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The fractional derivative of order α, with 1 < α ≤ 2 appears in several diffusion problems used
in physical and engineering applications. Therefore to obtain highly accurate approximations
for this derivative is of great importance. Here, we describe and compare different numerical
approximations for the fractional derivative of order 1 < α ≤ 2. These approximations arise
mainly from the Grünwald–Letnikov definition and the Caputo definition and they are consis-
tent of order one and two. In the end some numerical examples are given, to compare their
performance.
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1. Introduction

The fractional derivative of order α for 1 < α ≤ 2
in diffusion problems is related to the mechanism
of superdiffusion [Zaslavsky, 2002]. There are many
analytical techniques to solve fractional differen-
tial equations. But in many cases, the reasonable
approach is to use numerical methods since the
problems have initial conditions, boundary condi-
tions and source terms that become difficult in find-
ing an analytical solution. Different models using
fractional derivatives have been proposed and there
has been significant interest in developing numerical
schemes to find their approximate solution. Some
papers where the evidence of fractional diffusion
is discussed are, for instance, [Benson et al., 2000;
Pachepsky et al., 2000; Zhou & Selim, 2003; Huang
et al., 2006].

Many numerical methods involving the frac-
tional derivative that describes diffusion differ
essentially in the way the fractional derivative is
discretized, see for instance, [Shen & Liu, 2005;
Tadjeran et al., 2006; Yuste & Acedo, 2005; Sousa,
2009; Zhang et al., 2007]. Approximations of frac-

tional derivatives have more complex formulas than
the approximations of integer derivatives, since the
fractional derivative is nonlocal, that is, the cal-
culation at a certain point involves information of
the function further out of the region close to that
point. Consequently, the finite difference approxi-
mations of the fractional derivative involve a num-
ber of points that changes according to how far we
are from the boundary.

This paper considers the different approaches
presented in the literature and compare their trun-
cation errors and order of consistency.

2. Fractional Derivatives

We start to introduce different definitions of the
fractional derivative. There are a number of inter-
esting books describing the analytical properties of
fractional derivatives, such as, [Kilbas et al., 2006;
Oldham & Spanier, 1974; Podlubny, 1999; Samko
et al., 1993].

The usual way of representing the fractional
derivatives is by the Riemann–Liouville formula.
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The Riemann–Liouville fractional derivative of
order α, for x ∈ [a, b], is defined by

Dα
RLu(x) =

1
Γ(n − α)

dn

dxn

∫ x

a
u(ξ)(x − ξ)n−α−1dξ,

(1)

where Γ(·) is the Gamma function, n − 1 < α < n
and n = [α]+1, with [α] denoting the integer part of
α. Another way to represent the fractional deriva-
tives is by the Grünwald–Letnikov formula, that is,
for α > 0

Dα
GLu(x) = lim

∆x→0

1
∆xα

[ x−a
∆x

]∑
k=0

(−1)k

×
(

α

k

)
u(x − k∆x). (2)

The Grünwald–Letnikov definition is a general-
ization of the ordinary discretization formulas for
integer order derivatives. If we consider the domain
R the sum in (2) is a series. This series converges
absolutely and uniformly for each α > 0 and for
every bounded function u(x).

The discrete approximations derived from the
Grünwald–Letnikov fractional derivative present
some limitations. First, they frequently originate
unstable numerical methods and henceforth many
times a shifted Grünwald–Letnikov formula is used
instead, see for instance [Meerschaert & Tadjeran,
2004]. Another disadvantage is that the order of
accuracy of such approaches is never higher than
one.

A different representation of the fractional
derivative was proposed by Caputo,

Dα
Cu(x) =

1
Γ(n − α)

×
∫ x

a

dnu

dξn
(ξ)(x − ξ)n−α−1dξ, (3)

where n − 1 < α < n and n = [α] + 1. The
Caputo representation has some advantages over
the Riemann–Liouville representation. The most
well known is related to the fact that very frequently
the Laplace transform method is used for solving
fractional differential equations. The Laplace trans-
form of the Riemann–Liouville derivative leads to
boundary conditions containing the limit values of
the Riemann–Liouville fractional derivatives at the
lower terminal x = a. In spite of the fact that math-
ematically such problems can be solved, there is

no physical interpretation for such type of condi-
tions. On the other hand, the Laplace transform
of the Caputo derivative imposes boundary condi-
tions involving integer-order derivatives at the lower
point x = a which usually are acceptable physical
conditions.

In the next propositions we state that by requir-
ing a reasonable behavior of the function u(x) and
its derivatives, we can relate the three definitions.
These results can be found respectively in [Pod-
lubny, 1999; Kilbas et al., 2006].

Proposition 1. Let us assume that the function
u(x) is (n − 1) times differentiable in [a, b] and
that the nth derivative of u(x) is integrable in [a, b].
Then, for every n − 1 < α < n we have

Dα
GLu(x) = Dα

RLu(x), a ≤ x ≤ b.

