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Abstract. We propose a new cryptographic primitive called witness

pseudorandom functions (witness PRFs). Witness PRFs are related to
witness encryption, but appear strictly stronger: we show that witness
PRFs can be used for applications such as multi-party key exchange
without trusted setup, polynomially-many hardcore bits for any one-way
function, and several others that were previously only possible using
obfuscation. Thus we improve the minimal assumptions required for
these applications. Moreover, current candidate obfuscators are far from
practical and typically rely on unnatural hardness assumptions about
multilinear maps. We give a construction of witness PRFs from multilin-
ear maps that is simpler and much more efficient than current obfusca-
tion candidates, thus bringing several applications of obfuscation closer
to practice. Our construction relies on new but very natural hardness
assumptions about the underlying maps that appear to be resistant to a
recent line of attacks.

Keywords: Witness PRFs · Multilinear maps · Multiparty key
exchange

1 Introduction

Program obfuscation is the act of “scrambling” a program such that the func-
tionality is preserved, but the inner workings of the program are completely hid-
den even given the scrambled code. Recently, Garg et al. [GGH+13b] proposed
the first construction of a general purpose program obfuscator [GGH+13b],
which has sparked significant advances in cryptographic capabilities. Obfusca-
tion has been used to construct a plethora of surprising and powerful cryp-
tographic applications, including functional encryption [GGH+13b], deniable
encryption [SW14], multiparty non-interactive key agreement [BZ14], multiparty
computation in very few rounds [GGHR14], and much more. Thus, obfuscation
is a “heavy hammer” by which, it seems, most of cryptography can be built.
This leads to a natural question:

To what extent is obfuscation actually needed for various applications?
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This is a very important question, as using obfuscation for appli-
cations has some major drawbacks. For one, current candidate obfusca-
tors [GGH+13b,BR14,BGK+14,PST14,AGIS14,GLSW14,SZ14,Zim15,AB15]
are incredibly inefficient, to the point that they are utterly unimplementable
for all except the simplest of functionalities. This is even despite significant
improvements in efficiency obtained by several recent works. Second, we do not
know how to base the security of obfuscation on any traditional assumptions,
but must instead make strong new assumptions on multilinear maps.

Therefore, obfuscation is likely too general of a tool for practical protocols
with reasonable underlying security assumptions. Instead, obfuscation serves as
a proof of concept, showing that a particular application is plausible. Then, more
application-specific tools and techniques are required to actually obtain a usable
protocol.

This Work. In this work, we make progress toward answering the above question
by showing that obfuscation is not necessary for several applications. We do
this by introducing a new technical tool called witness pseudorandom functions
(witness PRFs) that abstracts an obfuscation technique used by several recent
applications. We show that witness PRFs maintains enough of the power of
obfuscation that it can still be used for these tasks, which were only previously
possible using obfuscation. We also give a very simple construction of witness
PRFs using multilinear maps that is significantly more efficient that current
obfuscators. For security, our construction relies on new assumptions on the
underlying maps. Our assumptions are very simple, and we argue that they are
in some ways “better” than the assumptions on which obfuscation is based.

While applications of our witness PRFs remain impractical and security is
still based on relatively untested multilinear map assumptions, our work pro-
vides a significant step towards improving the efficiency of some applications of
obfuscation, and potentially towards basing applications on better assumptions.
Moreover, our work provides a more refined view of the cryptographic landscape
by showing that weaker primitives suffice for some applications.

1.1 Motivating Example: Non-interactive Key Exchange Without
Setup

We motivate the following discussion using a specific application of obfuscation:
multiparty non-interactive key exchange (NIKE) without trusted setup. In such
a protocol protocol, n users each generate a secret and public value and simulta-
neously publishes their public values to a public bulletin board. All of the users
then read off the values from the bulletin board and are each able to derive
the same shared key with no further interaction. Non-interaction is crucial to
obtaining a re-usable protocol: N ≫ n users can each publish their public value,
and then at a later point any subset of n of them can establish a shared secret
key without any additional interaction. In contrast, in an interactive scheme, the
protocol needs to be carried out once for every subset of users that wishes to
derive a key.
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The first key exchange protocol for n = 2 users is the celebrated Diffie-
Hellman protocol. Joux [Jou04] shows how to use pairings to extend this to n = 3
users. Boneh and Silverberg [BS02] generalize Joux’s work to obtain multiparty
NIKE for arbitrary n from (symmetric) multilinear maps as follows. Recall that
a symmetric n-linear map consists of a source group G with generator g of order
p, a target group GT with generator gT of order p, and a multilinear “pairing”
operation e : G

n → GT with the property that e(ga1 , ga2 , . . . , gan) = ga1a2...an

T .
We call n the multilinearity of the map. Ideally any operation except the group
and pairing operations should be computationally infeasible. Using an n-linear
map, the Boneh-Silverberg protocol for n+1 users is as follows: user i chooses a
random ai ∈ Zp, and publishes hi = gai . The shared secret is K = g

a1a2...an+1

T .
User i can compute K as e(h1, h2, . . . , hi−1, hi+1, . . . , hn+1)

ai by pairing the
other n public values, and then exponentiating by her secret value. However, an
eavesdropper that only sees the hi would have to pair all n + 1 of the public
values to obtain K, but the pairing operation only supports pairing n elements
together. Security can be proved based on the multilinear DDH assumption, a
natural generalization of the DDH assumption to the multilinear setting, and
one of the most basic assumptions made on multilinear maps.

Garg, Gentry, and Halevi [GGH13a] give the first candidate multilinear map
construction, thus giving the first multiparty NIKE protocol. However, in their
construction, generating g and e requires secrets, knowledge of which completely
breaks any security of the maps. The protocol is therefore only non-interactive
in a trusted setup model, where setup must be performed by a central authority,
and the authority will also be able to learn the shared key. Moreover, since g is
needed for users to compute their public value, the setup must take place before
the protocol is carried out. The need for a trusted central authority is a serious
limitation of the protocol, and also for all protocols for n > 3 users prior to the
obfuscation-based protocol we explain next.

Multiparty NIKE Without Setup. Boneh and Zhandry [BZ14] show how to use
obfuscation to remove the setup phase entirely. In their protocol, each party
generates a seed si of length λ for a pseudorandom generator G with output
size 2λ, and publishes the corresponding output xi. In addition, a designated
master party (say, party 1) chooses a random key fk for a PRF F, and builds the
following program P :

– On input x1, . . . , xn, s, i, check that G(s) = xi.
– If the check fails, output ⊥. Otherwise, output F(fk, x1, . . . , xn).

The master party then publishes an obfuscation of P along with their public xi.
Each party i can now compute K = F(fk, x1, . . . , xn) by feeding x1, . . . , xn, si, i
into the obfuscation of P . Thus, all parties establish the same shared key K. An
eavesdropper meanwhile only gets to see the obfuscation of P and the xi, and
tries to determine K. He can do so in one of two ways: either run the obfuscation
of P on inputs of his choice, hoping that one of the outputs is K, or inspect the
obfuscated code of P to try to learn K.
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The one-wayness of G means the first approach is not viable. Boneh and
Zhandry show that when using an “indistinguishability” obfuscator and “punc-
turable” PRF, the value of K is still hidden, even if the adversary inspects the
obfuscated code for P . The proof works roughly as follows: first, all of the public
values xi are replaced with truly random strings. The security of G shows that
this change is undetectable. Then, since G is expanding, with high probability,
none of the xi have pre-images under G. This means there is no input to the
program P that causes it to pass the check and output K = F(fk, x1, . . . , xn).
Then, using indistinguishability obfuscation and the puncturing property of F,
it is possible to show the adversary learns no information about K.

