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Non-local diffusion.

The function J. Let J : RN → R, nonnegative, smooth with∫
RN

J(r)dr = 1.

Assume that is compactly supported and radially symmetric.

Non-local diffusion equation

ut(x , t) = J ∗ u − u(x , t) =

∫
RN

J(x − y)u(y , t)dy − u(x , t).
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Non-local diffusion.

In this model, u(x , t) is the density of individuals in x at time t
and J(x − y) is the probability distribution of jumping from y to
x . Then

(J ∗ u)(x , t) =

∫
RN

J(x − y)u(y , t)dy

is the rate at which the individuals are arriving to x from other
places

−u(x , t) = −
∫

RN
J(y − x)u(x , t)dy

is the rate at which they are leaving from x to other places.

References
- P. Bates, P- Fife, X. Ren, X. Wang. Arch. Rat. Mech. Anal.
(1997).
- P. Fife. Trends in nonlinear analysis. Springer, 2003.
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Non-local diffusion.

The non-local equation shares some properties with the
classical heat equation

ut = ∆u.

Properties
- Existence, uniqueness and continuous dependence on the
initial data.
- Maximum and comparison principles.
- Perturbations propagate with infinite speed. If u is a
nonnegative and nontrivial solution, then u(x , t) > 0 for every
x ∈ RN and every t > 0.

Remark.
There is no regularizing effect for the non-local model.
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Newmann boundary conditions.

One of the boundary conditions that has been imposed to the
heat equation is the Neumann boundary condition,
∂u/∂η(x , t) = g(x , t), x ∈ ∂Ω.

Non-local Neumann model

ut(x , t) =

∫
Ω

J(x−y)(u(y , t)−u(x , t))dy+

∫
RN\Ω

G(x−y)g(y , t)dy

for x ∈ Ω.

Since we are integrating in Ω, we are imposing that diffusion
takes place only in Ω. The last term takes into account the
prescribed flux (given by the data g(x , t)) of individuals from
outside.
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Existence, uniqueness and a comparison principle

Theorem

For every u0 ∈ L1(Ω) and g ∈ L∞loc((0,∞); L1(RN \ Ω)) there
exists a unique solution u such that u ∈ C([0,∞); L1(Ω)) and
u(x , 0) = u0(x).
Moreover the solutions satisfy the following comparison
property:

if u0(x) ≤ v0(x) in Ω, then u(x , t) ≤ v(x , t) in Ω× [0,∞).

In addition the total mass in Ω satisfies∫
Ω

u(y , t) dy =

∫
Ω

u0(y)dy+

∫ t

0

∫
Ω

∫
RN\Ω

G(x−y)g(y , s)dydxds.
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Asymptotic behavior

Theorem
Let g(x , t) = h(x) such that

0 =

∫
Ω

∫
RN\Ω

G(x − y)h(y) dy dx .

Then there exists a unique solution ϕ of the problem

0 =

∫
Ω

J(x − y)(ϕ(y)− ϕ(x)) dy +

∫
RN\Ω

G(x − y)h(y) dy

that verifies
∫
Ω u0 =

∫
Ω ϕ and there exists β = β(J,Ω) > 0 such

that
‖u(t)− ϕ‖L2(Ω) ≤ e−βt‖u0 − ϕ‖L2(Ω).
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Asymptotic behavior

If the compatibility conditions does not hold then solutions are
unbounded.
Here β1 is given by

β1 = inf
u∈L2(Ω),

R
Ω u=0

1
2

∫
Ω

∫
Ω

J(x − y)(u(y)− u(x))2 dy dx∫
Ω
(u(x))2 dx

.

E. Chasseigne, M. Chaves, J. D. R. J. Math. Pures Appl.
(2006).
F. Andreu, J. M. Mazon, J. D. R., J. Toledo. Preprint.
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Approximations

Now, our goal is to show that the Neumann problem for the
heat equation, can be approximated by suitable nonlocal
Neumann problems.
More precisely, for given J we consider the rescaled kernels

Jε(ξ) = C1
1
εN J

(
ξ

ε

)
, Gε(ξ) = C1

1
εN G

(
ξ

ε

)
with

C−1
1 =

1
2

∫
B(0,d)

J(z)z2
N dz,

which is a normalizing constant in order to obtain the Laplacian
in the limit instead of a multiple of it.
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Approximations

Then, we consider the solution uε(x , t) to



(uε)t(x , t) =
1
ε2

∫
Ω

Jε(x − y)(uε(y , t)− uε(x , t)) dy

+
1
ε

∫
RN\Ω

Gε(x − y)g(y , t) dy ,

uε(x , 0) = u0(x).

Note that the scaling of the diffusion, 1/ε2, is different from the
scaling of the boundary flux, 1/ε, as happens for the heat
equation with Neumann boundary conditions.
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Approximations

Our first result deals with homogeneous boundary conditions,
this is, g ≡ 0.

