How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems

Carmen Cortazar (PUC, Chile)
Manuel Elgueta (PUC, Chile)
Julio D. Rossi (UBA, Argentina)
N. Wolanski (UBA, Argentina)
http://mate.dm.uba.ar/-jrossi

Salamanca, 2007

Non-local diffusion.

The function J. Let $J: \mathbf{R}^{N} \rightarrow \mathbf{R}$, nonnegative, smooth with

$$
\int_{\mathbf{R}^{N}} J(r) d r=1 .
$$

Assume that is compactly supported and radially symmetric.
Non-local diffusion equation

$$
u_{t}(x, t)=J * u-u(x, t)=\int_{\mathbf{R}^{N}} J(x-y) u(y, t) d y-u(x, t) .
$$

Non-local diffusion.

In this model, $u(x, t)$ is the density of individuals in x at time t and $J(x-y)$ is the probability distribution of jumping from y to x. Then

$$
(J * u)(x, t)=\int_{\mathbf{R}^{N}} J(x-y) u(y, t) d y
$$

is the rate at which the individuals are arriving to x from other places

$$
-u(x, t)=-\int_{\mathbf{R}^{N}} J(y-x) u(x, t) d y
$$

is the rate at which they are leaving from x to other places.

References

- P. Bates, P- Fife, X. Ren, X. Wang. Arch. Rat. Mech. Anal. (1997).
- P. Fife. Trends in nonlinear analysis. Springer, 2003.

Non-local diffusion.

The non-local equation shares some properties with the classical heat equation

$$
u_{t}=\Delta u
$$

Properties

- Existence, uniqueness and continuous dependence on the initial data.
- Maximum and comparison principles.
- Perturbations propagate with infinite speed. If u is a nonnegative and nontrivial solution, then $u(x, t)>0$ for every $x \in \mathbf{R}^{N}$ and every $t>0$.

Non-local diffusion.

The non-local equation shares some properties with the classical heat equation

$$
u_{t}=\Delta u
$$

Properties

- Existence, uniqueness and continuous dependence on the initial data.
- Maximum and comparison principles.
- Perturbations propagate with infinite speed. If u is a nonnegative and nontrivial solution, then $u(x, t)>0$ for every $x \in \mathbf{R}^{N}$ and every $t>0$.

Remark.

There is no regularizing effect for the non-local model.

Newmann boundary conditions.

One of the boundary conditions that has been imposed to the heat equation is the Neumann boundary condition, $\partial u / \partial \eta(x, t)=g(x, t), x \in \partial \Omega$.

Non-local Neumann model

$u_{t}(x, t)=\int_{\Omega} J(x-y)(u(y, t)-u(x, t)) d y+\int_{\mathbf{R}^{N} \backslash \Omega} G(x-y) g(y, t) d y$
for $x \in \Omega$.
Since we are integrating in Ω, we are imposing that diffusion takes place only in Ω. The last term takes into account the prescribed flux (given by the data $g(x, t)$) of individuals from outside.

Existence, uniqueness and a comparison principle

Theorem

For every $u_{0} \in L^{1}(\Omega)$ and $g \in L_{l o c}^{\infty}\left((0, \infty) ; L^{1}\left(\mathbf{R}^{N} \backslash \Omega\right)\right)$ there exists a unique solution u such that $u \in C\left([0, \infty) ; L^{1}(\Omega)\right)$ and $u(x, 0)=u_{0}(x)$.
Moreover the solutions satisfy the following comparison property:

$$
\text { if } u_{0}(x) \leq v_{0}(x) \text { in } \Omega, \text { then } u(x, t) \leq v(x, t) \text { in } \Omega \times[0, \infty)
$$

In addition the total mass in Ω satisfies
$\int_{\Omega} u(y, t) d y=\int_{\Omega} u_{0}(y) d y+\int_{0}^{t} \int_{\Omega} \int_{\mathbf{R}^{N} \backslash \Omega} G(x-y) g(y, s) d y d x d s$.

