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Species in transformed habitats, frequently labeled as environmental generalists, tend to

show broader niches than species in natural habitats. However, how population niche

expansion translates into changes in the niches of individual organisms remains unclear,

particularly in the context of habitat transformation. Niche expansion could be a product

of individuals having broader niches, greater distances among individuals’ niches, or

a combination of both processes. This would challenge the traditional conceptions on

niche dynamics, which emphasize the role played by individual specialization (IS). Here,

using stable isotopes, we computed total niche width (TNW), its within- and between-

individual components (WIC and BIC), and IS (the ratio WIC/TNW), in 13 populations of 6

bird species and 8 populations of 3 frog species in natural and transformed habitats. We

confirmed that species had broader niche width in transformed than in natural habitats,

yet population niche expansion across habitats was mainly a product of increased

distance between individuals. Within each habitat type, increases in TNW were linked

to increases in WIC for all habitat types, while relationships between TNW and BIC

were found in transformed but not in natural habitats. Hence, both increased individual

niche width and increased distance among individuals were apparent within habitats,

particularly in transformed ones, where increases in WIC dominated. Neither across or

within habitats was niche expansion associated with increasing IS. Therefore, our results

overturn traditional conceptions associated with the niche variation hypothesis and

illustrate that niche expansion is not invariably associated with increased IS, because

the distance between individual’s niches (BIC) can increase, as well as the breadth of

those niches (WIC).

Keywords: habitat transformation, individual specialization, niche variation hypothesis, urbanization, stable
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INTRODUCTION

Habitat transformation is one of the main drivers of biodiversity
loss (Newbold et al., 2015). This loss is not neutral in that
predominantly specialized species – those requiring particular
habitat or food resources – are disproportionately lost, while
environmental generalists – those with less selective habitat or
dietary needs – become dominant (Flynn et al., 2009; Ducatez
et al., 2018; Sol et al., 2020). A consequence of this process is
that species in transformed habitats display broader niches than
species in natural habitats (Bonier et al., 2007; Clavel et al., 2011;
Coogan et al., 2018; Pagani-Núñez et al., 2019; Palacio, 2019). It is
unclear however how this process of population niche expansion
translates into the niches of the individual organisms.

Total niche width (TNW) of a population is composed by
the sum of its within-individual component (WIC) and between-
individual component (BIC) (Roughgarden, 1972, 1974), while
individual specialization (IS) is computed as the ratio between
WIC and TNW (Bolnick et al., 2003; Araújo et al., 2011), and
increases as this ratio decreases. Traditionally, the niche variation
hypothesis (NVH) predicts that TNW is positively correlated
with IS (Van Valen, 1965), meaning that increases in TNW
are mostly associated with increasing IS (Cachera et al., 2017;
Maldonado et al., 2017). This is because when TNW increases,
IS is likely to increase too, simply because TNW would increase
at a higher rate than WIC. This seems a realistic assumption,
as generalist populations are often composed of individuals only
using a subset of the total population niche (Araújo et al., 2011;
Layman et al., 2015; Pagani-Núñez et al., 2015).

Many studies, however, have cricitized and/or found no
support to the NVH (e.g., Simberloff et al., 2000; Meiri et al.,
2005). This suggests that population niche expansion could be
achieved through different mechanisms than an increase in IS,
such as changes in other components of individuals’ niches or a
population’s niche structure. As stated above, when a population
niche expands (TNW increases), the value of the ratioWIC/TNW
decreases automatically, as long as WIC does not necessarily
change, or at least that it increases less than TNW and thus
the main increase is in BIC (because TNW = BIC + WIC). We
suggest here that if TNW increases the components of TNW
likely increase too, yet this process of niche expansion could be
achieved in many different ways (either BIC, WIC or both may
increase). It is thus fundamental to consider how changes in these
different niche components shape patterns of niche expansion,
and habitat transformation gradients offer an excellent scenario
to test these ideas.

Increases in both WIC and BIC are likely to occur across
transformation gradients. Assuming that population size stays
constant, this process of niche expansion at the population
level (i.e., increasing TNW) could be reflected at the individual
level through three main avenues: increasing WIC, increasing
BIC, or increasing both WIC and BIC (Figure 1). Several
extrinsic and intrinsic factors could facilitate this process. For
instance, habitat heterogeneity could promote greater BIC –less
overlap among individuals (Darimont et al., 2009; Newsome
et al., 2015). Conversely, innovativeness could promote greater
WIC –larger individual niches (Sol et al., 2013; Ducatez et al.,

2015). Furthermore, these processes may also be apparent within
habitats –particularly transformed ones– as WIC and BIC may
increase with increasing population niches.