Theorem

Let g = 0 and let u ∈ C2+α,1+α/2(Ω× [0, T ]) be the solution to
the heat equation with Neumann boundary conditions
∂u/∂η = 0 and uε be the solution to the nonlocal model. Then,

sup
t∈[0,T ]

‖uε(·, t)− u(·, t)‖L∞(Ω) → 0

as ε → 0.

Note that this result holds for every G since g ≡ 0, and that the
assumed regularity in u is guaranteed if u0 ∈ C2+α(Ω) and
∂u0/∂η = 0.
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Approximations

Now let the “Neumann” kernel be given by

G(ξ) = C2J(ξ),

where C2 is such that∫ d

0

∫
{zN>s}

J(z)
(
C2 − zN

)
dz ds = 0.

This choice of G is natural since we are considering a flux with
a jumping probability that is a scalar multiple of the same
jumping probability that moves things in the interior of the
domain, J.
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Approximations

In this case we can prove convergence with g 6= 0 but in a
weaker sense.

Theorem
Let

g ∈ C1+α,(1+α)/2((RN \ Ω)× [0, T ]),

u ∈ C2+α,1+α/2(Ω× [0, T ])

the solution to the heat equation with Neumann boundary
condition, ∂u/∂η = 0 and uε be the solution to the nonlocal
model. Then, for each t ∈ [0, T ]

uε(x , t) ⇀ u(x , t) ∗ −weakly in L∞(Ω)

as ε → 0.
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Approximations

Idea of why the involved scaling is correct

Let us give an heuristic idea in one space dimension, with
Ω = (0, 1), of why the scaling involved is the right one. We
assume that∫ ∞

1
G(1− y) dy = −

∫ 0

−∞
G(−y) dy =

∫ 1

0
J(y) y dy .
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Approximations

We have

ut(x , t) =
1
ε2

∫ 1

0
Jε (x − y)

(
u(y , t)− u(x , t)

)
dy

+
1
ε

∫ 0

−∞
Gε (x − y) g(y , t) dy

+
1
ε

∫ +∞

1
Gε (x − y) g(y , t) dy := Aεu(x , t).
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Approximations

If x ∈ (0, 1) a Taylor expansion gives that for any fixed smooth u
and ε small enough, the right hand side Aεu becomes

Aεu(x) =
1
ε2

∫ 1

0
Jε (x − y) (u(y)− u(x)) dy

=
1
ε3

∫ 1

0
J

(
x − y

ε

)
(u(y)− u(x)) dy

=
1
ε2

∫
R

J (w) (u(x − εw)− u(x)) dw
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Approximations
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Approximations

=
ux(x)

ε

∫
R

J (w) w dw +
uxx(x)

2

∫
R

J (w) w2 dw + O(ε)

As J is even ∫
R

J (w) w dw = 0

and hence,

Aεu(x) ≈ uxx(x),

and we recover the Laplacian for x ∈ (0, 1).
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Approximations

If x = 0 and ε small,

Aεu(0) =
1
ε2

∫ 1

0
Jε (−y) (u(y)−u(0)) dy+

1
ε

∫ 0

−∞
Gε (−y) g(y) dy

=
1
ε3

∫ 1

0
J

(
−y
ε

)
(u(y)− u(0)) dy +

1
ε2

∫ 0

−∞
G

(
−y
ε

)
g(y) dy

=
1
ε2

∫ 0

−∞
J (w) (−u(−εw)+u(0)) dw+

1
ε

∫ +∞

0
G (w) g(−εw) dw
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Approximations
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Approximations
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Approximations

= −ux(0)

ε

∫ 0

−∞
J (w) w dw +

g(0)

ε

∫ +∞

0
G (w) dw + O(1)

≈ C2

ε
(ux(0) + g(0)).

then

−ux(0) = g(0)

and we recover the boundary condition
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Idea of the proof. General case

We set
wε = uε − u

and let ũ be a C2+α,1+α/2 extension of u to RN × [0, T ]. We
define

Lε(v) =
1
ε2

∫
Ω

Jε(x − y)
(
v(y , t)− v(x , t)

)
dy

and
L̃ε(v) =

1
ε2

∫
RN

Jε(x − y)
(
v(y , t)− v(x , t)

)
dy .
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Idea of the proof. General case

Then

(wε)t = Lε(uε)−∆u +
1
ε

∫
RN\Ω

Gε(x , x − y)g(y , t) dy

= Lε(wε) + L̃ε(ũ)−∆u +
1
ε

∫
RN\Ω

Gε(x , x − y)g(y , t) dy

− 1
ε2

∫
RN\Ω

Jε(x − y)
(
ũ(y , t)− ũ(x , t)

)
dy .

Or
(wε)t − Lε(wε) = Fε(x , t),

Our main task in order to prove the uniform convergence result
is to get bounds on Fε.
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Idea of the proof. General case

However, the proofs of our results are much more involved than
simple Taylor expansions.
This is due to the fact that for each ε > 0 there are points x ∈ Ω
for which the ball in which integration takes place, B(x , ε), is not
contained in Ω and moreover, when working in several space
dimensions, one has to take into account the geometry of the
domain.
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THANKS !!!