Proposition 2. Let us assume that the function
u(x) is a function for which the Caputo frac-
tional derivative Dα

Cu(x) exists together with the
Riemman–Liouville fractional derivative Dα

RLu(x)
in [a, b]. Then, for every n − 1 < α < n we have,
for a ≤ x ≤ b,

Dα
Cu(x) = Dα

RLu(x) −
n−1∑
k=0

dku

dxk
(a)

(x − a)−α+k

Γ(−α + k + 1)
.

A modified definition of the Riemann–Liouville
derivative was introduced recently by Jumarie
[2006]. Although this formulation may not have
advantages compared with the Caputo derivative
in what concern numerical discretizations, we think
it is worth a mention. For n − 1 < α < n, we get

Dα
J u(x) =

1
Γ(n − α)

d

dx

×
∫ x

a

(
dn−1u

dxn−1
(ξ) − dn−1u

dxn−1
(a)
)

× (x − ξ)n−α−2dξ. (4)

The main difference is that this definition does not
require the existence of the derivative of order n for
u(x) as is required by the Caputo derivative.

3. Discretization of the Fractional
Derivatives

In this section, we describe different ways of dis-
cretizing the fractional derivative.
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3.1. Grünwald–Letnikov
approximations

Let us define the mesh points

xj = a + j∆x, j = 0, 1, . . . , N

where ∆x denotes the uniform space step.
The Grünwald–Letnikov formulae can lead

immediately to the approximation

Dα,∆x
GL u(xj) =

1
∆xα

j∑
k=0

ω
(α)
k u(xj−k), (5)

for

ω
(α)
k = (−1)k

(
α

k

)

= (−1)k
α(α − 1) · · · (α − k + 1)

k!

=
Γ(k − α)

Γ(−α)Γ(k + 1)
. (6)

To implement the fractional difference method,
it is necessary to compute the coefficients ω

(α)
k ,

where α is the order of fractional differentiation.
For that, we can use the recurrence relationships

ω
(α)
0 = 1; ω

(α)
k =

(
1 − α + 1

k

)
ω

(α)
k−1,

k = 1, 2, 3, . . . . (7)

This approach is suitable for a fixed value of α.
In some problems where α must be found, various
values of α need to be considered and this may not
be the most appropriated way. Instead of that rela-
tion, we can use the fast Fourier transform method.

When discretizing fractional differential equa-
tions we observe that in the literature the shifted
Grünwald–Letnikov formula is exhaustively used,
since, as already mentioned, the numerical approx-
imations based in the unshifted formula very fre-
quently originates unstable numerical methods.

The shifted Grünwald–Letnikov formula is
given by

Dα,∆x
GL,Su(xj) =

1
∆xα

j∑
k=0

ω
(α)
k u(xj+1−k). (8)

In the next results we give the leading term
of the truncation error for both approaches and
observe that although they have the same order of
consistency, O(∆x), they are slightly different.

Assuming that u(x) is a function that can be
written in the form of a power series

u(x) =
∞∑

m=0

amxm,

we can compare their truncation errors by observ-
ing the behavior for each function of the form
um(x) = xm. The following proof is partially pre-
sented in [Podlubny, 1999]. We present it here, since
it becomes clearer in the next proof for the shifted
Grünwald–Letnikov formula.

Proposition 3. Let um(x) = xm,m ≥ 0. Then

Dα,∆x
GL u0(x) = Dα

GLu0(x) + ∆x x−1−α

× 1
2Γ(1 − α)

(−α)(−α + 1)

+O(∆x2), (9)

Dα,∆x
GL um(x) = Dα

GLum(x) + ∆x xm−1−α

× Γ(m + 1)
2Γ(m − α)

(−α) + O(∆x2).

(10)

Proof

(a) Let us first consider m = 0, that is, u0(x) = 1.
We know that

Dα
GLu0(x) =

x−α

Γ(1 − α)
.

For x = n∆x, we have

Dα,∆x
GL u0(x) =

1
∆xα

n∑
j=0

(−1)j
(

α

j

)
u0(x − j∆x).

Since [Podlubny, 1999]

n∑
j=0

(−1)j
(

α

j

)
=

n∑
j=0

(
j − α − 1

j

)
=

(
n − α

n

)

(11)

we have, for x = n∆x,

Dα,∆x
GL u0(x) =

1
∆xα

(
n − α

n

)

=
x−α

Γ(1 − α)
nα Γ(n − α + 1)

Γ(n + 1)
.
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Now using the asymptotic expansion [Abramowitz &
Stegun, 1970],

Γ(z + a)
Γ(z + b)

= za−b

(
1 +

1
2
z−1(a − b)(a + b − 1) + O(z−2)

)
,

(12)

then

Dα,∆x
GL u0(x)

=
x−α

Γ(1 − α)
nαn−α

×
(

1 +
1
2
n−1(−α)(−α + 1) + O(n−2)

)
.