In this study, we assessed the role played by different niche
components (WIC, BIC and the ratio WIC/TNW) in explaining
patterns of niche expansion across habitat transformation
gradients. We did this using six bird and three frog species
inhabiting natural, rural and urban habitats in China, which
harbors tremendous biodiversity yet is currently experiencing
a vast process of habitat transformation driven particularly by
urbanization (Seto et al., 2011; Liu et al., 2018). Birds and
frogs strongly respond to habitat transformation and human
activities, and are commonly used as models to investigate
this issues (McKinney, 2008; Herrera-Montes and Aide, 2011).
Furthermore, there is a wealth of research using stable isotopes
to answer different questions about these two taxa (e.g., Inger
and Bearhop, 2008; Araújo et al., 2009; Smith et al., 2017).
While birds and frogs certainly are different (frogs would be less
mobile and to some extent more specialized than birds, at least in
relation to habitat use, due to their dependency from water) (e.g.,
Dayananda et al., 2017), we confirmed the consistency of our
hypotheses by pooling together data from both taxa. To compute
niche characteristics we used stable isotopes, which has become
a common technique to quantify trophic niche (Layman et al.,
2012; Figgener et al., 2019). First, we asked if species had broader
niches in transformed than in natural habitats, and determined
whether differences inWIC, BIC and the ratioWIC/TNWexisted
across natural, rural and urban habitats. Second, we assessed the
relationships between these niche components and TNW within
habitats. In doing so, we were able to determine which of these
individual niche components was most important in explaining
population niche expansion (Figure 1).

MATERIALS AND METHODS

Study Locations and Species
We passively sampled passerines from November 2015 to April
2017 using mist nets in six locations in Guangxi Zhuang
Autonomous Region and Yunnan Province (southwest China),
and frogs during July–August 2018, actively capturing them in
six locations in Gansu and Shaanxi Provinces (northwest China)
(Figure 2 and Supplementary Material 1). We categorized our
study locations as urban, rural and natural habitats, according
to land-use gradients and the level of anthropogenic disturbance
(cf. Newbold et al., 2015). Natural habitats were relatively
undisturbed and protected forested areas, rural habitats were
predominantly agricultural areas or managed forests with low
human population density, and urban habitats were human-
dominated areas inside cities (Liang et al., 2018; Pagani-Núñez
et al., 2019; Figure 2). Six common passerines in the area included
the Rufous-capped Babbler Stachyris ruficeps, the Gray-checked
FulvettaAlcippe morrisonia, the Common TailorbirdOrthotomus
sutorius, the Red-whisked Bulbul Pycnonotus jocosus, the Red-
billed Leiothrix Leiothrix lutea and the Scaly-breasted Munia
Lonchura punctulata. Frogs belonged to three species of the
genus Feirana (Swelled-vented Frog F. quadranus, Taihangshan
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FIGURE 1 | Conceptual illustration of population-level niche expansion resulting from different individual-level niche changes. When population size remains constant,

population niche expansion could be achieved through: (A) increased within-individual niche component (WIC), (B) increased between-individual niche component

(BIC), or (C) a combination of both processes. Note that increases in individual specialization (IS = WIC/TNW) may or may not be achieved in all these scenarios.

Swelled-vented Frog F. taihangnica and Kangxian Swelled-vented
Frog F. kangxianensis) (Figure 3; Fei et al., 2009; Yang et al.,
2011). For birds, we sampled a large number of individuals and
species (see Pagani-Núñez et al., 2019). We focused, however,

on six common species that were present in several habitats and
limited sample size to 10 individuals per species (Figure 3). We
did this by randomly selecting up to 10 individuals per species
for stable isotope analysis. In doing so, we were able to use
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FIGURE 2 | Map showing our study locations in Guangxi Zhuang Autonomous Region and Yunnan Province (southwest China), and Gansu and Shaanxi Provinces

(northwest China). Left top panel shows a general map of the People’s Republic of China. The four larger squares illustrate the distance among study locations and

their general aspect. The smaller squares provide a closer look of these study locations.

a similar number of individuals per species to compute niche
characteristics. For frogs, since sample size per species was rather
similar but lower in total than for birds, we did not set any sample
size threshold. In the end, we used 176 individuals (118 birds and
58 frogs) from 21 populations (Supplementary Material 2).

Sampling Procedures
After birds were extracted from the mist net, we measured body
mass using an electronic balance with an accuracy of 0.01 g. We
then collected the second secondary feather (P8) of the right
wing and the claw tip of the largest claw from the right leg.
All individuals were banded before being released and we only
included data from the first capture.

