renvoise [MR79, Fig. 6].

Alternatively, one can decide in the course of analysis

which edges to split. This strategy was proposed inde-

pendently, for different variations on the original placement

analysis [MR79], by Dhamdhere [Dha88] and by Drechsler

and Stadel [DS88]. Analysis predicts what will hold at

each old node, then determines which edges need to be

srdit in order to validate the rmedictions. For an ambitious

c~mpiler that tries to seize m-any of the opportunities that

one optimization crest es for another, splitting as needed

complicates the compiler, especially if the compiler writer

is unwilling to bear the expense of a separate call on the

memory allocator for each split edge. Once code has been

moved into a new block created by splitting for the sake of

one optimization, the new block effectively becomes an old

block for later optimizations, and a new edge to (from) the

new block may need to be split later.

Because old basic blocks may become empty in the

course of optimization, a late optimization that removes

empty blocks is needed anyway. Our splitting criteria make

the graph somewhat larger,5 but much of the splitting we

do will be done eventually, if not by one optimization then

by another. Occasionally, we split an edge but never put

anything into the new basic block. In this case, the edge

will be restored as a byproduct of removing empty basic

blocks.

5For example, we effectively add a dummy else to each

if-t hen without one.

3.3 Some Problems Are Easy

The bidirectional problem in Figure 2 is mostly backward if

the information at each node g satisfies

(7)

where Bd and Fc are defined as follows. Replacing ~n~o(z)

with B(z) in (3), we get an ordinary backward problem that

can be solved to yield the backward approximation ~A to

Info. Then we visit each node y in any convenient order

and use B-4(X) in place of fnfo(z) in (2) to compute the

forward correction 7cJ(y).

Solving a mostly backward problem is only slightly

more work than solving the backward approximation, which

can share storage with the final answer. The following

result shows that placement analysis and other important

bidirectional problems are indeed mostly backward.

Theorem 1 Consider any bidirectional problem (Figure 2)

such that (thanks to edge splitting) no edge runs from a
branch node to a join node. Suppose the forward functions

are largish and the backward functions are clustered and

distributive. Then the problem is mostly backward.~

Prooj. For each node z, let

Because ~n~o(z) ~ B-4(Z) (and thus In.fo(.z) ~ fc(.z)),

we already have Info(z) ~ M(z). To show that M(z) ~

Info(z), we show that every edge (z, y) has

M(y) L f(M(x)) where f = Fo~wFlow(z, y); (8)

M(z) L b(M(y)) where b = BackFlow(z, y). (9)

Because Info is the largest way to assign information

to nodes such that similar ~ relations hold, these imply

M(z) ~ Info(z). Proving (8) and (9) thus implies that

the problem is mostly backward.

Consider any edge (z, y). Let ~ and b be as in (8)

and (9). Thanks to clustering and distributivity, the defini-

tion of l?A implies

‘A(x)=b(zEL!c(x’10)
In particular, BA(X) has the form b(q). Moreover, .TC(z) is

either EntryInfoor the result of m-ing together some values

of forward functions. Thus

$C(y) ~ f(~A(Z)) by definition of FC
= f(~d(~) n xc(.)) because j is largish

= f(M(z)) by commut ativit y

But M(Y) = (7c(Y) n ...) E 7c(Y), so J%) L ~(JWZ))

and (8) holds.

For (9), the argument depends on whether or not

y is a join node. Suppose first that y is a join node.

Thanks to edge splitting, Succ(z) = {y}. Thus (10) implies

~A(z) = b(~A(y)). Similarly, any other predecessor z of y

216

has Bd(z) = b(Bd(~)). Therefore

f?d(ll) = n ‘A(Y)

z ~ P~ed(y)

because n is idempotente

~ n Fom.uFZOW(Z,V)[b(~A(y))]

z E P~ed(y)

because FomDFlow(z, y) is largish

— n FO?WFZOW(Z,Y)(~A(z))

z ~ Pred(y)

because ~A(.z) = b(~d(?l))

= FC(Y) by definition of .FG

Therefore

M(z) ~ t?A(Z) by definition of M

= b(~d(v)) because Succ(z) = {y}

= b(~C(?/) fl BA(?/)) by ~A(y) ~ ~c(?J)

= b(M(Y)) by definition of M

and (9) holds if y is a join node.