Implementing the Boneh Zhandry Protocol. There are two ways to instantiate
the obfuscator in the protocol above using multilinear maps:

– Directly on a “core obfuscator” for shallow circuits. The multilinearity required
for the underlying map will be approximately 2d for input circuit of depth d.
This presents a serious implementation barrier, as parameters in current mul-
tilinear maps grow polynomially with the multilinearity. In an asymptotic
sense, using circuits of logarithmic depth will result in polynomial-sized pro-
grams. In the case of the Boneh-Zhandry protocol, the bottleneck is clearly the
PRF. While there exist puncturable PRFs that are computable in log-depth
(for example, it is folklore that the Naor-Reignold PRF is puncturable), the
constant term is moderate. Thus, if the depth of the PRF is, say c log(2nλ)
(2nλ being roughly the input size to the PRF), the resulting program requires
multilinearity at least (2nλ)c, a polynomial. However, for even moderate c,
this polynomial becomes extremely large.

– By boosting the “core obfuscator” to a general obfuscator for all cir-
cuits. Depending on the conversion used, this at best requires obfuscat-
ing a low-depth PRF [App13] with the core obfuscator anyway, and at
worst obfuscating the decryption function of a fully homomorphic encryption
scheme [GGH+13b]. Therefore, this approach seems unlikely to yield signifi-
cant improvements.

In terms of security, current obfuscators can be separated into two categories:

– Schemes with heuristic security. This includes the first candidate scheme of
Garg et al. [GGH+13b] as well as several subsequent constructions [BR14,
BGK+14,PST14,AGIS14,SZ14,Zim15,AB15]. Some of these schemes can be
proven secure in idealized models of computation [BR14,BGK+14,AGIS14,
SZ14,Zim15,AB15], but such a proof does not translate into a standard
model proof under any assumptions. Thus for these constructions, the secu-
rity assumption is “tautological” and basically matches the scheme. While
there has been significant progress towards simplifying obfuscation, these can-
didates still are complicated and require several techniques (straddling sets,
Kilian randomization, etc.) that yield unnatural security assumptions.

– Schemes with security proved relative to a “nice” assumption. There are
basically two examples. The first is a construction due to Pass, Seth, and
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Telang [PST14], based on the “semantic security” assumption on multilinear
maps. Unfortunately, this conjectured assumption is an “uber assumption”
that is so general that it comes close assuming the scheme itself is secure.
The second is a construction of Gentry et al. [GLSW14] based on a single
assumption, the multilinear subgroup elimination (MSE) assumption. While
this is a significant advance in terms of basing the security of obfuscation on
better assumptions, there are some notable drawbacks. First, the assumption
requires introducing subgroups, which complicates the scheme and makes it
less efficient. Second, the MSE assumption is a “source group” assumption on
multilinear maps, which has proven very problematic on current map candi-
dates. In particular, the MSE assumption is broken on all other multilinear
maps due to a recent line of attacks [CHL+14,GHMS14,BWZ14b,CLT14]1.
Finally, the proof uses complexity leveraging, which seems inherent to basing
obfuscation on simple assumptions [GGSW13]. This means that, for the proof
to hold, the security parameter must be set quite large, compounding the effi-
ciency issues above. Thus the most efficient obfuscators are likely to require
complicated “tautological” security assumptions.

Thus, we pay a very steep price for eliminating the setup, both in terms of effi-
ciency and in terms of assumptions. Using multilinearity as a proxy for efficiency,
we see that the multilinearity for an n-user protocol increases from n−1 to (2nλ)c

for a moderate constant c. Moreover, whereas the security of the basic multilin-
ear map protocol is based on the very simple MDDH assumption, the setupless
protocol requires somewhat more complicated assumptions. Outside of this work,
all setupless key exchange protocols (even in subsequent work [HJK+14,Rao14])
require obfuscation, and therefore suffer from these weaknesses.

1.2 Our Contributions: Witness PRFs

Abstracting the Needed Functionality. We now ask, what features of obfuscation
are needed for setupless key exchange? Observe that we do not need to hide
the entire program P in the protocol: for example, the entire computation up
until the PRF can be leaked. Thus, we do not necessarily need the full power of
obfuscation. In fact, obfuscation is used in a very particular way:

– First, the input is separated into two parts. The first part, the “instance”,
consists of the y1, . . . , yn. The second part, the “witness” or “token”, consists
of s, i.

– The program has the following structure: check some relation between the
instance and witness and then apply a PRF to the instance (but not the
witness) if the check passes.

1 These assumptions are only broken on these maps if certain “re-randomization”
terms are published, and it is possible to state the MSE assumption without these
terms in which case the assumption may hold on all candidate multilinear maps.
The obfuscator of [GLSW14] does not rely on such re-randomization parameters,
but the security proof does need the parameters. Hence, the form of the assumption
needed to prove security is broken.
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– The security we desire is that if the instance has no witness, no information
about the output of the PRF value at that input is revealed.

Thus, obfuscation is acting as an access control to the PRF, only allowing
evaluation at a point if the user can supply a valid token.

Witness PRFs. We now define our new primitive called witness pseudorandom
functions (witness PRFs) that captures the functionality and security properties
needed above. Informally, a witness PRF for an NP language L is a PRF F such
that anyone with a valid witness that x ∈ L can compute F(x) without the
secret key, but for all x /∈ L, F(x) is computationally hidden without knowledge
of the secret key. More precisely, a witness PRF consists of the following three
algorithms:

– Gen(L, n) takes as input (a description of) an NP language L and instance
length n (and implicitly a security parameter), and outputs a secret function
key fk and public evaluation key ek.

– F(fk, x) takes as input the function key fk, an instance x ∈ {0, 1}
n
, and pro-

duces an output y.
– Eval(ek, x, w) takes the evaluation key ek, and instance x, and a witness w

that x ∈ L, and outputs F(fk, x) if w is a valid witness, ⊥ otherwise.

For security, we require that for any x ∈ {0, 1}
n

\ L, the value F(fk, x) is
pseudorandom even given ek. In Sect. 3, we also consider many variants of this
definition. For example, an interactive variant allows the adversary to make
polynomially many PRF queries to F(fk, ·), and still requires that F(fk, x) is
indistinguishable from random (conditioned, of course, on x not being one of
the PRF queries). We also define an extractable variant that allows x ∈ L, but
if the adversary can distinguish F(fk, x) from random, then the adversary must
“know” a witness that x ∈ L.

Witness PRFs are closely related to the concept of smooth projective hash
functions (a comparison is given in Sect. 1.5), and can be seen as a generalization
of constrained PRFs [BW13,KPTZ13,BGI14] to arbitrary NP languages2.

We first show how to replace obfuscation with witness PRFs for certain appli-
cations, including a no-setup multiparty key exchange protocol. We then show
how to build witness PRFs from multilinear maps. Our witness PRFs are more
efficient than current obfuscation candidates, and rely on very natural, though
new, assumptions about the underlying maps. We stress that all of our applica-
tions can be instantiated using obfuscation, and the applications are therefore
not “new.” However, instantiating the applications with witness PRFs result in
significant efficiency improvements compared to obfuscation. Our witness PRFs

2 This is not strictly true, as constrained PRFs generate the secret function key inde-
pendent of any language and multiple evaluation keys can be generated for multiple
languages. Witness PRFs, on the other hand, only permit one evaluation key, and
the language for the key must be known when the function key is generated. In the
full version [Zha14b], we discuss how to obtain multi-relation witness PRFs which
get around these issues.
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rely on assumptions that appear to be weaker than those needed for obfuscation,
and are qualitatively better in several ways. Our assumptions are very natural
and simple, and while they essentially match the security of a component of our
scheme, that component is much simpler than current obfuscation candidates.
Our assumptions are also a very restricted case of the semantic security [PST14]
assumption on multilinear maps, and do not seem general enough to imply obfus-
cation. Lastly, our assumption is a “target group” assumption, which appear to
be more resilient to recent attacks on multilinear maps, whereas all assumptions
required for obfuscation are “source group” assumptions (more details below).

Therefore, our work can be seen as (1) improving the minimal assumption
under which several applications are possible and (2) providing significant effi-
ciency improvements for those applications.

Our Results. Below, we list our main results:

– We show how to realize the following primitives from witness PRFs
• Multiparty Non-Interactive Key Exchange (NIKE) Without a

Trusted Setup (Sect. 5.2). We give a construction closely related to the
Boneh-Zhandry [BZ14] protocol, where the obfuscator is replaced with a
witness PRF, and prove that security still holds.