We searched for frogs shortly after sunset in and around water
bodies using flashlights. For each captured adult, we measured
body mass to the nearest 0.01 g with an electronic balance. After
euthanasia, we clipped the fourth toe for molecular identification

and collagen extraction. We also collected the muscle tissue from
hind limbs, washed the muscles with distilled water and stored
them in 2 ml tubes. All the samples were kept in cold conditions
in the field and then stored at −20◦C in the laboratory. After
sampling, the adult frogs were placed in 4% buffered formalin
and the voucher specimens were deposited in the Herpetological
Museum of the Chengdu Institute of Biology (CIB), Chinese
Academy of Sciences (CAS). These procedures are part of a
long-term line of research focused on the ecology and evolution
of Feirana frogs (e.g., Hu and Jiang, 2018; Wang et al., 2019;
Huang et al., 2020), and are a common practice in other stable
isotope studies on this taxon (e.g., Araújo et al., 2009). For frog
species identification, we integratedly referred to morphological
characteristics, and geographic and genetic information (Hu and
Jiang, 2018; Wang et al., 2019; Huang et al., 2020).

All animal handling and processing were in accordance with
the Law of the People’s Republic of China on the Protection of
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FIGURE 3 | Study species including six common passerines from southwest China (Common Tailorbird Orthotomus sutorius, Gray-checked Fulvetta Alcippe

morrisonia, Scaly-breasted Munia Lonchura punctulata, Red-billed Leiothrix Leiothrix lutea, Red-whiskered Bulbul Pycnonotus jocosus, and Rufous-capped Babbler

Stachyris ruficeps) and three frog species from northwest China (Kangxian Swelled-vented Frog Feirana kangxianensis, Swelled-vented Frog F. quadranus and

Taihangshan Swelled-vented Frog F. taihangnica).

Wildlife and approved by the Guangxi Forestry Bureau and the
Animal Care Committee of CIB, CAS.

Tissues and Niches
Nitrogen stable isotope ratios (δ15N) are commonly used to
estimate species’ trophic level (Boecklen et al., 2011; Layman
et al., 2012). We focused only on this element because we
were particularly interested in linking our finding to individuals’
and species diets. Using different tissues it is possible to
determine individual specialization because different tissues
reflect individuals’ diets across different temporal scales (Vander
Zanden et al., 2015; Bond et al., 2016; Maldonado et al., 2017).
Thus, we were able to compute intra-individual niche variation
using δ

15N values of two easy-to-obtain tissues.
We collected feathers and claws (birds) and muscle and bone

collagen samples (frogs) to compute niche characteristics because
these tissues provide information on niche use at two different
temporal scales for each individual. Feathers correspond to a
specific temporal window during summer molt, while claws
correspond to the previous weeks to months prior to sample
collection (Bearhop et al., 2003; Hahn et al., 2014; Vander Zanden

et al., 2015; Bond et al., 2016). We collected these samples
continuously across our study period so that they represent diets
across a broad temporal scale. Similarly, muscle tissue would
reflect niche use in a time window of weeks prior to sample
collection, while bone collagen tissue would reflect a broader
time span across individuals’ development (Vander Zanden et al.,
2015; Matsubayashi et al., 2017).

Thus, we used δ
15N values from two different tissues from

each individual as the continuous data input about niche
use to calculate TNW, WIC, BIC and WIC/TNW for each
species per location. WIC/TNW ranges from 0 (individuals
use completely different resources, i.e., display high IS) to 1
(individuals use the full range of the population niche, i.e., display
low IS). In our sample, WIC ranged between 0.04 and 1.13,
BIC between 0.05 and 1.62, and TNW between 0.15 and 2.53
(Supplementary Material 2).

Stable Isotope Analysis
Claws and feathers from birds were cleaned from surface
contaminants using NaOH (0.25 mol/L), and then were air-
dried for at least 12 h. We included approximately 0.35 mg
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FIGURE 4 | Differences in niche components and their relationshisp across and within habitats. (A) Differences in Total (i.e., population) Niche Width (TNW; y-axis)

between natural, rural and urban habitats (x-axis). (B) Differences in the Within-Individuals niche Component (WIC; y-axis) between natural, rural and urban habitats

(x-axis). (C) Differences in the Between-Individuals niche Component (BIC; y-axis) between natural, rural and urban habitats (x-axis). (D) Linear relationships between

the Within-Individuals niche Component (WIC; y-axis) and TNW (x-axis) in natural, rural and urban habitats. (E) Linear relationships between the BIC (y-axis) and