Finally

Dα,∆x
GL u0(x) = Dα

GLu0(x) +
∆x

2
x−α−1

Γ(1 − α)

× (−α)(−α + 1) + O(∆x2).

Let us now consider um(x) = xm for m ≥ 1.
We know that

Dα
GLum(x) =

Γ(1 + m)
Γ(1 + m − α)

xm−α.

For x = n∆x, we have

Dα,∆x
GL um(x) =

1
∆xα

n∑
j=0

(−1)j
(

α

j

)
um(x − j∆x),

that is

Dα,∆x
GL um(x) =

1
∆xα

n∑
j=0

(
j − α − 1

j

)
(x − j∆x)m

= (n∆x)m−αnα
n∑

j=0

(
j − α − 1

j

)

×
(

1 − j

n

)m

.

Expanding the binomial

(
1 − j

n

)m

=
m∑

r=0

(−1)r
(

m

r

)
jrn−r

we have

Dα,∆x
GL um(x) = xm−α

m∑
r=0

(−1)r
(

m

r

)
nα−r

×
n∑

j=0

(
j − α − 1

j

)
jr.

Let us now rewrite the sum
n∑

j=0

(
j − α − 1

j

)
jr.

We use the Stirling numbers of the second kind σ
(m)
n

[Abramowitz & Stegun, 1970], that is,

xn =
n∑

i=0

σ(i)
n x[i], n ≥ i, x[i] =

Γ(x + 1)
Γ(x − i + 1)

.

(13)

In our case, we obtain from (13),

jr =
r∑

i=1

σ(i)
r

Γ(j + 1)
Γ(j − i + 1)

.

Therefore,

n∑
j=0

(
j − α − 1

j

)
jr

=
r∑

i=1

σ(i)
r

n∑
j=i

Γ(j − α)
Γ(−α)Γ(j − i + 1)

=
r∑

i=1

σ(i)
r

n−i∑
k=0

Γ(k + i − α)
Γ(−α)Γ(k + 1)

=
r∑

i=1

σ(i)
r

Γ(i − α)
Γ(−α)

n−i∑
k=0

(
k + i − α − 1

k

)
.

Now using (11), we can write

n∑
j=0

(
j − α − 1

j

)
jr

=
r∑

i=1

σ(i)
r

Γ(i − α)
Γ(−α)

(
n − α

n − i

)

=
r∑

i=1

σ(i)
r

Γ(n − α + 1)
(i − α)Γ(−α)Γ(n − i + 1)

(
n − α

n − i

)
.
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Therefore,

Dα,∆x
GL um(x) =

xm

Γ(−α)

m∑
r=0

(−1)r
(

m

r

)
r∑

i=1

σ(i)
r nα−r Γ(n − α + 1)

(i − α)Γ(n − i + 1)
.

Using (12) we have

Dα,∆x
GL um(x) =

xm

Γ(−α)

m∑
r=0

(−1)r
(

m

r

)
r∑

i=1

σ(i)
r

ni−r

i − α

(
1 +

1
2
n−1(−α + i)(−α − i + 1) + O(n−2)

)

=
xm−α

Γ(−α)

m∑
r=0

(−1)r
(

m

r

)
σ(r)

r

1
r − α

(
1 +

1
2
n−1(−α + r)(−α − r + 1) + O(n−2)

)

+
xm−α

Γ(−α)

m∑
r=2

(−1)r
(

m

r

)
r−1∑
i=1

σ(i)
r

ni−r

i − α

(
1 +

1
2
n−1(−α + i)(−α − i + 1) + O(n−2)

)

=
xm−α

Γ(−α)

m∑
r=0

(−1)r
(

m

r

)
σ

(r)
r

r − α
+

1
2

xm−α

Γ(−α)

m∑
r=0

(−1)r
(

m

r

)
σ

(r)
r

r − α
n−1(−α + r)(−α − r + 1)

+
xm−α

Γ(−α)

m∑
r=2

(−1)r
(

m

r

)
σ(r−1)

r

n−1

r − 1 − α
+ O(n−2).

Since σ
(r)
r = 1 and as we have found in [Podlubny,

1999],
m∑

r=0

(−1)r
(

m

r

)
1

r − α
=

Γ(1 + m)Γ(−α)
Γ(1 + m − α)

(14)

we have,

Dα,∆x
GL um(x) = Dα

GLum(x) + ∆x
1
2

xm−α−1

Γ(−α)

×
m∑

r=0

(−1)r
(

m

r

)
(−α − r + 1)

+ ∆x
xm−α−1

Γ(−α)

m∑
r=2

(−1)r
(

m

r

)
σ(r−1)

r

× 1
r − 1 − α

+ O(∆x2),

where σ
(r−1)
r = (r

2). It is also easy to prove that

m∑
r=0

(−1)r
(

m

r

)
(−α − r + 1) = 0;

m∑
r=0

(−1)r
(

m

r

)
r(r − 1)
r − 1 − α

=
Γ(m + 1)Γ(1 − α)

Γ(m − α)
.