• Poly-Many Hardcore Bits. Bellare, Stepanovs, and Tessaro [BST14]
construct a hardcore function of arbitrary output size for any one-way func-
tion. They require differing inputs obfuscation [BGI+01,BCP14,ABG+13],
which is a form of knowledge assumption for obfuscators. In the full ver-
sion [Zha14b], we show how to replace the obfuscator with a witness PRF
that satisfies our extractable notion of security.

• Reusable Witness Encryption. In witness encryption, messages are
encrypted to instances x of some NP language L, and any user that knows a
witness that x ∈ L can decrypt the ciphertext. Security says that if x /∈ L,
the ciphertext reveals no information about the plaintext. Garg, Gentry,
Sahai, and Waters [GGSW13] define and build the first witness encryption
scheme from multilinear maps. Later, Garg et al. [GGH+13b] show that
indistinguishability obfuscation implies witness encryption. In the full ver-
sion [Zha14b], we show that witness PRFs are actually sufficient, showing
that witness PRFs are essentially a generalization of witness encryption.
We also define a notion of re-usability for witness encryption, and give
a construction from witness PRFs. Our re-usable witness encryption
scheme has very short ciphertexts: namely proportional to the security
parameter and independent of the size of the relation. Combining with
the witness encryption-to-attribute-based encryption conversion of Garg
et al. [GGSW13], this allows us to build attribute-based encryption (ABE)
for circuits with similarly short ciphertexts (namely independent of the size
of the access policy). No other ABE construction with such succinct cipher-
texts is known without using obfuscation; it is not known how to construct
such an ABE scheme from the (non-reusable) witness encryption scheme
of [GGSW13].
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• Rudich Secret Sharing for mNP. Rudich secret sharing is a general-
ization of secret sharing to the case where the sets of “qualified” users
correspond to instances of a monotone NP (mNP) language L. In other
words, n users are each given a share of a secret s. Any set S ⊆ [n] of
users corresponds to an instance x ∈ {0, 1}

n
, and if the users in S know

a witness that x ∈ L, they can collectively reconstruct the secret using
their shares. However, if x /∈ L, the secret remains hidden. Monotonicity
implies that adding users to a qualified set S does not affect the ability
of S to compute the secret. Komargodski, Naor, and Yogev [KNY14] give
the first construction for all of mNP using witness encryption3. In the full
version [Zha14b], we give a related protocol using witness PRFs that is
reusable, which results in much shorter shares than in [KNY14].

• Fully Distributed Broadcast Encryption. In broadcast encryption, n
users each have a user-specific secret key, and anyone can encrypt a message
to an arbitrary subset S ⊆ [n] of users. Each user in S can decrypt using
their individual secret, but users outside of S, even if they all collude, learn
nothing about the message. The measures of interest for broadcast encryp-
tion are the sizes of the ciphertext, user secret keys, and public broadcast
key as a function of the number of users n. Boneh and Zhandry [BZ14]
observe that multiparty NIKE protocols with small messages give rise to
broadcast encryption with constant-size ciphertexts and secret keys, but
with large public keys. The resulting scheme has the novel property of
being distributed, where users generate their own secret keys. In Boneh and
Zhandry’s notion of distributed broadcast encryption, the large public keys
are inherent because there is a component of the public key corresponding
to each user. In the full version [Zha14b], we put forward a new notion of
fully distributed broadcast encryption which does not suffer from this issue,
and give a construction from our extractable notion of witness PRFs where
secret keys, public keys, and ciphertexts are all poly-logarithmic in n. Our
scheme even obtains the strong notion of adaptive security4. We note that
our construction could have been instantiated using (extractable) witness
encryption, but witness PRFs give a protocol with better parameters.

– Next, we show how to build witness PRFs from multilinear maps. We first
define an intermediate notion of a subset-sum encoding, and construct such
encodings from multilinear maps. Our construction is very simple, and we
argue security based on new assumptions on multilinear maps. While our
assumptions basically match the security of the subset-sum encodings, the
assumptions are very simple and natural due to the simplicity of our scheme.
Our full construction is given in Sect. 4.

3 Originally, [KNY14] used obfuscation, but in a later update showed that witness
encryption was sufficient.

4 Of course, obtaining adaptive security from an interactive assumption is not that
interesting. However, our construction relies only on a non-interactive variant. There-
fore, obtaining adaptive security is non-trivial.
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In the full version [Zha14b], we then show how to build witness PRFs from
subset-sum encodings. The resulting construction is much more efficient that
what is currently possible with obfuscation. In particular, we can build wit-
ness PRFs for arbitrary relations directly without the costly boosting step
required for obfuscation. The multilinearity required for the underlying mul-
tilinear maps is roughly equal to the size of the circuit defining the relation,
rather than exponential in the depth, as in current obfuscators. While imple-
menting our construction is still impractical for all except the most basic
relations, future research in improving the efficiency of multilinear maps will
bring our construction closer to practice.

– Finally, in the full version [Zha14b] we discuss how to obtain a multi-language
variant of witness PRFs, where multiple evaluation keys ekLi

corresponding
to multiple language Li can be produced. A witness for x relative to any of
the Li can be used to evaluate the PRF on x, and if x /∈ Li for any i, then
the value of the PRF on x is pseudorandom. We do not need such multi-
language witness PRFs for any of our applications, but we believe they are an
interesting object, and may be useful in other situations.

1.3 Techniques

Secure Subset-Sum Encodings. As a first step to building witness PRFs, we
construct a primitive called a subset-sum encoding. Roughly, such an encoding
corresponds to a (multi-)set S of n integers, and consists of a secret encoding
function which maps integers t into encodings t̂. Additionally, there is a public
evaluation function which takes as input a subset T ⊆ S, and can compute the
encoding t̂ of the sum of the elements in T : t =

∑

i∈T i. For security, we ask
that for any t that does not correspond to a subset-sum of elements of S, the
encoding t̂ is indistinguishable from a random element.

We provide a simple candidate subset-sum encoding from asymmetric crypto-
graphic multilinear maps. We use asymmetric maps, though it is straightforward
to adapt our protocol to the symmetric setting. Recall that in an asymmetric
n-linear map, instead of a single source group G, there are n source groups
G1, . . . , Gn with generators g1, . . . , gn, and the pairing operation only allows for
one element from each group. That is, e : G1 × · · · × Gn → GT where5

e(ga1
1 , ga2

2 , . . . , gan

n ) = ga1a2...an

T .

To generate a subset-sum encoding for a collection S = {v1, . . . , vn} of n integers,

choose a random α
R

←−Zp, and compute Vi = gαvi

i for i = 1, . . . , n. Publish each
Vi, while α is kept secret.

5 This is the asymmetric variant of the multilinear map notion proposed by Boneh
and Silverberg [BS02]. Current multilinear map candidates actually support a much
richer set of operations, but our construction does not require this additional
structure.
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The encoding of a target integer t is t̂ = gαt

T . Given the secret α it is easy
to compute t̂6. Moreover, if t =

∑

i∈T i for some subset T ⊆ S, then given the

public values Vi, it is also easy to compute t̂ using the multilinear operation:

define Vi,1 = Vi and Vi,0 = gi so that Vi,b = gαbvi

i . Then set bi to be the indicator
function for i ∈ T (so that t =

∑

i∈[n] bivi) and compute

t̂ = e(V1,b1 , . . . , Vn,bn
) = e(gαb1v1

1 , . . . , gαbnvn

n ) = g

(

α
∑

i∈[n] bivi

)

T = gαt

T

However, if t cannot be represented as a subset-sum of elements in S, then
the multilinear map operations do not allow for computing t̂: there is no way
to pair or multiply the Vi and gi together so that the result is t̂. We conjecture
that in this case, t̂ is hard to compute. This gives rise to a new complexity
assumption on multilinear maps: we say that the multilinear subset-sum Diffie-
Hellman assumption holds for a multilinear map if, for any set of integers S =
{v1, . . . , vn} and any target t that cannot be represented as a subset-sum of

elements in S, that gαt

T is indistinguishable from a random group element, even
given the elements {gαvi

i }i∈[n]
7. In the full version [Zha14b], we show that this

assumption holds in a generic model of multilinear maps, the same model that
has been used to argue the security of current obfuscators [BR14,BGK+14]. We
leave for future work the problem of proving security in the more refined generic
model of Gentry et al. [GHMS14], which captures the recent line of “zero-izing”
attacks. However, while we do not prove security in the zero-izing model, we
stress that these attacks do not appear to apply to our assumptions.