Now suppose that y is not a join node. Then

n ‘A(z)g‘b(zEQc(z7z))z ESucc(z)

because ~ is largish

: ~J)) by (10)

by Pred(y) = {z}

Therefore (10) implies Bd(~) ~ b(~c(v)). But BA(Z) z

b(~A (y) also, yielding

~A(Z) Z b(Yo(Y)) m b(~A(Y))

= b(fic(v) n ~A(?l)) = b(M(w)).

Therefore M(z) ~ ~A(0) ~ b(M(y)) and (9) also holds

if y is not a join node. ❑

Corollary 1 Under the hypothesis of Theorem 1, suppose

also that y is either a join node or a node with ~A(v) =
L, Then Info(y) = 8A(Y) and the forward functions along

inedges of y have no effect on the SOIUtion.

Proof. By the theorem, ~Tzjo(y) = ~c(y) n BA(Y).

Suppose first that y is a join node. The argument for (9)

in the proof of the theorem shows that ~A(v) z $c(Y) and

hence that Info(y) = ~A(y). Now suppose instead that

f?d(y) = ~. Then ~n~o(y) = . n 1 = 1 = Bd(y). In

both cases, in.fo(y) is found without applying any forward

functions along inedges of y. These functions were already

known to have no effect on Info(z) for any z # y, so they

have no effect at all on the solution. 0

Drechsler and Stadel [DS88, p. 638] implicitly derived

another corollary of Theorem 1 for one particular version of

placement analysis. If enough of the basic blocks are empty,

then the forward correction can be shown to be unnecessary

at the nonempty blocks. A compiler using this corollary

needs a separate round of edge splitting for each EPR-

like optimization, to replenish the supply of empty blocks.

With Theorem 1, on the other hand, we sometimes need the

forward correction but never need to split an edge created

by earlier splitting.

Dhamdhere and Patil [DP90, Dha91] considered a vari-

ant of placement analysis where forward-flowing information

is merged with V while backward-flowing information is

merged with A. They showed that this variant could be

solved by a backward approximation followed by a variant

of interval-based forward data flow analysis. In our result,

on the other hand, the merge is the same in both directions,

as is more common. The forward correction is a simple

traversal in any convenient order. Our result also applies to

irreducible cent rol flow and to any bidirectional problem (as

defined here) that satisfies the conditions explained in $3.1.

Similar conditions, with the roles of forward and backward

functions reversed, suffice to make a problem be mostly

forward.

4 Worked Example

In this section we first present the details of placement

analysis [MR79] as later refined by [Cho83, JD82a] and then

work through a small example in detail.

4.1 Placement Analysis

We begin by reviewing of some auxiliary unidirectional

problems whose solutions are treated like local information

by the actual placement analysis. For most of this section,

we consider a single expression E and the problem of where

best to place the computations of E in the given program.

4.1.1 Availability

For each basic block z, let AVGEN(Z) be 1 if the code in

z generates the availability of E by computing E and not

assigning to any operand of E thereafter. Let NONE(z) be

I if x assigns to none of the operands of E. It is customary

in [MR79]-inspired analysis to associate two global availabil-

ity bits with each node y:

{

o if y = Entry;

AVIN(y) =
A

AVOUT(X) if y # Entry,

z 6 Pred(y)

AVOUT(I/) = AVGEN(y) V [AVIN(y) A NONE(y)].

Substituting for AVOUT(Z) in the equation for AVIN(Y)

yields equation (11) in Figure 3. This equation involves

only the AVIN bits and exemplifies $2.1 with J- = O and

low information at Entry.

4.1.2 Partial Availabilityy

The same local information used in 34.1.1 can also be used to

determine partial availability, which says that E is available

along some (perhaps not all) paths to a node y:

{

o if y = 13ntT~

PAVIN(~) =
v

PAVOUT(Z) if y # Entry;

m e Pred(y)

PAVOUT(Y) = AVGEN(Y) V [PAVIN(Y) A NONE(y)].