(15)

Therefore we have,

Dα,∆x
GL um(x) = Dα

GLum(x) + ∆x
1
2

xm−α−1

Γ(−α)

× Γ(m + 1)Γ(1 − α)
Γ(m − α)

+ O(∆x2),

and then we get (10). �

We now turn to the shifted formula.

Proposition 4. Let um(x) = xm,m ≥ 0. Then

Dα,∆x
GL,Su0(x) = Dα

GLu0(x) + ∆x x−1−α

× 1
2Γ(1 − α)

(−α)(−α + 3)

+O(∆x2), (16)

Dα,∆x
GL,Sum(x) = Dα

GLum(x) + ∆x xm−1−α

× Γ(m + 1)
2Γ(m − α)

(2 − α) + O(∆x2).

(17)

Proof. Let us first consider m = 0, that is, u0(x)= 1.
For x = n∆x, we have
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Dα,∆x
GL,Su0(x) =

1
∆xα

n+1∑
j=0

(−1)j
(

α

j

)

×u0(x − j∆x + ∆x).

Then,

Dα,∆x
GL,Su0(x) =

1
∆xα

(
n + 1 − α

n + 1

)

=
x−α

Γ(1 − α)
nα Γ(n − α + 2)

Γ(n + 2)
.

From (12),

Dα,∆x
GL,Su0(x)

=
x−α

Γ(1 − α)
nαn−α

×
(
1 +

1
2
n−1(−α)(−α + 3) + O(n−2)

)
.

Finally

Dα,∆x
GL,Su0(x) = Dα

GLu0(x) +
∆x

2
x−α−1

× 1
Γ(1−α)

(−α)(−α + 3) + O(∆x2).

For um(x) = xm we have

Dα,∆x
GL,Sum(x) =

1
∆xα

n+1∑
j=0

(−1)j
(

α

j

)

×um(x − j∆x + ∆x),

that is,

Dα,∆x
GL,Sum(x)

=
1

∆xα

n+1∑
j=0

(
j − α − 1

j

)
(x − j∆x + ∆x)m

= (n + 1)m∆xm−α
∑(

j − α − 1

j

)

×
(

1 − j

n + 1

)m

.

Expanding the binomial we obtain

Dα,∆x
GL,Sum(x) = (n + 1)m∆xm−α

m∑
r=0

(−1)r
(

m

r

)

× (n + 1)−r
n+1∑
j=0

(
j − α − 1

j

)
jr.

Let us now rewrite the sum
n+1∑
j=0

(
j − α − 1

j

)
jr.

We use the Stirling numbers of the second kind
σ

(m)
n , as previously in (13), to get

n∑
j=0

(
j − α − 1

j

)
jr =

r∑
i=1

σ(i)
r

Γ(i − α)
Γ(−α)

(
n + 1 − α

n + 1 − i

)
.

Therefore,

Dα,∆x
GL um(x) = (n + 1)m

∆xm−α

Γ(−α)

m∑
r=0

(−1)r
(

m

r

)
(n + 1)−r

r∑
i=1

σ(i)
r

Γ(n − α + 2)
(i − α)Γ(n − i + 2)

.

Using (12) we have

Dα,∆x
GL,Sum(x) = (n + 1)m

∆xm−α

Γ(−α)

m∑
r=0

(−1)r
(

m

r

)
(n + 1)−r

r∑
i=1

σ
(i)
r

i − α
(n + 1)−α+i

×
(

1 +
1
2
(n + 1)−1(−α + i)(−α − i + 2) + O((n + 1)−2)

)
.

Consider

Dα,∆x
GL um(x) = A1 + A2,

for

A1 = (n + 1)m−α ∆xm−α

Γ(−α)

m∑
r=0

(−1)r
(

m

r

)
σ

(r)
r

r − α

(
1 +

1
2
(n + 1)−1(−α + r)(−α − r + 2) + O((n + 1)−2)

)
,
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A2 = (n + 1)m
∆xm−α

Γ(−α)

m∑
r=2

(−1)r
(

m

r

)
(n + 1)−r

r−1∑
i=1

σ
(i)
r

i − α
(n + 1)−α+i

×
(

1 +
1
2
(n + 1)−1(−α + i)(−α − i + 2) + O((n + 1)−2)

)
.

For A1 we have

A1 =
(

n + 1
n

)m−α

nm−α ∆xm−α

Γ(−α)

m∑
r=0

(−1)r
(

m

r

)
σ

(r)
r

r − α
+
(

n + 1
n

)m−α−1

nm−α−1 ∆xm−α

Γ(−α)

×
m∑

r=0

(−1)r
(

m

r

)
σ

(r)
r

r − α

1
2
(−α + r)(−α − r + 2) + O((n + 1)−2).