TNW (x-axis) in natural, rural and urban habitats.

of feather tips and claws of each individual into separate tin
cups, which were loaded for δ

15N analyses. We used a Flash
2000 HT elemental analyzer coupled via ConFlo IV Universal
Continuous Flow Interface (Thermo Scientific) to a Thermo
Scientific DELTA V Advantage isotope ratio mass spectrometer
(Thermo Fisher Scientific, Bremen, Germany). We conducted
stable isotope analyses for this taxon in the Stable Isotope
Laboratory of the College of Forestry at Guangxi University
(Nanning, S China). Toe clips from frogs were demineralized
for 24 h in 0.5 M HCl, rinsed twice with deionized water.
Next, the samples were treated with 0.1 M NaOH for 12 h and
washed twice with deionized water. We immersed the bones
in a methanol:chloroform mixture (2:1, vol:vol) for about 24 h,
then thoroughly rinsed and heated in deionized water at 90◦C
for about 12 h. Bone collagen and muscle tissues from frogs
were freeze-dried for 36 h to constant weight, grounded to a
fine powder and analyzed at the Public Center of Experimental
Technology in CIB, CAS. We used a vario isotope cube elemental
analyzer (vario ISOTOPE cube, Elementar, Germany) interfaced
to an isotope ratio mass spectrometer (IsoPrime100, Isoprime,
United Kingdom).

For both taxa, stable isotope ratios were expressed as
parts per thousand (h) using the equation as follow: δ

15N
(h) = [(Rsample/Rstandard)-1] × 1000, where Rsample and
Rstandard are the 15N/14N ratios of sample and standard,

respectively. The standard was atmospheric nitrogen (AIR N2)
and measurement precision was 0.25%.

Statistical Analysis
Using a linear mixed-effects model, we first tested whether TNW
was larger in rural and urban habitats than in natural ones.
TNW was our response variable, and habitat type (natural, rural
or urban), taxa (bird or frog) and species’ average body mass
were our predictors. We included body mass as it may have
played a relevant role in shaping niche community structure and
due to the differences between the studied taxa (Vergnon et al.,
2009). Study location (Supplementary Material 1) and species
(Figure 3 and Supplementary Material 2) were the random
factors. Using the same statistical approach, we were interested
in determining whether differences in BIC, WIC and IS (the
ratio WIC/TNW) existed among habitat types (in parallel to
differences in TNW). Thus, we constructed three differentmodels
with the same predictors and random variables yet subsequently
using BIC, WIC and IS as response variables.

Second, we were interested in assessing the relationships
between the different niche components (BIC, WIC and IS) and
TNW across habitat types. To do this, we constructed a set
of models subsequently using niche characteristics as response
variables (BIC, WIC and IS). Taxa, body mass and the interaction
between TNW and habitat type were the predictors, and study
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TABLE 1 | Differences in niche characteristics between habitats.

TNW

*Fixed effects Estimate SE t P

Intercept 1.44 0.37 3.85 < 0.01

Natural – Rural 0.34 0.33 1.02 0.31

Natural – Urban 0.95 0.37 2.57 0.01

Rural – Urban 0.61 0.33 1.85 0.06

Taxa 0.72 0.57 1.26 0.21

Body mass −0.04 0.02 −2.54 0.01

*Random effects Variance SD

Location 0.06 0.24

Species 0.16 0.41

Residual 0.19 0.44

WIC

*Fixed effects Estimate SE t P

Intercept −0.84 0.59 −1.43 0.15

Natural – Rural 0.17 0.62 0.28 0.78

Natural – Urban 0.81 0.65 1.26 0.21

Rural – Urban 0.64 0.61 1.05 0.29

Taxa −0.07 0.74 −0.10 0.92

Body mass −0.03 0.02 −1.35 0.18

*Random effects Variance SD

Location 0.30 0.55

Species < 0.01 <0.01

Residual 0.74 0.86

BIC

*Fixed effects Estimate SE t P

Intercept 0.67 0.31 2.20 0.03

Natural – Rural 0.37 0.30 1.27 0.21

Natural – Urban 0.60 0.32 1.89 0.06

Rural – Urban 0.23 0.29 0.79 0.43

Taxa 0.17 0.44 0.38 0.70

Body mass −0.02 0.01 −1.28 0.20

*Random effects Variance SD

Location 0.07 0.26

Species 0.07 0.26

Residual 0.12 0.35

IS (WIC/TNW)