Substituting for PAVOUT(Z) in the equation for PAVIN(Y)

yields equation (12) in Figure 3. This equation involves only

217

AVIN(y) =

PAVIN(~) =

PPIN(y) =

PPOUT(I/) =

INSERT(y) ‘&f

DELETE(v) ‘~f

{

o if y = Entry

A AVGEN(Z) V [AVIN(Z) A NONE(z)] if y # Entry (11)

z C Pred(y)

{

o if y = Entry

v
AVGEN(Z) V [PAVIN(Z) A NONE(Z)] if y # Entry (12)

x C F%ed(y)

{(

o if y = Entry

PAVIN(y) A (CB4(y) V [PPOUT(y) A NONE(y)]) A

A [PPOUT(z) V AVOUT(Z)]

)

(13)
if y # Entry

z E .%ed(y)

{

if y = Exit

AO PPIN(z) if y # Exit (14)

z E Succ(y)

PPOUT(Y) A w AVOUT(Y) A - (PPIN(Y) A NONE(Y)) (15)

PPIN(y) A CB4(y) (16)

Figure 3, Placement analysis in a fairly conventional formulation.

~nfo(y) = ~(y) A ~(y) (17)

{

(o,1) if y = Entry

~(y) ‘Sf A [Fo~wFlow(z,y)](ln~.(.)) if y # Entxy (18)

z C F%ed(y)

{

([Node13cd(y)](0), O) if y = Exit

B(y) ~f A [Ba.kFIow(y,z)](Info(z)) if y # Exj-t (19)

z E Succ(y)

[~oTw&’~ow(z, y)](.$) ‘:’ r) where

(9=(1)

&out v AVOUT(Z)

[13ack.Flow(y, z)](~) %’ q where

(~::t)=([n)

[Nodel?ack(y)]((,n)

(20)

(21)

Figure 4. Equations (13) and (14) from placement analysis reformulated in terms of pairs of bits, using the functions

NodeBack(y) from bits to bits defined by [NodeBack(y)](~) ~f PAVIN(y) A (CB4(y) V ~ A NONE(y)]).

218

the PAVIN bits and exemplifies $2.1 with 1 = i and low

information at Entry. Indeed, finding the PAVIN bits by

the method of $2.1.1 is precisely the first step in finding the

AVIN bits by the method of $2.1.2. Traditional algorithms,

on the other hand, would not exploit the similarity between

partial availability y and availability y.

4.1.3 Placement Possible Bits

One more bit of local information is used here. Let CB4(Z)

be 1 if E is computed in z before any assignments to

operands of E. The global placement possitde bits have the

more complicated equations (13) and (14) in Figure 3.7 Sub-

stituting for PPOUT(...) in the equation for PPIN(y) would

not be helpful, but the somewhat more elaborate formal

manipulations in $4.1.5 help reveal the direct applicability y

of $3 and the indirect applicability y of $2.

4.1.4 Insertion and Deletion Points

Once the PPIN(...) and PPOUT(. ..) bits have been com-

puted, it is easy to determine where to insert new compu-

tations of the expression and where to delete old ones that

become fully redundant after the insertions. The last two

equations in Figure 3 do this.

4.1.5 Pairs of Bits

When several expressions are considered, PPIN(y) and

PPOUT(y) become two bit vectors, each of which has a

slot for each expression. This representation is conve-

nient for performing many operations, but not for rea-

soning about the results. Mathematically, it is more

convenient to consider a single vector whose slots hold

pairs of bits (PPIN(y), PPOUT(y)). The bitwise notations

(A, V, m, 1, T, ~) from $2 are overloaded in the natural way,

so as to apply to pairs of bits as well as to single bits. Unlike

a flow function on a bit vector of length 2, however, a flow

function applied to a pair of bits ~ = (~;~, (~~t) may use both

argument bits for each result bit:

Equations (13) and (14) in Figure 3 can now be written

in terms of pairs of bits, where n is A and 1 is (O, O). A pair

Info(y) is associated with each node y. This information

depends on a pair Y(g) flowing forward from predecessors

of ~ and a pair l?(y) flowing backward from successors of y,

as shown in Figure 4 and discussed below.

The derivation of Figure 4 from Figure 3 is typical

of what is needed for the analyses that support EPR-like

optimizations. The equations in Figure 4 are of interest

only because they have been chosen to be equivalent to

equations (13) and (14) in Figure 3:

ln~o(y) = (PPIN(y), PPOUT(~)).