Asymptotic behavior

Theorem

Let $g(x, t)=h(x)$ such that

$$
0=\int_{\Omega} \int_{\mathbf{R}^{N} \backslash \Omega} G(x-y) h(y) d y d x
$$

Then there exists a unique solution φ of the problem

$$
0=\int_{\Omega} J(x-y)(\varphi(y)-\varphi(x)) d y+\int_{\mathbf{R}^{N} \backslash \Omega} G(x-y) h(y) d y
$$

that verifies $\int_{\Omega} u_{0}=\int_{\Omega} \varphi$ and there exists $\beta=\beta(J, \Omega)>0$ such that

$$
\|u(t)-\varphi\|_{L^{2}(\Omega)} \leq e^{-\beta t}\left\|u_{0}-\varphi\right\|_{L^{2}(\Omega)} .
$$

Asymptotic behavior

If the compatibility conditions does not hold then solutions are unbounded.
Here β_{1} is given by

$$
\beta_{1}=\inf _{u \in L^{2}(\Omega), \int_{\Omega} u=0} \frac{\frac{1}{2} \int_{\Omega} \int_{\Omega} J(x-y)(u(y)-u(x))^{2} d y d x}{\int_{\Omega}(u(x))^{2} d x} .
$$

E. Chasseigne, M. Chaves, J. D. R. J. Math. Pures Appl. (2006).
F. Andreu, J. M. Mazon, J. D. R., J. Toledo. Preprint.

Approximations

Now, our goal is to show that the Neumann problem for the heat equation, can be approximated by suitable nonlocal Neumann problems.
More precisely, for given J we consider the rescaled kernels

$$
J_{\varepsilon}(\xi)=C_{1} \frac{1}{\varepsilon^{N}} J\left(\frac{\xi}{\varepsilon}\right), \quad G_{\varepsilon}(\xi)=C_{1} \frac{1}{\varepsilon^{N}} G\left(\frac{\xi}{\varepsilon}\right)
$$

with

$$
C_{1}^{-1}=\frac{1}{2} \int_{B(0, d)} J(z) z_{N}^{2} d z
$$

which is a normalizing constant in order to obtain the Laplacian in the limit instead of a multiple of it.

Approximations

Then, we consider the solution $u_{\varepsilon}(x, t)$ to

$$
\left\{\begin{aligned}
\left(u_{\varepsilon}\right)_{t}(x, t)= & \frac{1}{\varepsilon^{2}} \int_{\Omega} J_{\varepsilon}(x-y)\left(u_{\varepsilon}(y, t)-u_{\varepsilon}(x, t)\right) d y \\
& +\frac{1}{\varepsilon} \int_{\mathbf{R}^{N} \backslash \Omega} G_{\varepsilon}(x-y) g(y, t) d y, \\
u_{\varepsilon}(x, 0)= & u_{0}(x) .
\end{aligned}\right.
$$

Note that the scaling of the diffusion, $1 / \varepsilon^{2}$, is different from the
scaling of the boundarv flux, $1 / \varepsilon$, as happens for the heat
equation with Neumann boundary conditions.

Approximations

Then, we consider the solution $u_{\varepsilon}(x, t)$ to

$$
\left\{\begin{aligned}
\left(u_{\varepsilon}\right)_{t}(x, t)= & \frac{1}{\varepsilon^{2}} \int_{\Omega} J_{\varepsilon}(x-y)\left(u_{\varepsilon}(y, t)-u_{\varepsilon}(x, t)\right) d y \\
& +\frac{1}{\varepsilon} \int_{\mathbf{R}^{N} \backslash \Omega} G_{\varepsilon}(x-y) g(y, t) d y, \\
u_{\varepsilon}(x, 0)= & u_{0}(x) .
\end{aligned}\right.
$$

Note that the scaling of the diffusion, $1 / \varepsilon^{2}$, is different from the scaling of the boundary flux, $1 / \varepsilon$, as happens for the heat equation with Neumann boundary conditions.