Our assumption can be seen as an “uber-assumption”, containing
exponentially-many assumptions, one per SubsetSum instance (S, t). For exam-

ple, setting S to be {1, 2, 3} and t to be −1, our assumption states that gα−1

T is

indistinguishable from random, given the elements {gα1

1 , gα2

2 , gα3

3 }. The assump-
tions in this family have the flavor of several existing assumptions on bilinear
and multilinear maps, such as the Diffie-Hellman inversion and Diffie-Hellman
Exponent assumptions.

Notice that the element that must be distinguished from random, namely gαt

T ,
is in the target group GT . Therefore, our assumption is a target-group assump-
tion, which appear more plausible on currently multilinear map candidates than
source-group assumptions involving only elements in the groups G1, . . . , Gn.
Indeed, the focus of recent attacks [CHL+14,GHMS14,BWZ14b,CLT14] is usu-
ally the source-group assumptions. For all current obfuscators, the assumption

6 Current multilinear map candidates do not allow all users to perform exponenti-
ation by arbitrary elements of Zp, which makes computing Vi and t̂ potentially
problematic. However, whomever sets up the subset-sum encoding will also set up
the multilinear map, and will thus have a trapdoor that does allow computing Vi

and t̂. Therefore, the secret key should also include this trapdoor along with α.
7 We can also use an even stronger assumption that also allows the adversary to

adaptively ask for values gαt
′

T for t′ �= t. This will result in a stronger security
guarantee for the subset-sum encodings and our derived witness PRFs.
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that the scheme itself is secure is a source-group assumption, so while the recent
line of attacks does not appear to break current obfuscators, the attacks do
decrease our confidence in their security. Target-group assumptions, on the other
hand, appear much more resistant to attack.

Application to Witness Encryption. Recall that in a witness encryption scheme
as defined by Garg et al. [GGSW13], a message m is encrypted to an instance
x, which may or may not be in some NP language L. Given a witness w that
x ∈ L, it is possible to decrypt the ciphertext and recover m. However, if x /∈ L,
m should be computationally hidden.

Our subset-sum encodings immediately give us witness encryption for the
language L of SubsetSum instances. Let (S, t) be a SubsetSum instance. To
encrypt a message m to (S, t), generate a subset-sum encoding for set S. Then,
using the secret encoding algorithm, compute t̂. The ciphertext is the public
evaluation function, together with c = t̂ ⊕ m. To decrypt using a witness subset
T ⊆ S, use the public evaluation procedure on T to obtain t̂, and then XOR
with c to obtain m. If (S, T ) /∈ SubsetSum, then the security of our subset-sum
encoding implies that t̂, and hence m, is hidden from the adversary.

Since SubsetSum is NP-complete, we can use NP reductions to obtain wit-
ness encryption for any NP language L. Our scheme may be more efficient
than [GGSW13] for languages L that have simpler reductions to SubsetSum

than to the ExactCover problem used by [GGSW13]. For example, the lan-
guage LLWE of learning-with-errors instances admits a very simple algebraic
reductions to SubsetSum. Also, while our assumptions are new, they are no
more or less plausible than the assumptions used in [GGSW13].

We can also obtain a special case of Rudich secret sharing. Given a Subset-

Sum instance (S, t), compute the elements Vi, t̂ as above, and compute c = t̂ ⊕ s
where s is the secret. Hand out share (Vi, c) to user i. Notice that a set U of
users can learn s if they know a subset T ⊆ U such that

∑

j∈T j = t. If no such
subset exists, then our subset-sum Diffie-Hellman assumption implies that s is
hidden from the group U of users.

Witness PRFs for NP. As defined above, witness PRFs are PRFs that can be
evaluated on any input x for which the user knows a witness w that x ∈ L.
For any x /∈ L, the value of the PRF remains computationally hidden. Notice
that subset-sum encodings almost give us witness PRFs for the SubsetSum

problem. Indeed, the setup algorithm for a subset-sum encoding only depends
on the subset S of integers, and not the target value t. Thus, a subset-sum
encoding for a set S gives us a witness PRF for the language LS of all integers
t that are subset-sums of the integers in S.

To turn a subset-sum encoding into a witness PRF for an arbitrary language,
we give a reduction from any NP language L to SubsetSum with the following
property: the set S is independent of the instance x itself, but is instead deter-
mined entirely by the NP relation defining L (and the instance length). The
instance x instead only affects the target t. Therefore, to build a witness PRF
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for any fixed NP relation R, run our reduction algorithm to obtain a set SR, and
then build a subset-sum encoding for SR.

A notable feature of our resulting witness PRF is that its efficiency is com-
parable to that of existing witness encryption schemes for general relations R. In
particular, the level of multilinearity required and the number of group elements
in the evaluation key are equal to the size of the set SR, which is roughly equal
to the number of gates in R. The original witness encryption scheme of Garg
et al. [GGSW13] required the level of multilinearity and the number of cipher-
text group elements to roughly correspond to the ExactCover instance size,
which similarly grows linearly with R. Therefore, we get the added functionality
of witness PRFs essentially “for free” in terms of efficiency.

Replacing Obfuscation with Witness PRFs. We return to attention to multiparty
non-interactive key exchange without setup to demonstrate how witness PRFs
can be used in place of obfuscation.

We now explain how witness PRFs actually suffice for this application. As in
the Boneh-Zhandry protocol, each user chooses a random seed si for the PRG
G, and publishes the output xi. Simultaneously, we define an NP language L
consisting of all tuples (x1, . . . , xn) where at least one of the xi has a pre-image
under G. Instead of obfuscating a program, the master party can simply produce
a witness PRF F for the language L, and publishes the corresponding evaluation
key ek. All users then set the shared key to be F(fk, x1, . . . , xn), which all the
honest parties can compute using ek since they know a witness.

To argue security, as in the Boneh-Zhandry protocol we replace the xi with
random elements, and rely on the security of G to show that this change is
undetectable. Then with overwhelming probability none of the xi have pre-
images under G. This means that with overwhelming probability (x1, . . . , xn)
is no longer in L. Therefore, the security of the witness PRF shows that the
value K = F(fk, x1, . . . , xn) is computationally indistinguishable from a random
string, as desired.

Notice that the master party does not know the instance (x1, . . . , xn) until
after all parties have published their values; in particular, he does not know the
instance when setting up the witness PRF. This is crucial to obtaining a non-
interactive scheme. Witness encryption, on the other hand, requires knowing the
instance when generating the ciphertext, and therefore appears insufficient for
non-interactive key exchange.

Efficiency Comparison. Let p(λ) be the circuit size for computing G. It is
straightforward to implement a relation for L with circuits of size 8nλ + O(λ) +
p(λ) (the bottleneck is the muxing operation to select one of the inputs to check).
Using fast PRGs, we can take p(λ) = O(λ). Thus, our witness PRF uses multi-
linear maps with linearity 8nλ + O(λ). While this is somewhat worse than the
multilinearity n − 1 required for the direct protocol with trusted setup, it is
many orders of magnitude better than the (2nλ)c multilinearity required for the
obfuscation-based construction, and only about two orders of magnitude away
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from what is currently achievable [ACLL14]. We note that, using knowledge
variants of obfuscation as in [ABG+13], it is possible to reduce the multilin-
earity required for the obfuscation construction to (λ log n)c′

for a larger con-
stant c′. Using our knowledge variant of witness PRFs, we can similarly reduce
the multilinearity of our protocol to O(λ log n). In either case (using knowledge
assumptions or not), our witness PRFs are currently (by far) the most efficient
multiparty key exchange protocols that do not require a trusted setup.