Consider any node y # Entry. The local information

associated with y determines the function NodeBack(y) de-

fined in the figure caption, and this function tells how to use

PPOUT(y) in computing PPIN(y). Thus, (13) for y # Entry

can be rewritten as

PPIN(y) = [NodeBack(y)](PPOUT(~)) A ~ [*Q@]

z C Red(y)

7The original equations [MR79] are even more complicated; we

have incorporated later refinements [Cho83, JD82a].

To model this with (17), we want

T(y)in = ~ [PPOUT(z) V AVOUT(Z)];

x e P7-cd(y)

B(y)in = [NodeBack(y)](PPOUT(~)).

To get the F(y),n desired, we choose each

[FOrWrFkMO(Z,y);n] as displayed in (20). To get the B(y);n

desired if y # Exit, we observe that NodeBack(y) distributes

over the A in (14). Then we choose each [BackFlow(y, .z)i~]

as displayed in (21). To get the B(y);n desired if y = Exit,

we apply NodeBack(y) to the value PPOUT(y) = Oand

obtain PAVIN(y) A CB4(y) as the appropriate EzitInfo;n

in (19).

Consider any node y # Exit. We proceed as above, but

now the formulas happen to be simpler. In particular, (14)

for y # Exit can be rewritten as

PPOUT(y) = i A A PPIN(z).

.2 e Succ(y)

To model this with (17), we want

7(V)W = 1;

B(y)out = A
PPIN(z).

z 6 sum(y)

To get the ~(y)oti, desired if y # Entry, we choose

each [Forwd’low(z, y)~tit] as displayed in (20). TO get the

.F(y)~w~ desired if y = Entry, we choose EntTyInfoou* =

I in (18). To get the wanted L?(y)~tit, we choose each

[13ackl’iow(y, z)~~t] as displayed in (21).

Two choices remain in Figure 4. To model (13) for y =

Entry, we choose EntryInfo~~ = O in (18). To model (14)

for ~ = Exit, we choose EzitInfoow, = O in (19).

4.1.6 Algebraic Properties

Now that the PP equations have been cast into the general

form of Figure 2, we can verify the algebraic assumptions

in ~3.1. In the definition (21) of the backward flow functions,

the Boolean operations applied to (;~ are independent of

the outedge chosen. These operations also distribute over A,

so (4) and (5) hold. For (6), consider also the definition (20)

of the forward flow functions. When a forward function is

applied after a backward function, the result u = ~(b(q))

has

~ (:::,)=’((’3)‘(’’”V:””)
Thus q c j(ZI(q)). Moreover, because f ignores the in-

component of its argument, any < with ~mt = I has

~(b(q)) = j(b(q) A ~). In particular, EntryInfo and all

values of forward functions have &t = 1, so (6) follows.

4.2 The Worked Example

Figure 5 contains a small program fragment and its control

flow graph. Code motion guided by placement analysis elim-

inates partial redundancies, as shown in Figure 6. Local data

flow information for this analysis is in Figure 7. Figure 8

shows the placement information found by the steps detailed

in the rest of this section. In each column in Figure 8, the

“-” entries represent nodes where bits are known to have

219

the default value because the nodes were never visit ed in

computing that column. W bile the number of such nodes is

small here, it should be quite large in practice. Had there

been more of the program between Entry and node 1 or

between 6 and Exit in the example, our algorithm would

not have visited any of those nodes,

We compute PAVIN by the algorithm in $2.1.1, using

the substituted form in (12). For the comput ation of PAVIN,

the controlling bit value is 1 = 1 and we have high infor-

mation (T = O) at Entry. Thus, LOWER = START and any

edge with AVGEN = 1 at its source node is a LOWER edge.

Similarly, RAISE = STOP and any edge with AVGEN = O and

NONE = O at its source node is a RAISE edge. The remaining

edges are PROPAGATE edges.

The set of LOWER edges is {(4,5), (4,6)}; the set of

RAISE edges is {(2,4)}. The set N1 is initialized to {5, 6}.

After propagation, 1, 2, 3, 4, 7, and Exit are also in iV1.

Thus, PAVIN is 1 at nodes 1, 2, 3, 4, 5, 6, 7, Exit and O

elsewhere.

We compute AVIN by the algorithm in 32.1.2, using the

substituted form in (11). For the computation of AVIN, the

controlling bit value is 1 = O and we have low information

at Entry. Thus, RAISE = START and any edge with AVGEN

= 1 at its source node is a RAISE edge. Similarly, LOWER

= STOP and any edge with AVGEN = O and NONE = O at

its source node is a LOWER edge. The remaining edges are

PROPAGATE edges.