It is easy to check that O((n + 1)−2) = O(∆x2) for a fixed x. Then

A1 =
(

1 +
m − α

n
+ O(n−2)

)(
xm−α

Γ(−α)

m∑
r=0

(−1)r
(

m

r

)
σ

(r)
r

r − α

)
+
(

1 +
m − α − 1

n
+ O(n−2)

)

×∆x
xm−α−1

Γ(−α)

m∑
r=0

(−1)r
(

m

r

)
σ

(r)
r

r − α

1
2
(−α + r)(−α − r + 2) + O(∆x2)

=
xm−α

Γ(−α)

m∑
r=0

(−1)r
(

m

r

)
σ

(r)
r

r − α
+ ∆x

xm−α−1

Γ(−α)
(m − α)

m∑
r=0

(−1)r
(

m

r

)
σ

(r)
r

r − α

+ ∆x
xm−α−1

Γ(−α)

m∑
r=0

(−1)r
(

m

r

)
1
2
(−α − r + 2) + O(∆x2).

Now we turn to A2. We have, using similar tools,

A2 =
(

n + 1
n

)m−α

nm−α ∆xm−α

Γ(−α)

m∑
r=2

(−1)r
(

m

r

)
σ(r−1)

r

(n + 1)−1

r − 1 − α

×
(

1 +
1
2
(n + 1)−1(−α + r − 1)(−α − r + 3) + O(∆x2)

)

= ∆x
∆xm−α−1

Γ(−α)

m∑
r=2

(−1)r
(

m

r

)
σ

(r−1)
r

r − 1 − α
+ O(∆x2),

where σ
(r−1)
r = (r

2). Then,

Dα,∆x
GL,Sum(x) = Dα

GLum(x) + ∆x
xm−α−1

Γ(−α)
(m − α)

m∑
r=0

(−1)r
(

m

r

)
1

r − α
+ ∆x

xm−α−1

Γ(−α)

×
m∑

r=0

(−1)r
(

m

r

)
1
2
(−α − r + 2) + ∆x

∆xm−α−1

Γ(−α)

m∑
r=2

(−1)r
(

m

r

)
σ

(r−1)
r

r − 1 − α
+ O(∆x2).
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Finally, using (14) and (15) we have

Dα,∆x
GL,Sum(x) = Dα

GLum(x) + ∆x
xm−α−1

Γ(−α)
(m − α)

Γ(m + 1)Γ(−α)
Γ(m + 1 − α)

+ ∆x
∆xm−α−1

Γ(−α)
1
2

Γ(m + 1)Γ(1 − α)
Γ(m − α)

+ O(∆x2),

and we obtain (17). �

3.2. Lubich approximations

The coefficients ω
(α)
k on Eqs. (5) and (8) can be con-

sidered as the coefficients of the power series for the
function (1 − z)α

(1 − z)α =
∞∑

k=0

ω
(α)
k zk, (18)

as noted in [Lubich, 1986]. We can say, for instance,
that in (5) the weights ω

(α)
k assigned to the values

u(x− k∆x), are the first order N + 1 coefficients of
the Taylor series expansion of the function

fα
1 (z) = (1 − z)α. (19)

Lubich [1986] obtained approximations up to the
sixth order in the form

Dα,∆x
L u(xj) =

1
∆xα

j∑
k=0

ω
(α)
k u(xj−k)

+
1

∆xα

s∑
k=0

ω
(α)
jk u(xk). (20)

The coefficients ω
(α)
k are respectively the coef-

ficients of the Taylor series expansions of the corre-
sponding generating functions, fp(z), p being the
order of consistency. For p = 2, the function is
given by

fα
2 (z) =

(
3
2
− 2z +

1
2
z2

)α

. (21)

Technically all the coefficients ω
(α)
k can be computed

using any implementation of the fast Fourier trans-
form.

For the coefficients ω
(α)
jk we can consider s = 0.

For s �= 0, the coefficients ω
(α)
jk can be constructed

such that

Dα
RL(xj)q

= Dα,∆x
L (xj)q, for all integer 0 ≤ q ≤ p − 1,

which results in the following system of equations

s∑
k=1

ω
(α)
jk kq =

Γ(q + 1)
Γ(−α + q + 1)

jq−α −
j∑

k=1

ω
(α)
j−kk

q,

q = 0, . . . , s − 1.

It is easy to see that in this case it makes sense to
choose s = p.

The implementation of the fast Fourier trans-
form consist of the following. If f(z) is an analytic
function in the closed unit disk, then its Taylor
series converges there, and the Taylor coefficients
can be computed by Cauchy integrals:

f(z) =
∞∑

k=0

akz
k, ak =

1
2πi

∫
|z|=1

z−k−1f(z)dz,

(22)

where the contour of integration is the unit circle
traversed once counterclockwise.