The reasons for the efficiency gains are two-fold:

– Our witness PRF construction grows polynomially with circuit size, rather
than exponentially in the depth as in current obfuscators. Thus we will get
immediate improvements for all except the shallowest circuits.

– For the applications discussed in this work, the original constructions required
obfuscating a PRF. This translates to using the underlying multilinear map
operations to simulate the evaluation of the PRF, which is quite costly. In
contrast, our witness PRFs use the multilinear map elements themselves as
the PRF outputs, eliminating the need for a separate PRF computation. Thus
only the relation checking needs to be carried out with multilinear operations.
For cases such as key exchange where the PRF evaluation is the bottleneck,
this results in significant additional efficiency gains.

1.4 Directions for Future Work

Our work raises several intriguing open questions:

– We give several applications of witness PRFs that previously required the full
power of obfuscation. For what other applications of obfuscation do witness
PRFs suffice?

– Witness PRFs do not appear sufficient for many applications of obfuscation,
including some that seem well-suited for witness PRFs on the surface. For
example, obfuscation plays a similar role of gatekeeper to a PRF in the traitor
tracing scheme of Boneh and Zhandry [BZ14]. However, in there scheme, the
underlying relation must actually be kept secret for security to hold. In our
notion of witness PRFs, the relation is not a secret, and our construction
explicitly requires the relation to be public. A natural goal is to devise a
stronger notion of witness PRFs that would suffice for these applications (say,
by hiding some information about the relation) but yet has efficiency similar
to that of witness PRFs and witness encryption.

– While our assumptions are natural, they are instance dependent, meaning
that the assumption depends on the challenge instance. This means our
scheme relies on an exponential number of assumptions, one per instance. An
important goal is therefore to construct witness PRFs from simple instance
independent assumptions. We note that the since witness PRFs imply wit-
ness encryption, the arguments of Garg et al. [GGSW13] indicate that such a
construction would likely involve complexity leveraging.
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Indistinguishability obfuscation (iO) can be used to build witness PRFs8, and
iO can in turn be based on simple assumptions following the work of Gentry
et al. [GLSW14]. However, such an approach defeats the efficiency gains of
building witness PRFs directly. A natural starting point to look for a con-
struction would be the witness encryption scheme of Gentry et al. [GLW14],
which is also based on instance independent assumptions.

– How do Witness PRFs relate to other advanced cryptographic primitives? For
instance, are witness PRFs indeed weaker than obfuscation, and can witness
encryption be used generically to build witness PRFs? In a subsequent work,
Komargodski and Zhandry [KZ15] make progress in this direction by showing
that witness PRFs are equivalent to a notion of secret sharing called distributed
secret sharing. An interesting direction for future work would be to find more
equivalences, or to give black box separations between witness PRFs and other
primitives.

1.5 Other Related Work

Removing Obfuscation. Very recently, a few works have shown how to remove
obfuscation from certain applications. Garg et al. [GGHZ14] build the first
many-key functional encryption schemes that do not rely on obfuscation, though
their construction is obfuscation-inspired. Boneh et al. [BLR+14] build a near-
practical order revealing encryption scheme; the only other known construction
requires obfuscation and is therefore far from practical.

Smooth Projective Hash Functions and Functional PRFs. Cramer and
Shoup [CS02] define the notion of smooth projective hash functions (SPHFs),
a concept similar to that of witness PRFs. Concurrently and independently of
our work, Chen and Zhang [CZ14] define the notion of publicly evaluable PRFs
(PEPRFs), which are again similar in concept to witness PRFs. The main dif-
ferences between SPHFs and PEPRFs and our witness PRFs are that existing
constructions of SPHFs and PEPRFs are only for certain classes of languages,
such as certain group-theoretic languages. Witness PRFs on the other hand, can
handle arbitrary NP languages, and such flexibility is required for the applica-
tions in this work. The trade-off is that witness PRFs are much less efficient and
require much stronger assumptions. There are also minor differences in security
notions.

Boyle et al. [BGI14] define functional PRFs, where the evaluation key cor-
responds to a function f , and given the evaluation key it is possible to compute
F(f(x)), but F(y) is pseudorandom for y not in the image of f . Functional PRFs

8 To see this, start with any “puncturable” PRF, and obufscate the program that takes
an input and a witness, checks the witness relation, and outputs the PRF evaluated
on the input. The resulting obfuscated program is the evaluation key, and the PRF
key is the secret key. Correctness is straightforward to verify, and the static security
definition described above can be shown easily through the punctured programming
technique of Sahai and Waters [SW14].
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in their full generality equivalent to witness PRFs. In one direction, we can set
f( (x, w) ) = x if R(x, w) = 1 and f( (x, w) ) = ⊥ otherwise. In the other, we
can set R(y;x) = 1 if f(x) = y and R(y;x) = 0 otherwise. We note, however,
that [BGI14] only construct functional PRFs for very limited functions f related
to prefix matching, which are insufficient for our applications. In particular, the
functions f considered all correspond to languages that are in P (and so cor-
respond exactly to constrained PRFs), where our construction supports general
NP relations, as needed by our applications.

Witness Encryption. Garg et al. [GGSW13] define witness encryption and give
the first candidate construction for the NP-Complete ExactCover problem,
whose security is based on the multilinear no-exact-cover problem. Goldwasser
et al. [GKP+13] define a stronger notion, called extractable witness encryption,
which stipulates that anyone who can distinguish the encryption of two messages
relative to an instance x must actually be able to produce a witness for x.
Our extractable notion for witness PRFs can be seen as a generalization of
extractable witness encryption. Subsequently, Garg et al. [GGHW14] cast doubt
on the plausibility of the most general forms of extractable witness encryption
(and thus extractable witness PRFs), though their results do not apply to most
potential applications of the primitives.

Hard-Core Bits. The Goldreich-Levin theorem [GL89] shows how to build a
single hard-core bit for any one-way function. This result can be extended to
logarithmically-many bits, and polynomially-many hard-core bits have been con-
structed for specific one-way functions [CGH01]. Bellare et al. [BST14] give poly-
many hard-core bits for any one-way function using obfuscation, which is the
only construction prior to this work.

Broadcast Encryption. There has been an enormous body of work on broadcast
encryption, and we only mention a few specific works. Boneh et al. [BGW05]
use bilinear maps to give a broadcast scheme with short ciphertexts and secret
keys, though public broadcast keys grew linearly with the number of users. Some
subsequent schemes based on bilinear maps were able to achieve adaptive secu-
rity [GW09], but the public parameters always grew linearly with the number
of recipients. Boneh and Zhandry [BZ14] give a broadcast scheme from indis-
tinguishability obfuscation which achieves similarly short ciphertexts and secret
keys. Their broadcast scheme has the novel property of being distributed, where
every user chooses their own secret key. However, their public keys are obfus-
cated programs, and are quite large (namely, linear in the number of users), and
security is proved in a weaker static model. Ananth et al. [ABG+13] show how to
shrink the public key (while maintaining secret key and ciphertext size), though
they lose the distributed property. Boneh et al. [BWZ14a] give several broadcast
schemes whose concrete parameter sizes are much better directly from multilin-
ear maps, and very recently Zhandry [Zha14a] gives a variant that is adaptively
secure. However, these schemes are not distributed.
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Secret Sharing. The first secret sharing schemes due to Blakely [Bla79] and
Shamir [Sha79] are for the threshold access structure, where any set of users of
size at least some threshold t can recover the secret, and no set of size less than t
can learn anything about the secret. In an unpublished work, Yao shows how to
perform (computational) secret sharing where the allowable sets are decided by a
polynomial-sized monotone circuit. Komargodski, Naor and Yogev [KNY14] use
witness encryption to build the first protocol for arbitrary NP access structures,
answering a question of Rudich.