The set of RAISE edges is {(4,5), (4,6)}; the set of LOWER

edges is {(2,4)}. From the calculation of PAVIN, we already

know that Ifl is {1, 2, 3, 4, 5, 6, 7, Exit}. The set N2 is

initialized to {1, 4}. After propagation, 2 and 3 are also

in Nz. Thus, AVIN is 1 at nodes {5, 6, 7, Exit} and O

elsewhere.

The next step is to attack the PPIN, PPOUT system.

BY applying the transformations in $3.3 to equations (18)

and (19) in Figure 4, we obtain the forward correction (22)

to the backwards approximation (23) in Figure 9.

Substitution for BackFlow in (23) yields a system

where all of the bits .8A oin can be computed before comput-

ing any of the bits BA oou~ (see (24) and (25) in Figure 9).

Problem (24) can be solved by the backwards version of

the algorithm in $2.1.2. Since 1 = O, RAISE = START and

LOWER = sTOP. The RAISE edges are { (4,5), (4,6) }; the

LOWER edges are {(Entry, 1), (2,4)}. The remaining edges

are PROPAGATE edges.

We have low information at Exit because CB4(Exit) =

O. We initialize N1 as {4}, then add 1, 3, 5, 6, and 7 to it.

We initialize Nz as {l}, then add 6 and 7 to it. Thus, the

set of nodes y with ~A(~)~n = 1 is { 3, 4, 5 }. The set of

nodes z with ~A(Z)out = 1 is { 2, 3, 5 }.

Substitution for FOTWF1OW in (22) yields a system

where the bits .FCoout are already known (see (26) and (27)

in Figure 9). Thus, the set of nodes ~ with $_o(w)~~ =

1 is { 4, 5, 6, 7, Exit}, The equations for INSERT and

DELETE in Figure 3 tell us to insert ncw computations

in nodes 2 and 3 while deleting the old computation in node

4. The resulting program is indeed as shown in Figure 6.

5 Second Order Effects

Traditional EPR [MR79] performs placement analysis for

all expressions “simultaneously” with a bit-vector algorithm

but then rearranges the computations for each separate ex-

pression E. Several implementors have noticed that moving

one expression may provide an opportunity to move other

expressions. Slotwise analysis is well suited to detecting and

exploit ing such second-order eflects wit bout excessive work.

1 repeat

1 if P

2 then A + O

4 repeat

4 . . . +A+B

4 until Q

6 until R
Entry

F5
7 1
~_--_,

L__-. J

2 3r— ----
A+O

~_,____

----- .

----- -

5 ~ I I~-- –-,

6 I Exit

Figure 5. A sample program and its control flow graph.

Edge splitting inserted the dashed line nodes.

Entry

s

T__, ‘

1--. _J

2 3___________ -
JI +-O
#L+13 ~A+B

--,____ ~-....--J

I 5 ~ 1 1,~-.__,

‘--* Exit

1
Figure 6. Effect of code motion on Figure 5,

Node

Entry

1

2

3

4

5

6

7

Exit T
NONE AVGEN

1 0

i o

0 0

i o

1 1

1 0

1 0

1 0

1 0 1
CB4

o

0

0

0

i

o

0

0

0

Figure 7. Local information for Figure 5.

220

E
Node PAVIN

Entry -
11

2 1

31

41

51

61

71

Exit 1

PAVOUT

o

i

o

1

1

1

i

1

1

AVIN

o
0
0
0
1

1

i

1

AVOUT

o

0

0

0

1

i

1

i

1

t?Aoin

o

i

1

1

0
0

t?Aoout

o
0
i
1

0
i
o
0
0

0
0
0
1

i

i

i

1

INSERT DELETE

o 0

0 0

1 0

1 0

0 1

0 0

0 0

0 0

0 0

Figure 8. Global information for Figure 5. Default values (shown as “-”) are o for PAVIN, AVIN, Bdoin

{

(o,1) if y = Entry

FC(Y) = A [ForwFlow(z,y)](B~(z)) if y # Entry

z C %ed(~)