Approximations

Our first result deals with homogeneous boundary conditions, this is, $g \equiv 0$.

Theorem

Let $g=0$ and let $u \in C^{2+\alpha, 1+\alpha / 2}(\bar{\Omega} \times[0, T])$ be the solution to the heat equation with Neumann boundary conditions $\partial u / \partial \eta=0$ and u_{ε} be the solution to the nonlocal model. Then,

$$
\sup _{t \in[0, T]}\left\|u_{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{L^{\infty}(\Omega)} \rightarrow 0
$$

as $\varepsilon \rightarrow 0$.

Note that this result holds for every G since $g \equiv 0$, and that the assumed regularity in u is guaranteed if $u_{0} \in C^{2+\alpha}(\Omega)$ and

Approximations

Our first result deals with homogeneous boundary conditions, this is, $g \equiv 0$.

Theorem

Let $g=0$ and let $u \in C^{2+\alpha, 1+\alpha / 2}(\bar{\Omega} \times[0, T])$ be the solution to the heat equation with Neumann boundary conditions $\partial u / \partial \eta=0$ and u_{ε} be the solution to the nonlocal model. Then,

$$
\sup _{t \in[0, T]}\left\|u_{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{L^{\infty}(\Omega)} \rightarrow 0
$$

as $\varepsilon \rightarrow 0$.

Note that this result holds for every G since $g \equiv 0$, and that the assumed regularity in u is guaranteed if $u_{0} \in C^{2+\alpha}(\bar{\Omega})$ and $\partial u_{0} / \partial \eta=0$.

Approximations

Now let the "Neumann" kernel be given by

$$
G(\xi)=C_{2} J(\xi)
$$

where C_{2} is such that

$$
\int_{0}^{d} \int_{\left\{z_{N}>s\right\}} J(z)\left(C_{2}-z_{N}\right) d z d s=0
$$

This choice of G is natural since we are considering a flux with a jumping probability that is a scalar multiple of the same jumping probability that moves things in the interior of the domain, J.

Approximations

In this case we can prove convergence with $g \neq 0$ but in a weaker sense.

Theorem

Let

$$
\begin{gathered}
g \in C^{1+\alpha,(1+\alpha) / 2}\left(\overline{\left(\mathbf{R}^{N} \backslash \Omega\right)} \times[0, T]\right) \\
u \in C^{2+\alpha, 1+\alpha / 2}(\bar{\Omega} \times[0, T])
\end{gathered}
$$

the solution to the heat equation with Neumann boundary condition, $\partial u / \partial \eta=0$ and u_{ε} be the solution to the nonlocal model. Then, for each $t \in[0, T]$

$$
u_{\varepsilon}(x, t) \rightharpoonup u(x, t) \quad *-\text { weakly in } L^{\infty}(\Omega)
$$

as $\varepsilon \rightarrow 0$.

Approximations

Idea of why the involved scaling is correct

Let us give an heuristic idea in one space dimension, with $\Omega=(0,1)$, of why the scaling involved is the right one. We assume that

$$
\int_{1}^{\infty} G(1-y) d y=-\int_{-\infty}^{0} G(-y) d y=\int_{0}^{1} J(y) y d y
$$

Approximations

We have

$$
\begin{aligned}
u_{t}(x, t)= & \frac{1}{\varepsilon^{2}} \int_{0}^{1} J_{\varepsilon}(x-y)(u(y, t)-u(x, t)) d y \\
& +\frac{1}{\varepsilon} \int_{-\infty}^{0} G_{\varepsilon}(x-y) g(y, t) d y \\
& +\frac{1}{\varepsilon} \int_{1}^{+\infty} G_{\varepsilon}(x-y) g(y, t) d y:=A_{\varepsilon} u(x, t)
\end{aligned}
$$