2 Preliminaries

2.1 Subset-Sum

Let A ∈ Z
m×n be an integer matrix, and t ∈ Z

m be an integer vector. The
subset-sum search problem is to find an w ∈ {0, 1}

n
such that t = A · w. The

decision problem is to decide if such an w exists.
We define several quantities related to a subset-sum instance. Given a matrix

A ∈ Z
m×n, let SubSums(A) be the set of all subset-sums of columns of A. That

is, SubSums(A) = {A · w : w ∈ {0, 1}
n
}. Define Span(A) as the convex hull

of SubSums(A). Equivalently, Span(A) = {A · w : w ∈ [0, 1]n}. We define the
integer range of A, or IntRange(A), as Span(A)

⋂

Z
m. We note that given an

instance (A, t) of the subset-sum problem, it is efficiently decidable whether
t ∈ IntRange(A). Moreover, t /∈ IntRange(A) implies that (A, t) is unsatisfiable.
The only “interesting” instances of the subset sum problem therefore have t ∈
IntRange(A). From this point forward, we only consider (A, t) a valid subset
sum instance if t ∈ IntRange(A).

2.2 Multilinear Maps

An asymmetric multilinear map [BS02] is defined by an algorithm Setup which
takes as input a security parameter λ, a multilinearity n, and a minimum group
order pmin

9. It outputs (the description of) n + 1 groups G1, . . . , Gn, GT of
prime order p ≥ max(2λ, pmin), corresponding generators g1, . . . , gn, gT , and a
map e : G1 × · · · × Gn → GT satisfying

e(ga1
1 , . . . , gan

n ) = ga1...an

T

Cryptographic multilinear maps are multilinear maps where certain computa-
tions not expressly allowed by the map are computationally difficult. For exam-
ple, it should at a minimum be computationally infeasible to compute a ∈ Zp

given ga
i for a random a. An example of the type of computational assumption

we make in this work is that the following problem is hard: given gabi

i for i ∈ [n],
distinguish ga

T from a random element of GT .
Another requirement we make on multilinear maps is that a random element

of GT is statistically indistinguishable from a uniform random bit string.

9 It is easy to adapt multilinear map constructions [GGH13a,CLT13] to allow setting
a minimum group order.
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Approximate Multilinear Maps. Current candidate multilinear maps [GGH13a,
CLT13] are only approximate and do not satisfy the ideal model outlined above.
In particular, the maps are noisy, resulting in several implications. First, repre-
sentations of group elements are not unique. Current map candidates provide an
extraction procedure that takes a representation of a group element in the the
target group GT and outputs a canonical representation. This allows multiple
users with different representations of the same element to arrive at the same
value. The extraction procedure satisfies the requirement that, when applied to a
random element of the target group, the result is statistically close to a uniform
random bit string.

A more significant limitation is that noise grows with the number of multi-
plications and pairing operations. If the noise term grows too large, then there
will be errors in the sense that the extraction procedure above will fail to output
the canonical representation. In our application, the number of multiplications
is equal to the multilinearity, which current candidates natively support without
needing to adjust the parameter settings10.

Lastly, and most importantly for our use, current map candidates do not
allow regular users to compute gα

i for any α ∈ Zp of the user’s choice. Instead,
the user computes a “level-0 encoding” of a random (unknown) α ∈ Zp, and
then pairs the “level-0 encoding” with gi, which amounts computing the expo-

nentiation gα
i . To compute terms like gαk

i would require repeating this operation
k times, resulting in a large blowup in the error. Thus, for large k, computing

terms like gαk

i is infeasible for regular users. However, whomever sets up the map
knows secret parameters about the map and can compute gα

i for any α ∈ Zp

without blowing up the error. Thus, the user who sets up the map can pick α,

compute αk in Zp, and then compute gαk

i using the map secrets. This will be
critical for our construction.

3 Witness PRFs

Informally, a witness PRF is a generalization of constrained PRFs [BW13,
KPTZ13,BGI14] to arbitrary NP relations. That is, for an NP language L, a
user can evaluate the function F at an instance x only if x ∈ L and the user can
provide a witness w that x ∈ L. More formally, a witness PRF is the following:

Definition 1. A witness PRF is a triple of algorithms (Gen,F,Eval) such that:

– Gen is a randomized algorithm that takes as input a security parameter λ and
a circuit R : X × W → {0, 1}11, and produces a secret function key fk and a
public evaluation key ek.

10 In fact, the parameters can be set more aggressively since our application does not
need to support re-randomization. Re-randomizing elements adds significant noise
in current encodings, and the native parameter settings support this noise growth.

11 By accepting relations as circuits, our notion of witness PRFs only handles instances
of a fixed size. It is also possible to consider witness PRFs for instances of arbitrary
size, in which case R would be a Turing machine.
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– F is a deterministic algorithm that takes as input the function key fk and an
input x ∈ X , and produces some output y ∈ Y for some set Y.

– Eval is a deterministic algorithm that takes as input the evaluation key ek and
input x ∈ X , and a witness w ∈ W, and produces an output y ∈ Y or ⊥.

– For correctness, we require Eval(ek, x, w) =

{

F(fk, x) if R(x, w) = 1

⊥ if R(x, w) = 0
for all

x ∈ X , w ∈ W.

We note one significant way in which our notion of witness PRFs is weaker
than constrained PRFs: our notion only allows a single evaluation key ek for a
relation R that must be chosen at setup time. In contrast, constrained PRFs
allow arbitrarily-many ek for different circuits, and the circuits can be chosen
after setup. This limitation will be inherent to our construction: the function
defined by F(fk, ·) will depend on the relation R. Nonetheless, this definition
will be sufficient for our applications. In the full version [Zha14b], we define a
multi-relation variant, discuss a possible approach to building such enhanced
primitives.

3.1 Security

The simplest and most natural security notion we consider is a direct generaliza-
tion of the security notion for constrained PRFs, which we call adaptive instance
interactive security. Consider the following experiment EXP

R
A(b, λ) between an

adversary A and challenger, parameterized by a relation R : X × W → {0, 1}, a
bit b and security parameter λ.

– Run (fk, ek)
R

←−Gen(λ, R) and give ek to A.
– A can adaptively make queries on instances xi ∈ X , to which the challenger

response with F(fk, xi).
– A can make a single challenge query on an instance x∗ ∈ X . The challenger

computes y0 ← F(fk, x∗) and y1
R

←−Y, and responds with yb.
– After making additional F queries, A produces a bit b′. The challenger checks

that x∗ /∈ {xi}, and that there is no witness w ∈ W such that R(x, w) = 1 (in
other words, x /∈ L)12. If either check fails, the challenger outputs a random
bit. Otherwise, it outputs b′.

Define Wb as the event the challenger outputs 1 in experiment b. Let

WPRF.AdvR
A(λ) = |Pr[W0] − Pr[W1]|

Definition 2. WPRF = (Gen,F,Eval) is adaptive instance interactively secure
for a relation R if, for all PPT adversaries A, there is a negligible function negl

such that.

12 This check in general cannot be implemented in polynomial time, meaning our chal-
lenger is not efficient.
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We can also define a weaker notion of static instance security where A com-
mits to x∗ before seeing ek or making any F queries. Independently, we can also
define non-interactive security where the adversary is not allowed any F queries.
In the full version [Zha14b], we also consider more fine-grained security notions,
similar to the obfuscation-based notions of [BST14]. In the full version, we also
consider extractability notions of witness PRFs, where pseudorandomness holds
even for x∗ in the language, as long as the adversary does not “know” a witness
for x.

4 An Abstraction: Subset-Sum Encoding

Now that we have seen many applications of witness PRFs, we begin our con-
struction. In this section, we give an abstraction of functionality we need from
multilinear maps. Our abstraction is called a subset-sum encoding. Roughly, a
subset sum encoding is a way to encode vectors t such that (1) the encoding of
t = A ·w for w ∈ {0, 1}

n
is efficiently computable given w and (2) the encoding

of t /∈ SubSums(A) is indistinguishable from a random string. More formally, a
subset-sum encoding is the following:

Definition 3. A subset-sum encoding is a triple of efficient algorithms (Gen,
Encode,Eval) where:

– Gen takes as input a security parameter λ and an integer matrix A ∈ Z
m×n,

and outputs an encoding key sk and an evaluation key ek.
– Encode takes as input the secret key sk and a vector t ∈ Z

m, and produces an
encoding t̂ ∈ Y. Encode is deterministic.