{

(PAVIN(I/) A CB4(I/) ,0) if II = Exit

.8A(v) = A [BackFhu(yjz)](BA(z)) if y # Exit

z E Sticc(u)

{

PAVIN(y) A CB4(y) if y = Exit

~A(Y)in = A PAVIN(y) A (CB4(Y) V [BA(z)ita A NONE(V)]) if ~ # Exit

z c Succ(y)

{

o if y = Exit

B/l(~) out = A ~d(z);n if y # Exit

z G Succ(y)

{

if g = Entry

Fc(g)i. = A [Bd(.)out VAVOUT(zj if y # Entry (26)

z E %ed(y)

Fc(y)owt = i (27)

Figure 9. Application of Theorem 1 to the equations in Figure 4.

We deal with the expressions separately throughout EPR, tion of a binary operator to a pair of variable or constant

using a worklist. Before explaining the details, we review operands. The actual syntax of expressions is irrelevant here,

the (sometimes tacit) assumptions about intermediate code so long as the operands are visible and so long as any possible

that underlie data flow analysis in general and placement changes to variables of interest are displayed as assignments

analysis in particular. to those variables.

To a first approximation, the intermediate code consists

of assignments of one of two kinds. The simpler kind is just Various practical complications can be handled by

a copy allowing the left-hand side of a computation to be a tuple

(vaviable~e,,) +- (wz~iable,~~,.~). of variables, each of which is assigned from an expression

The more complex kind is a compw+atiom
in a tuple on the right-hand side. For example, the target

machine might not separate computing X + Y from com-

(variable) + (ezp~ession), puting a condition code to support branching on the sign

of X + Y. Doing one entails doing the other, and both are

where (expression) is often} but not always, the applica- moved or inserted or deleted at once. For a target machine

(22)

(23)

(24)

(25)

221

Tli--A+B TA+BtA+B TA+B+A+B

TI i- TA+B

T2<– TI*C T2+TI*C T2 +- TA+B * C

.

T3+A+B TA+B+A+B TA+B&A+B

T3 + TA+B

T4+T3*C T4+T3*C T4 & TA+B * C

Figure 10. Code that exploits the modifications to take advantage of second-order effects.

that does addition this way, the intermediate code actually

manipulated by EPR might include assignments like

(A, CC) + (X+ Y, Conditi.on(’ ‘+’ ‘, X,Y)),

where A, X, Y are numerical variables and CC is a condition

code variable. Many more examples are in [CFR+ 91, \3. 1].

Each “expression” considered by placement analysis is actu-

ally a tuple of expressions that appears on the right-hand

side of a computation.

Once one sees that the major oversimplification in the

first approximation is the presumption that all tuples are of

length 1, it becomes fairly safe (as well as quite convenient)

to use the approximation. Optimization that seem to be

restricted to simple computations like A - X+Y are usually

more general, but involve some small loops over the compo-

nents of tuples when written out in general form. Omitting

these loops simplifies the present ation in the following sub-

sections. We also assume that local (within one basic block)

redundancies have already been removed in the obvious

way. Thus, a block may compute an expression E at most

once before all assignments to operands of E and at most

once after all assignments to operands of E. (There may

also be computations of E interspersed with assignments to

operands of E.) Section 5.1 deals with ordinary intermediate

code. Section 5.2 deals with intermediate code in SSA

form [CFR+ 91], which permits more extensive optimization

in exchange for introducing another kind of copy operation

and many more variables.

5.1 Ordinary Intermediate Code

Consider any expression E computed in the intermediate

code, perhaps in several different basic blocks. This ex-

pression forms one slot for placement analysis. Initially, the

worklist contains all of the slots, On each iteration of the

algorithm, a slot is taken from the worklist and the equations

in Figure 3 are solved for that one slot. If some INSERT

or DELETE bits are nonzero, then the intermediate code is

changed, as described below (this may entail adding another

slot to the worklist). The algorithm terminates when the

worklist empties.

If some of the INSERT or DELETE bits for the current

slot E are nonzero, then the intermediate code is changed as

follows:

1.

2.

A new unique temporary name TH is created.

Consider any basic block where AVGEN = 1 and

DELETE = O. The last old computation V + E in

the block is replaced by a new computation TE + E

followed by a copy V + TE.

3.

4,

Consider any basic block where DELETE = 1. The

first old computation V +- E in the block is replaced

by a copy V tTE.