Approximations

If $x \in(0,1)$ a Taylor expansion gives that for any fixed smooth u and ε small enough, the right hand side $A_{\varepsilon} u$ becomes

$$
A_{\varepsilon} u(x)=\frac{1}{\varepsilon^{2}} \int_{0}^{1} J_{\varepsilon}(x-y)(u(y)-u(x)) d y
$$

Approximations

If $x \in(0,1)$ a Taylor expansion gives that for any fixed smooth u and ε small enough, the right hand side $A_{\varepsilon} u$ becomes

$$
A_{\varepsilon} u(x)=\frac{1}{\varepsilon^{2}} \int_{0}^{1} J_{\varepsilon}(x-y)(u(y)-u(x)) d y
$$

$$
=\frac{1}{\varepsilon^{3}} \int_{0}^{1} J\left(\frac{x-y}{\varepsilon}\right)(u(y)-u(x)) d y
$$

Approximations

If $x \in(0,1)$ a Taylor expansion gives that for any fixed smooth u and ε small enough, the right hand side $A_{\varepsilon} u$ becomes

$$
A_{\varepsilon} u(x)=\frac{1}{\varepsilon^{2}} \int_{0}^{1} J_{\varepsilon}(x-y)(u(y)-u(x)) d y
$$

$$
=\frac{1}{\varepsilon^{3}} \int_{0}^{1} J\left(\frac{x-y}{\varepsilon}\right)(u(y)-u(x)) d y
$$

$$
=\frac{1}{\varepsilon^{2}} \int_{\mathbf{R}} J(w)(u(x-\varepsilon w)-u(x)) d w
$$

Approximations

$$
=\frac{u_{x}(x)}{\varepsilon} \int_{\mathbf{R}} J(w) w d w+\frac{u_{x x}(x)}{2} \int_{\mathbf{R}} J(w) w^{2} d w+O(\varepsilon)
$$

As J is even

$$
\int_{\mathbf{R}} J(w) w d w=0
$$

and hence,

Approximations

$$
=\frac{u_{x}(x)}{\varepsilon} \int_{\mathbf{R}} J(w) w d w+\frac{u_{x x}(x)}{2} \int_{\mathbf{R}} J(w) w^{2} d w+O(\varepsilon)
$$

As J is even

$$
\int_{\mathbf{R}} J(w) w d w=0
$$

and hence,

$$
A_{\varepsilon} u(x) \approx u_{x x}(x),
$$

and we recover the Laplacian for $x \in(0,1)$.

Approximations

If $x=0$ and ε small,

$$
A_{\varepsilon} u(0)=\frac{1}{\varepsilon^{2}} \int_{0}^{1} J_{\varepsilon}(-y)(u(y)-u(0)) d y+\frac{1}{\varepsilon} \int_{-\infty}^{0} G_{\varepsilon}(-y) g(y) d y
$$

Approximations

If $x=0$ and ε small,

$$
A_{\varepsilon} u(0)=\frac{1}{\varepsilon^{2}} \int_{0}^{1} J_{\varepsilon}(-y)(u(y)-u(0)) d y+\frac{1}{\varepsilon} \int_{-\infty}^{0} G_{\varepsilon}(-y) g(y) d y
$$

$$
=\frac{1}{\varepsilon^{3}} \int_{0}^{1} J\left(\frac{-y}{\varepsilon}\right)(u(y)-u(0)) d y+\frac{1}{\varepsilon^{2}} \int_{-\infty}^{0} G\left(\frac{-y}{\varepsilon}\right) g(y) d y
$$