– Eval takes as input the encoding key ek and a bit vector w ∈ {0, 1}
n
, and

outputs a value t̂ satisfying t̂ = Encode(sk, t) where t = A · w.

Security Notions. The security notions we define for subset-sum encodings
are very similar to those for witness PRFs. Consider the following experiment
EXP

A

A(b, λ) between an adversar A and challenger, parameterized by a matrix
A ∈ Z

m×n, a bit b, and a security parameters λ:

– Run (sk, ek)
R

←−Gen(λ,A), and give ek to A
– A can adaptively make queries on targets ti ∈ {0, 1}

m
, to which the challenger

responds with t̂i ← Encode(sk, ti) ∈ Y.
– A can make a single challenge query on a target t∗. The challenger computes

y0 = t̂∗ ← Encode(sk, t∗) and y1
R

←−Y, and responds with yb.
– After making additional Encode queries, A produces a bit b′. The challenger

checks that t∗ /∈ {ti} and t∗ /∈ SubSums(A). If either check fails, the challenger
outputs a random bit. Otherwise, it outputs b′.

Define Wb as the event the challenger outputs 1 in experiment b. Let

SS.AdvA

A(λ) = |Pr[W0] − Pr[W1]|
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Definition 4. (Gen,Encode,Eval) is adaptive target interactively secure for a
matrix A if, for all adversaries A, there is a negligible function negl such that
SS.AdvA

A (λ) < negl(λ).

We can also define a weaker notion of static target security where A commits
to t∗ before seeing ek or making any Encode queries. Independently, we can also
define non-interactive security where the adversary is not allowed to make any
Encode queries.

4.1 A Simple Instantiation from Multilinear Maps

We now construct subset-sum encodings from asymmetric multilinear maps.

Construction 1. Let Setup be the generation algorithm for an asymmetric mul-
tilinear map. We build the following subset-sum encoding:

– Gen(λ,A): on input a matrix A ∈ Z
m×n, let B = ‖A‖∞, and pmin = 2nB+1.

Run params
R

←−Setup(λ, n, pmin) to get the description of a multilinear map
e : G1 × · · · × Gn → GT on groups of prime order p, together with gener-
ators g1, . . . , gm, gT . Choose random α ∈ (Z∗

p)
m. Denote by α

v the product
∏

i∈[m] α
vi

i (since each component of α is non-zero, this operation is well-

defined for all integer vectors vi). Let Vi = gα
vi

i where vi are the columns of
A. Publish ek = (params, {Vi}i∈[n]) as the public parameters and sk = α

– Encode(sk, t) = gα
t

T , where t ∈ IntRange(A).
– Eval(ek,w): define Vi,1 = Vi and Vi,0 = gi. Then output

e(V1,w1
, V2,w2

, . . . , Vn,wn
)

For correctness, observe that Vi,wi
= gα

viwi

i , and therefore

e(V1,w1
, V2,w2

, . . . , Vn,wn
) = e(gα

v1w1

1 , . . . , gα
vnwn

n ) = gα

∑
i∈[n] viwi

T = gα
A·w

T

= Encode(sk,A · w)

Security. We assume the security of our subset-sum encodings, which translates
to a new security assumption on multilinear maps, which we call the (adaptive
target interactive) multilinear subset-sum Diffie Hellman assumption. For com-
pleteness, we formally define the assumption as follows. Let EXP

A

A(b, λ) be the
following experiment between an adversary A and challenger, parameterized by
a matrix A ∈ Z

m×n, a bit b, and a security parameter λ:

– Let B = ‖A‖∞, and pmin = 2nB + 1. Run params
R

←−Setup(λ, n, pmin).
– Choose a random α ∈ Z

m
p , and let Vi = gα

vi

i where vi are the columns of A.
Give (params, {Vi}i∈[n]) to A.

– A can make oracle queries on targets ti ∈ IntRange(A), to which the challenger

responds with gα
ti

T .
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– A can make a single challenge query on a target t∗ ∈ IntRange(A). The chal-

lenger computes y0 = gα
t
∗

T and y1 = gr
T for a random r

R
←−Zp, and responds

with yb.
– After making additional Encode queries, A produces a bit b′. The challenger

checks that t∗ /∈ {ti} and t∗ /∈ SubSums(A). If either check fails, the challenger
outputs a random bit. Otherwise, it outputs b′.

Define Wb as the event that the challenger outputs 1 in experiment b. Let
SSDH.AdvA

A(λ) = |Pr[W0] − Pr[W1]|.

Definition 5. The adaptive target interactive multilinear subset-sum Diffie
Hellman (SSDH) assumption holds relative to Setup if, for all adversaries A,
there is a negligible function negl such that SSDH.AdvA

A(λ) < negl(λ).

Security of our subset-sum encodings immediately follows from the
assumption:

Fact 2. If the adaptive target interactive multilinear SSDH assumptions holds
for Setup, the Construction 1 is an adaptive target interactively secure subset-
sum encoding.

Flattening the Encodings. We can convert any subset-sum encoding for m = 1
into a subsetsum encoding for any m. Let A ∈ Z

m×n and define B = ‖A‖∞.
Then, for any w ∈ {0, 1}

n
, ‖A ·w‖∞ ≤ nB. Therefore, we can let A′ = (1, nB +

1, (nB + 1)2, . . . , (nB + 1)m−1) · A be a single row, and run Gen(λ,A′) to get
(sk, ek). To encode an element t, compute t′ = (1, nB, (nB)2, . . . , (nB)m−1) · t,
and encode t′. Finally, to evaluate on vector w, simply run Eval(ek,w).

Security translates since left-multiplying by (1, nB, (nB)2, . . . , (nB)m−1)
does not introduce any collisions. Therefore, we can always rely on subset-sum
encodings, and thus the subset-sum Diffie-Hellman assumption, for m = 1. How-
ever, we recommend not using this conversion for two reasons:

– To prevent the exponent from “wrapping” mod p− 1, p− 1 needs to be larger
than the maximum L1-norm of the rows of A. In this conversion, we are
multiplying rows by exponential factors, meaning p needs to correspondingly
be set much larger.

– In the full version [Zha14b], we prove the security of our encodings in the
generic multilinear map model. Generic security is only guaranteed if ‖A‖∞/p
is negligible. This means for security, p will have to be substantially larger after
applying the conversion.

4.2 Witness PRFs from Subset-Sum Encodings

We note that subset-sum encodings immediately give us witness PRFs for
restricted classes. In particular, for a matrix A, a subset-sum encoding is a wit-
ness PRF for the language SubSums(A). The various security notions for subset-
sum encodings correspond exactly to the security notions for witness PRFs. In
the full version [Zha14b], we show how to extend this to witness PRFs for any
NP language, obtaining the following theorem:
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Theorem 3. If adaptive/static target interactively/non-interactively secure
subset-sum encodings exist, then adaptive/static instance interactively/non-
interactively secure witness PRFs exist.

Roughly, we prove this Theorem 3 by providing a reduction from an instance
x of any NP language L to subset-sum instance (A, t), where the matrix A is
determined entirely by the language L, and is independent of x (except for its
length). Thus, SubSums(A) corresponds exactly with L.

Our witness PRF for a language L is then a subset-sum encoding for the
corresponding matrix A. The value of the PRF on instance x is the encoding
of the corresponding target t. Given a witness w for x, the reduction gives a
corresponding subset S of columns of A that sum to t. This allows anyone with
a witness to evaluate the PRF at x.

5 Applications

In this section, we show that for several applications of obfuscation, the obfus-
cator can be replaced with witness PRFs.