Consider any basic block where INSERT = 1. A new

computation TM + E is inserted into the block, after

any assignments to operands of E that may occur in

the block,

The example in Figure 10 illustrates several points,

On the left of this figure is an intermediate code fragment.

Initially there are three slots, one for each of the expressions

A + B, Ti * C, and T3 * C. If the slots for the last two

expressions happen to be taken off the worklist first, then no

changes are made to the intermediate code until the slot for

A + B is considered. The middle part of the figure shows the

results of processing the A + B slot. Two copy statements

are added. The code on the right shows the results of copy

propagation [ASU86]. Now the expression TA+B forms a

new slot that is put on the worklist and leads to further

optimization when its turn comes,

In this example, the copy propagation changes the

expressions TI * C and T3 * C to TA+B *C. Not only must a

new slot be created for the new expression, but also the slots

for T1 * C and T3 * C must be added to the worklist, since

the deletion (caused by copy propagation) of one instance

of the expression may change the placement of the other

instances of the expression.

5.2 SSA Form Intermediate Code

If the intermediate code is in static single assignment (SSA)

form [CFR+ 91], then EPR can be more extensive though

more complex. We plan to submit a longer version of this

paper, with details for SSA-form intermediate code, to a

journal. The rest of this section outlines some of the issues.

When a program is in SSA form, each variable is

assigned a value at exactly one point in the program text. If

the original intermediate code has several assignments to the

same variable V, then each of them becomes an assignment

to a new unique variable V,. To preserve the original flow of

values, SSA form introduces a new kind of copy operation

at some of the join nodes.

A ~-finction at a join node y has the form

‘UUrdost + d(var~our. el, vaT30urCe2, .),

where there is one operand for each control flow inedge of g.

The operands are listed in the same (arbitrary) order used

to list the inedges. If control passes to y along the K-th

inedge (z, y), then the value of the corresponding operand

vaT,OU,ceK is copied to ‘VWd..t and the other operands are

ignored.

222

With SSA form, copy propagation can always eliminate

every ordinary copy ‘?Ja?’&@ +- WZr,OU,c, from one variable to

another. All uses of ~a~de,~, including uses as operands of@

functions, can safely be replaced by uses of VW-,OU,==. Details

are in [RWZ88], where it is shown that the tesulting expres-

sions act like “global value numbers” - if two occurrences

of expressions El and E2 in the original program become

occurrences of the very same expression E; ~ E.j with SSA

variables, then redundancy elimination can put those two

occurrences in the same slot, even though the original El

and Ez may look different.

Eliminating redundancies between two expressions that

look different but compute the same value is useful. Un-

fortunately, translation to SSA form sometimes hides other

opportunities for EPR when it replaces one expression E,
computed in many different places with operands that have

many different values, by many different computations of

expressions E’, E“, ... with different SSA variables as the

operands. Rosen, Wegman, and Zadeck [RWZ88] try to seize

the new opportunities without losing the old ones, but their

algorithm is complicated and restricted to reducible control

flow. Moreover, there are some cases where the original

EPR [MR79] moves an invariant out of a loop with multiple

exits but [RWZ88] does not.8 These cases suggest that SSA-

based EPR should be done more along the lines of $5.1, but

with some provision for putting several different expressions
E/, E,,

, .. . in the same slot whenever SSA form would hide

old opportunities.

References

[ASU86]

[CCF91]

[CFR+89]

[CFR+91]

[Cho83]

[Cho88]

A. V. Aho, R. Sethi, and J. D. Ullman. Compil-

ers: Principles, Techniques, and Tools. Addison-

Wesley, 1986.

J. Choi, R. Cytron, and J. Ferrante. Auto-

matic construction of sparse data flow evaluation

graphs. Conf. Rec. Eighteenth ACM Syvnp. on
Principles of Programming Langs., pages 55-66,

January 1991.

R. Cytron, J. Ferrante, B.K. Rosen, M,N. Weg-

man, and F. K. Zadeck. An efficient method of

computing static single assignment form. Conf.

Rec. Sixteenth ACM Symp. on Principles of Pro-
gramming Langs., pages 25–35, January 1989.