Setting z = eiφ, with dz = izdφ shows that an
equivalent expression for ak is

ak =
1
2π

∫ 2π

0
e−ikφf(eiφ)dφ. (23)

These coefficients can be evaluated by the fast
Fourier transform.

In our particular case, the analytic function
fα

p (z) is

fα
p (eiφ) =

∞∑
k=0

ω
(α)
k eiφk, p = 1, 2, (24)

with the coefficients given by

ω
(α)
k =

1
2π

∫ 2π

0
e−ikφfα

p (eiφ)dφ. (25)

1250075-8
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Note that for α = 2 the coefficients ω
(α)
k can be

easily obtained. For instance, for p = 1

ω
(2)
0 = 1, ω

(2)
1 = −2, ω

(2)
2 = 1,

ω
(2)
k = 0, k ≥ 3,

and for p = 2

ω
(2)
0 =

9
4
, ω

(2)
1 = −6, ω

(2)
2 =

11
2

, ω
(2)
3 = −2,

ω
(2)
4 =

1
4
, ω

(2)
k = 0, k ≥ 5.

According to Lubich [1986], we have the following
result.

Proposition 5. For any function u(x) sufficiently
differentiable, the approximation Dα,∆x

L u(xj),
satisfies

Dα,∆x
L u(xj) − Dα

RLu(xj) = O(∆xp).

uniformly for xj ∈ [a, b], 0 < a < b < ∞.

3.3. Caputo approximations

In this section we derive numerical approximations
based on the Caputo derivative definition,

Dα
Cu(x) =

1
Γ(2 − α)

∫ x

a

d2u

dξ2
(ξ)(x − ξ)1−αdξ. (26)

For each xj, we have that

Dα
Cu(xj) =

1
Γ(2 − α)

j−1∑
k=0

∫ xk+1

xk

d2u

dξ2
(ξ)(xj − ξ)1−αdξ. (27)

An usual way of approximating the Caputo derivative Dα
Cu(xj) is by

Dα,∆x
C,1 u(xj) =

1
Γ(2 − α)

j−1∑
k=0

u(xk+2) − 2u(xk+1) + u(xk)
∆x2

∫ xk+1

xk

(xj − ξ)1−αdξ

=
1

Γ(2 − α)

j−1∑
k=0

u(xk+2) − 2u(xk+1) + u(xk)
∆x2

∆x2−α

2 − α
dj,k

=
∆x−α

Γ(3 − α)

j−1∑
k=0

dj,k(u(xk+2) − 2u(xk+1) + u(xk)),

for

dj,k = (j − k)2−α − (j − k − 1)2−α.

This is a first order approximation as stated in the
next result and proved in [Shen & Liu, 2005].

Proposition 6. Let u(x) be a function in C3[a, b]
and 1 < α < 2. Then

Dα,∆x
C,1 u(xj) = Dα

C,1u(xj) + EC,1(xj)

with

|EC,1(xj)| ≤ 2(xj − a)2−α

Γ(3 − α)
O(∆x).

Let us now derive a second order approxima-
tion. For xj , j = 1, . . . , N − 1 we need to calculate

1
Γ(2 − α)

∫ xj

a

d2u

dξ2
(ξ)(xj − ξ)1−αdξ. (28)

We compute these integrals by approximating
the second order derivative by a linear spline
sj(ξ), whose nodes and knots are chosen at xk,
k = 0, 1, 2, . . . , j. A similar approach is done in
[Diethelm et al., 2004a, 2004b; Li & Tao, 2009; Li
et al., 2011]. The spline sj(ξ) is of the form

sj(ξ) =
j∑

k=0

d2u

dξ2
(xk)sj,k(ξ), (29)

with sj,k(ξ), in each interval [xk−1, xk+1], for 1 ≤
k ≤ j − 1, given by

sj,k(ξ) =




ξ − xk−1

xk − xk−1
, xk−1 ≤ ξ ≤ xk

xk+1 − ξ

xk+1 − xk
, xk ≤ ξ ≤ xk+1

0 otherwise.

1250075-9
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For k = 0 and k = j, sj,k(ξ) is of the form

sj,0(ξ) =




x1 − ξ

x1 − x0
, x0 ≤ ξ ≤ x1

0 otherwise

sj,j(ξ) =




ξ − xj−1

xj − xj−1
, xj−1 ≤ ξ ≤ xj

0 otherwise.

Therefore, an approximation for (28) is of the
form

1
Γ(2 − α)

∫ xj

a
sj(ξ)(xj − ξ)1−αdξ

=
1

Γ(2 − α)

j∑
k=0

d2u

dξ2
(xk)

×
∫ xj

a
(xj − ξ)1−αsj,k(ξ)dξ,

and after some calculations we obtain

1
Γ(2 − α)

∫ xj

a
sj(ξ)(xj − ξ)1−αdξ

=
∆x2−α

Γ(4 − α)

j∑
k=0

d2u

dξ2
(xk)aj,k, (30)

where

aj,k = (j − 1)3−α − j2−α(j − 3 + α), k = 0 (31)

aj,k = (j − k + 1)3−α − 2(j − k)3−α

+ (j − k − 1)3−α, 1 ≤ k ≤ j − 1 (32)

aj,k = 1, k = j. (33)

For the mesh points xk, k = 1, . . . , N − 1 the
second order derivative of (30) can be approximated
by δ2uj/∆x2 where δ2 is the central second order
differential operator

δ2uj = u(xj+1) − 2u(xj) + u(xj−1).