Approximations

If $x=0$ and ε small,

$$
A_{\varepsilon} u(0)=\frac{1}{\varepsilon^{2}} \int_{0}^{1} J_{\varepsilon}(-y)(u(y)-u(0)) d y+\frac{1}{\varepsilon} \int_{-\infty}^{0} G_{\varepsilon}(-y) g(y) d y
$$

$$
=\frac{1}{\varepsilon^{3}} \int_{0}^{1} J\left(\frac{-y}{\varepsilon}\right)(u(y)-u(0)) d y+\frac{1}{\varepsilon^{2}} \int_{-\infty}^{0} G\left(\frac{-y}{\varepsilon}\right) g(y) d y
$$

$$
=\frac{1}{\varepsilon^{2}} \int_{-\infty}^{0} J(w)(-u(-\varepsilon w)+u(0)) d w+\frac{1}{\varepsilon} \int_{0}^{+\infty} G(w) g(-\varepsilon w) d w
$$

Approximations

$$
=-\frac{u_{x}(0)}{\varepsilon} \int_{-\infty}^{0} J(w) w d w+\frac{g(0)}{\varepsilon} \int_{0}^{+\infty} G(w) d w+O(1)
$$

then

Approximations

$$
=-\frac{u_{x}(0)}{\varepsilon} \int_{-\infty}^{0} J(w) w d w+\frac{g(0)}{\varepsilon} \int_{0}^{+\infty} G(w) d w+O(1)
$$

$$
\approx \frac{C_{2}}{\varepsilon}\left(u_{x}(0)+g(0)\right)
$$

then

Approximations

$$
=-\frac{u_{x}(0)}{\varepsilon} \int_{-\infty}^{0} J(w) w d w+\frac{g(0)}{\varepsilon} \int_{0}^{+\infty} G(w) d w+O(1)
$$

$$
\approx \frac{C_{2}}{\varepsilon}\left(u_{x}(0)+g(0)\right)
$$

then

$$
-u_{x}(0)=g(0)
$$

and we recover the boundary condition

Idea of the proof. General case

We set

$$
w_{\varepsilon}=u_{\varepsilon}-u
$$

and let \tilde{u} be a $C^{2+\alpha, 1+\alpha / 2}$ extension of u to $\mathbf{R}^{N} \times[0, T]$. We define

$$
L_{\varepsilon}(v)=\frac{1}{\varepsilon^{2}} \int_{\Omega} J_{\varepsilon}(x-y)(v(y, t)-v(x, t)) d y
$$

and

$$
\tilde{L}_{\varepsilon}(v)=\frac{1}{\varepsilon^{2}} \int_{\mathbf{R}^{N}} J_{\varepsilon}(x-y)(v(y, t)-v(x, t)) d y
$$

Idea of the proof. General case

Then

$$
\begin{aligned}
\left(w_{\varepsilon}\right)_{t}= & L_{\varepsilon}\left(u_{\varepsilon}\right)-\Delta u+\frac{1}{\varepsilon} \int_{\mathbf{R}^{N} \backslash \Omega} G_{\varepsilon}(x, x-y) g(y, t) d y \\
= & L_{\varepsilon}\left(w_{\varepsilon}\right)+\tilde{L}_{\varepsilon}(\tilde{u})-\Delta u+\frac{1}{\varepsilon} \int_{\mathbf{R}^{N} \backslash \Omega} G_{\varepsilon}(x, x-y) g(y, t) d y \\
& -\frac{1}{\varepsilon^{2}} \int_{\mathbf{R}^{N} \backslash \Omega} J_{\varepsilon}(x-y)(\tilde{u}(y, t)-\tilde{u}(x, t)) d y
\end{aligned}
$$

Or

$$
\left(W_{\varepsilon}\right)_{t}-L_{\varepsilon}\left(W_{\varepsilon}\right)=F_{\varepsilon}(x, t)
$$

Our main task in order to prove the uniform convergence result is to get bounds on F_{ε}.

Idea of the proof. General case

However, the proofs of our results are much more involved than simple Taylor expansions.
This is due to the fact that for each $\varepsilon>0$ there are points $x \in \Omega$ for which the ball in which integration takes place, $B(x, \varepsilon)$, is not contained in Ω and moreover, when working in several space dimensions, one has to take into account the geometry of the domain.

THANKS !!!