5.1 CCA-secure Public Key Encryption

We demonstrate that witness PRFs give a simple construction of CCA-secure
public key encryption that is similar to the obfuscation-based construction of
Sahai and Waters [SW14]. Given the similarities of witness PRFs to smooth
projective hash functions (SPHFs) [CS02], and that the original motivation
for SPHFs was CCA-secure public key encryption, this result is not surpris-
ing. Instead, we present the construction as a warm-up for the more interesting
applications that follow.

Construction 4. Let WPRF = (WPRF.Gen,F,Eval) be a witness PRF, and let
G : S → Z be a pseudorandom generator with |S|/|Z| < negl. Build the following
key encapsulation mechanism (Enc.Gen,Enc,Dec):

– Enc.Gen(λ): Let R(z, s) = 1 if and only if G(s) = z. In other words, R defines
the language L of strings z ∈ Z that are images of G, and witnesses are the

corresponding pre-images. Run (fk, ek)
R

←−WPRF.Gen(λ, R). Set fk to be the
secret key and ek to be the public key.

– Enc(ek): sample s
R

←−S and set z ← G(s). Output z as the header and k ←
Eval(ek, z, s) ∈ Y as the message encryption key.

– Dec(fk, z): run k ← F(fk, z).

Correctness is immediate. For security, we have the following:

Theorem 5. If WPRF is interactively secure, then Construction 4 is a
CCA secure key encapsulation mechanism. If WPRF is static instance non-
interactively secure, then Construction 4 is CPA secure.
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Proof. We prove the CCA case, the CPA case being almost identical. Let B be a
CCA adversary with non-negligible advantage ǫ. Define Game 0 as the standard
CCA game, and define Game 1 as the modification where the challenge header
z∗ is chosen uniformly at random in Z. The security of G implies that B still has
advantage negligibly-close to ǫ. Let Game 2 be the game where z∗ is chosen at
random, but the game outputs a random bit and aborts if z∗ is in the image space
of G. Since Z is much larger than S, the abort condition occurs with negligible
probability. Thus B still has advantage negligibly close to ǫ in Game 2. Now
we construct an adversary A for WPRF. A chooses a random z∗, and makes a
challenge query on z∗, obtaining k. Then it simulates B, answering decryption
queries using its F oracle. When B makes a challenge query, and A responds
with z∗ as the header and k as the encapsulated key. When B outputs a bit b′,
A outputs the same bit. A has advantage equal to that of B in Game 2, which
is non-negligible, thus contradicting the security of WPRF.

5.2 Non-interactive Multiparty Key Exchange

A multiparty key exchange protocol allows a group of g users to simultaneously
post a message to a public bulletin board, retaining some user-dependent secret.
After reading off the contents of the bulletin board, all the users establish the
same shared secret key. Meanwhile, and adversary who sees the entire contents
of the bulletin board should not be able to learn the group key. More precisely,
a multiparty key exchange protocol consists of:

– Publish(λ, g) takes as input the security parameter and the group order, and
outputs a user secret s and public value pv. pv is posted to the bulletin board.

– KeyGen({pvj}j∈[g], si, i) takes as input g public values, plus the corresponding
user secret si for the ith value. It outputs a group key k ∈ Y.

For correctness, we require that all users generate the same key:

KeyGen({pvj}j∈[g], si, i) = KeyGen({pvj}j∈[g], si′ , i′)

for all (sj , pvj)
R

←−Publish(λ, g) and i, i′ ∈ [g]. For security, we have the following:

Definition 6. A non-interactive multiparty key exchange protocol is statically
secure if the following distributions are indistinguishable:

{pvj}j∈[g], k where (sj , pvj)
R

←−Publish(λ, g)∀j ∈ [g], k
R

←−Y and

{pvj}j∈[g], k where (sj , pvj)
R

←−Publish(λ, g)∀j ∈ [g], k←KeyGen({pvj}j∈[g], s1, 1)

Notice that our syntax does not allow a trusted setup, as constructions based
on multilinear maps [BS02,GGH13a,CLT13] require. Boneh and Zhandry [BZ14]
give the first multiparty key exchange protocol without trusted setup, based on
obfuscation. We now give a very similar protocol using witness PRFs.
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Construction 6. Let G : S → Z be a pseudorandom generator with |S|/|Z| <
negl. Let WPRF = (Gen,F,Eval) be a witness PRF. Let Rg : Zg × (S × [g]) →
{0, 1} be a relation that outputs 1 on input ((z1, . . . , zg), (s, i)) if and only if
zi = G(s). We build the following key exchange protocol:

– Publish(λ, g): compute (fk, ek)
R

←−Gen(λ, Rg). Also pick a random seed s
R

←−S
and compute z ← G(s). Keep s as the secret and publish (z, ek).

– KeyGen({(zi, eki)}i∈[g], s). Each user sorts the pairs (zi, eki) by zi, and deter-
mines their index i in the ordering. Let ek = ek1, and compute k =
Eval(ek, (z1, . . . , zg), (s, i))

Correctness is immediate. For security, we have the following:

Theorem 7. If WPRF is static witness non-interactively secure, the Construc-
tion 6 is statically secure.

Proof. Let B be an adversary for the key exchange protocol with non-negligible

advantage. Then B sees {(zi, eki)}i∈[g] where zi ← G(si) for a random si
R

←−S,
as well as a key k ∈ Y, and outputs a guess b′ for whether k = F(ek1, {(zi)}i∈[g]

or k
R

←−Y. Call this Game 0. Define Game 1 as the modification where zi
R

←−Z.
The security of G implies that Game 0 and Game 1 are indistinguishable. Next
define Game 2 as identical to Game 1, except that the challenger outputs a
random bit and aborts if any of the zi are in the range of G. Since |S|/|Z| < negl,
this abort condition occurs with negligible probability, meaning B still has non-
negligible advantage in Game 2. We construct an adversary A for WPRF as
follows: A choses random zi ∈ Z for i ∈ [g], sorts the zi, and makes a challenge
query on (z1, . . . , zg), obtaining key k. Then after receiving ek, it sets ek1 = ek.

For i > 1, A runs (fki, eki)
R

←−Gen(λ, Rg). It then gives A {(zi, eki)}i∈[g], k. Note
that for key generation, ek1 = ek is chosen. Also, (z1, . . . , zg) is chosen at random
in Zg, and A’s challenger aborts if any of the zg are in the range of G (that is,
if (z1, . . . , zg) has a witness under Rg). Therefore, the view of B as a subroutine
of A and the view of B in Game 2 are identical. Therefore, the advantage of A
is also non-negligible, a contradiction.

Adaptive Security. In semi-static or active security (defined by Boneh and
Zhandry [BZ14]), the same published values pvj are used in many key exchanges,
some involving the adversary. Obtaining semi-static or adaptive security from
even the strongest forms of witness PRFs is not immediate. The issue, as noted
by Boneh and Zhandry in the case of obfuscation, is that, even in the semi-static
setting, the adversary may see the output of Eval on honest secrets, but using
a malicious key ek. It may be possible for a malformed key to leak the hon-
est secrets, thereby allowing the scheme to be broken. In more detail, consider
an adversary A playing the role of user i, and suppose the maximum number
of users in any group is 2. A generates and publishes paramsi in a potentially
malicious way (and also generates and publishes some zi). Meanwhile, an honest
user j publishes an honest ekj and zj = G(sj). Now, if zi < zj , user j computes
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the shared key for the group {i, j} as Eval(eki, (zi, zj), sj , 2). While an honest
eki would cause Eval to be independent of the witness, it may be possible for a
dishonest eki to cause Eval to leak information about the witness.

Boneh and Zhandry circumvent this issue by using a special type of signature
scheme, which they call a puncturable signature scheme, and only inputting sig-
natures into Eval. Even if the entire signature leaks, it will not help the adversary
produce the necessary signature to break the scheme. Such signature schemes
can be built from witness indistinguishable proofs. It is straightforward to adapt
Boneh and Zhandry’s construction to use witness PRFs instead of obfuscation.
We omit the details.
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