R. Cytron, J. Ferrante, B.K. Rosen, M.N. Weg-

man, and F. K. Zadeck. Efficiently computing

static single assignment form and the control

dependence graph. ACM Trans. on Program-

ming Lungs. and Systems, 13(4):451-490, Octo-

ber 1991.

F. C. Chow. A portable machine-independent

global optimizer - design and measurements.

Technical Report 83-254 (PhD Thesis), Com-

puter Systems Laboratory, Stanford U. Stanford,

CA, December 1983.

F. C. Chow. Minimizing register usage penalty

at procedure calls. Proc. SIG’PLA N’88 Symp. on

Compiler Construction, pages 85-94, June 1988.

Published as SIGPLAN Notices Vol. 23, No. 7.

s An invariant expression E may be computed along some, but
not all, paths through the loop body. It may also be computed
along all paths starting from some, but not all, of the loop exits. If
the end result is that E is computed along all paths after entering
the loop, then [MR79] replaces all these computations of E by a

new computation in the loop preheader.

[Dha88]

[Dha91]

[D180]

[DP90]

[DS88]

[HU75]

[JD82a]

[JD82b]

[Kou77]

[MR79]

[MR90]

[ROS81]

[RWZ88]

[Sor89]

[Zad84]

D. M. Dhamdhere. A fast algorithm for code

movement optimization. SIGPLAN Notices,

9(3):243-273, August 1988.

D. M. Dhamdhere. Practical adaptation of the

global optimization algorithm of morel and ren-

voise. ACM Trans. on Programming Langs. and

Systems, 13(2):291-294, April 1991.

D. M. Dhamdhere and J. R. Isaac. A compos-

ite algorithm for strength reduction and code

movement optimization. Int. J. of Computer and

Information Sci., 23(10):172-180, 1980.

D. M. Dhamdhere and H. Patil. An efficient

algorithm for bidirectional data flow analysis.

Technical Report TR-016-90, Dept. of Computer

Sci. and Eng., Indian Inst. of Technology, 1990.

Revision to appear in ACM T~ans. on Program-

ming Langs. and Systems.

K.-H. Drechsler and M. P. Stadel. A solution

to a problem with Morel and Renvoise’s “Global

Optimization by Suppression of Partial Redun-

dancies”. ACM Trans. on Programming Lungs.

and systems, 10(4):635–640, October 1988.

M. S. Hecht and J. D. Unman. A simple al-

gorithm for global data flow analysis problems.

SIAM J. Computing, 4(4):519-532, Dec. 1975.

S. M. Joshi and D. M. Dhamdhere. A composite

hoisting-strength reduction transformation for

global program optimization (part I). Int. J. of

Computer Math., pages 22-41, 1982.

S. M. Joshi and D. M. Dhamdhere. A composite

hoisting-strength reduction transformation for

global program optimization (part 11). Int. J.

of Computer Math., pages 111-126, 1982.

L. T. Kou. On live-dead analysis for global data

flow problems, J. ACM, 24(3):473-483, July 1977.

E. Morel and C. Renvoise. Global optimization

by suppression of partial redundancies. Comm.

ACM, 22(2):96-103, February 1979.

T. J. Marlowe and B. G. Ryder. An efficient

hybrid algorithm for incremental data flow anal-

ysis. Conf. Rec. Seventeenth ACM Symp. on
Principles of Programming Langs., pages 184-

196, January 1990.

B. K. Rosen. Degrees of availability as an in-

troduction to the general theory of data flow

analysis. In S. S. Muchnick and N. D. Jones,

edit ors, Program Flow Analysis, chapter 2, pages

55-76. Prentice Hall, 1981.

B. K. Rosen, M. N. Wegman, and F. K. Zadeck.

Global value numbers and redundant compu-

t ations. Conf. Rec. Fifteenth ACM Symp. on
Principles of Programming Lungs., pages 12-27,

January 1988.

A. Sorkin. Some comments on “A Solution to

a Problem with Morel and Renvoise’s ‘Global

Optimization by Suppression of Partial Redun-

dancies’ “. ACM Trans. on Programming Langs.

and S@ems, 11(4):666–668, October 1989.

F. K. Zadeck. Incremental data flow analysis in

a structure program editor. Proc. SIGPLAN’84

Symp. on Comptler Construction, pages 132-143,
June 1984. Published as SIGPLA N Notices Vol.
19, No. 6.

223