Additionally, we also need to know the value of the
second order derivative at the boundary point x0.
If we have a physical boundary condition of the
type

d2u

dx2
(x0) = b0 (34)

we can consider the given value. If this value is
not available at x = x0 the second order derivative
can be approximated by δ0U0/∆x2 where δ0 is the
operator

δ0uj = 2u(xj) − 5u(xj+1) + 4u(xj+2) − u(xj+3).

(35)

Finally, an approximation for Dα
C(xj) can be

written as

Dα,∆x
C u(xj) =

∆x−α

Γ(4 − α)

{
aj,0δ0u0 +

j∑
k=1

aj,kδ
2uk

}
.

We have the following result, proved in [Sousa,
2011].

Proposition 7. Let u(x) be a function in C4[a, b]
and 1 < α < 2. Then

Dα,∆x
C u(xj) = Dα

Cu(xj) + EC(xj)

with

|EC(xj)| ≤ 2(xj − a)2−α

Γ(3 − α)
O(∆x2).

Note that

Dα
Cu(x) = Dα

RLu(x) −
1∑

k=0

dku

dxk
(a)

(x − a)−α+k

Γ(−α + k + 1)
,

that is

Dα
RLu(x) = Dα

Cu(x) + u(a)
(x − a)−α

Γ(−α + 1)

+ u′(a)
(x − a)−α+1

Γ(−α + 2)
.

If we want a first order approximation for the
derivative Dα

RLu(x), we can use a first order approx-
imation to determine u′(a) by using the forward
operator

∆+u(xj) = u(xj+1) − u(xj)

and

u′(xj) =
∆+u(xj)

∆x
+ O(∆x).

On the other hand if we want a second order
approximation for the Riemman–Liouville deriva-
tive we can use the second order approximation for
the first derivative, such as,

u′(xj) =
−u(xj+2) + 4u(xj+1) − 3u(xj)

2∆x
+ O(∆x2).
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4. Numerical Tests

In this section, we present some numerical results.
The magnitude of the truncation error is compared
for the approximations discussed previously and
their order of consistency is confirmed.

4.1. Boundary conditions are zero

Consider the function u(x) = x4. We have that, for
1 < α ≤ 2,

Dα
Cu(x) = Dα

RLu(x) = Dα
GLu(x) =

24
Γ(5 − α)

x4−α.

Consider the vectors Uapp = (U(x0), . . . ,
U(xN )), where U is the approximate solution and
uex = (u(x0), . . . , u(xN )), where u is the exact solu-
tion. The error is defined by

‖uex(∆x) − Uapp(∆x)‖∞, (36)

where ‖·‖∞ is the l∞ norm.
In Table 1 we compare the first order approx-

imations and in Table 2 we compare the second
order approximations for α = 1.8. We observe
in Table 1, that the approximation based on
the shifted Grünwald–Letnikov formula gives the
smaller error. This is in agreement with the theoret-
ical results (10) and (17). In Table 2, the approx-
imation based on the Caputo derivative performs
better.

Table 1. l∞ error (36) for α = 1.8, 0 ≤ x ≤ 1.

∆x Dα,∆x
GL Dα,∆x

GL,S Dα,∆x
C,1

1

50
0.3778 × 100 0.4335 × 10−1 0.1327 × 100

1

500
0.3903 × 10−1 0.4385 × 10−2 0.1648 × 10−1

1

5000
0.3919 × 10−2 0.4356 × 10−3 0.1845 × 10−2

Table 2. l∞ error (36) for α = 1.8, 0 ≤ x ≤ 1.

∆x Dα,∆x
L Dα,∆x

C

1

50
0.6229 × 10−2 0.1496 × 10−2

1

500
0.5421 × 10−4 0.1602 × 10−4

1

5000
0.2511 × 10−2 0.1678 × 10−6

Table 3. l∞ error (36) for α = 1.2, 0 ≤ x ≤ 1.

∆x Dα,∆x
GL Dα,∆x

GL,S Dα,∆x
C,1

1

50
0.1633 × 100 0.1118 × 100 0.1379 × 100

1

500
0.1697 × 10−1 0.1142 × 10−1 0.1425 × 10−1

1

5000
0.1717 × 10−2 0.1145 × 10−2 0.1431 × 10−2

Additionally, the approximation Dα,∆x
L u(x)

starts to perform well for values of ∆x = 1/50
and ∆x = 1/500 but for quite small ∆x, such as,
∆x = 1/5000 we have accuracy problems. Numeri-
cal problems related to this approximation are also
reported, for instance, in [Diethelm et al., 2004].
Note that for this approximation we have consid-
ered s = 0 in (20), since there was no significant
differences in the precision if we consider s = 1.

In Tables 3 and 4, we do similar tests to the
ones that were done in Tables 1 and 2, but now for
α = 1.2. The conclusions are the same.

4.2. Nonzero boundary conditions

Let us now consider for 0 ≤ x < 1, the function

u(x) =
x

(1 − x)5/2
,

and α = 3/2. We have that

Dα
RLu(x) =

3x2 + 18x + 3

Γ
(

5
2

)√
x(1 − x)4

.

Note that

u′(x) =
2 + 3x

2(1 − x)7/2
u′′(x) =

20 + 15x
4(1 − x)9/2

and therefore

u(0) = 0 u′(0) = 1 u′′(0) = 5.

Table 4. l∞ error (36) for α = 1.2, 0 ≤ x ≤ 1.

∆x Dα,∆x
L Dα,∆x

C

1

50
0.4006 × 10−2 0.1606 × 10−2

1

500
0.8689 × 10−4 0.1707 × 10−4

1

5000
0.4160 × 10−2 0.1716 × 10−6
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Table 5. First order error for α = 1.5 at x = 1/4.

∆x Dα,∆x
GL,S u(1/4) Error

1

60
9.372416532513057 0.2339 × 100

1

600
9.160930732981797 0.2245 × 10−1

1

6000
9.140714295237558 0.2236 × 10−2

The solution, Dα
RLu(1/4), at x = 1/4, and con-

sidering sixteen digits, is given by Dα
RLu(1/4) =

9.138478192773535.
In Tables 5 and 6 we compare the two approx-

imations based on the Grünwald–Letnikov defini-
tion and its confirmed that the shifted formula gives
smaller errors and we note again this is in agreement
with the theoretical results (10) and (17).

Since the first order derivative at the left
boundary is not zero, the Caputo derivative and
the Riemann–Liouville derivative are different.
In the next tables we present the Riemman–
Liouville derivative values based on the Caputo
approximations.

The approximations of the first order and
second order derivatives at the boundary point
must be considered as described in the pre-
vious section, that is, to obtain a first order
approximation for the Riemman–Liouville deriva-
tive, and assuming u(0) = 0 we need to consider the
approximation,

Dα,∆x
RL,1 u(xj) = Dα,∆x

C,1 u(xj) +
u(x1) − u(x0)

∆x

× x−α+1
j

Γ(−α + 2)
,

and to obtain a second order approximation,

Table 6. First order error for α = 1.5 at x = 1/4.

∆x Dα,∆x
GL u(1/4) Error

1

60
8.504256221012128 0.6342 × 100

1

600
9.071845197716357 0.6663 × 10−1

1

6000
9.138478192773535 0.6701 × 10−2

Table 7. First order error for α = 1.5 at x = 1/4.

∆x Dα,∆x
RL,1 u(1/4) Error

1

60
9.557038359800762 0.4186 × 100

1

600
9.183034203064997 0.4456 × 10−1

1

6000
9.143066643085710 0.4588 × 10−2

Table 8. Second order error for α = 1.5 at x = 1/4.

∆x Dα,∆x
RL u(1/4) Error

1

60
9.151374640108251 0.1290 × 10−1

1

600
9.138618733987558 0.1405 × 10−3

1

6000
9.138479620502642 0.1428 × 10−5

Dα,∆x
RL u(xj) = Dα,∆x

C u(xj)

+
−u(x2) + 4u(x1) − 3u(x0)

2∆x

× x−α+1
j

Γ(−α + 2)
. (37)

In Tables 7 and 8 we show the performance
of the derivatives Dα,∆x

RL,1 u(x) and Dα,∆x
RL u(x) and

see that the approximation Dα,∆x
RL u(x) is quite

accurate.
Finally we present the results for the derivative

based on the second order Lubich approximation
and it is again confirmed that for quite small space
steps we have precision problems.

We conclude the second order approximation
based on the Caputo definition is a very good
option.

Table 9. Second order error for α = 1.5 at x = 1/4.

∆x Dα,∆x
L u(1/4) Error

1

60
9.087659189694477 0.5082 × 10−1

1

600
9.137964592304343 0.5136 × 10−3

1

6000
9.140670631721150 0.2192 × 10−2
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5. Conclusion

We have presented and compared different numer-
ical approximations for the fractional derivative.
The approximation based on the shifted Grünwald–
Letnikov definition is the best option when consid-
ering first order approximations. For second order
approximations, the approximation obtained from
the Caputo definition performs better. Additionally
precision problems related to the Lubich approxi-
mation are reported. These problems may be a con-
sequence of the fact that we are unable to compute
the weights with high accuracy.
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