*Fixed effects Estimate SE t P

Intercept 0.61 0.16 3.73 < 0.01

Natural – Rural −0.10 0.18 −0.55 0.58

Natural – Urban −0.06 0.18 −0.33 0.74

Rural – Urban 0.04 0.17 0.23 0.82

Taxa 0.02 0.20 0.10 0.92

Body mass −0.01 0.01 −1.11 0.27

(Continued)

TABLE 1 | Continued

IS (WIC/TNW)

*Random effects Variance SD

Location 0.04 0.21

Species <0.01 0.05

Residual 0.02 0.16

Results from a set of linear mixed-effects models using Total Niche Width (TNW), its

Within-Individual (WIC) and Between-Individual (BIC) Components, and Individual

Specialization (IS = WIC/TNW) in 21 populations of birds and frogs as response

variables. The predictors were habitat type (natural, rural or urban), taxa (birds or

frogs) and body mass (g). Location (see Supplementary Material 1) and species

(see Supplementary Material 2) were random factors. Significant effects are

marked in bold letters. WIC values were log-transformed to approximate normality.

location and species were the random factors. Habitat type factor
had three levels (natural, rural and urban), so that we dummy
coded these factors and repeated the analysis using a different
level as reference to ascertain all the possible combinations
(e.g., natural vs. rural, rural vs. urban and natural vs. urban).
Furthermore, there was considerable altitudinal variation among
locations, and in spite that we have previously recorded negligible
altitudinal effects on species’ niche characteristics (Pagani-Núñez
et al., 2019), we assessed whether it impacted individual level
metrics. We recorded no significant effects of altitude on niche
characteristics, so we excluded this variable from the final models
(TNW: P = 0.37, WIC: 0.11, BIC: 0.81, IS: 0.21, data not shown).

We visually examined qqplots to confirm that model residuals
were normally distributed. From the first set of models assessing
differences in niche characteristics across habitat types, we found
that the one using WIC as dependent variable did not fit this
criterion. Thus, we repeated this model using log-transformed
WIC values to approximate normality. We computed niche
characteristics using the function WTcMC from the RInSp
package (Zaccarelli et al., 2013) and constructed the linear
mixed-effects models using the package lme4 v1.1-23 (Bates
et al., 2015). All analyses were performed in R software v3.6.1
(R Core Team, 2017).

RESULTS

Differences in TNW, WIC, BIC, and IS
Across Habitat Types
We found that frog and bird urban populations had larger
TNWs than natural populations (Figure 4A and Table 1). Urban
populations showed a non-significant tendency to display larger
TNW than rural populations, while rural and natural populations
showed no apparent differences in TNW (Table 1).We also found
that TNW correlated negatively with body mass. Bird and frog
populations did not show significant differences in WIC across
habitat types (Figure 4B and Table 1). WIC and body mass were
uncorrelated (Table 1).

Between-individual component of bird and frog urban
populations showed a non-significant tendency to be larger
than that of natural populations (Figure 4C and Table 1),
while rural populations did not show significant differences
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with natural or urban populations. BIC and body mass were
uncorrelated (Table 1).

We did not record any significant effect of habitat type or body
mass on IS (WIC/TNW) (Table 1). Taxa showed no significant
effects on niche characteristics (Table 1).

Relationships Between TNW and WIC,
BIC and IS Within Habitat Types
Within-individual component and TNW correlated positively in
natural, rural and urban populations, the former showing the
steepest curve (Figure 4D and Table 2). BIC showed a different
pattern. BIC and TNW showed a strong positive correlation in
both urban and rural populations but not in natural populations
(Figure 4E). Finally, IS and TNW were uncorrelated across
habitats (Table 2). Taxa and body mass showed no significant
effects on these models (Table 2).

DISCUSSION

In this study, we illustrate how increases in population niche
width (TNW) in birds and frogs showing different patterns
across and within habitats. Within habitats, increases in TNW
were a product of both increased niches within individuals
(WIC), namely increased individual niche width, and increased
distance between individuals (BIC), namely reduced overlap
among individuals. These processes occurred simultaneously,
thus, supporting our third hypothesis on individual niche
dynamics across habitat transformation gradients (Figure 1).
These positive relationships between TNW, WIC and BIC were
rather persistent within habitats, with the exception of the
relationship between TNW and BIC, which was not significant
in natural habitats. Conversely, across habitats, although TNW
increased markedly, we recorded no differences in WIC and
only a weak tendency of BIC to increase from natural to urban
habitats. Individual specialization (IS) showed no significant
relationships with TNW across or within habitats. Hence, our
results highlight how increases in TNW can be achieved by a
combination of individual and population level niche changes,
and is not invariably associated with an increase in IS.

Differences in Niche Characteristics
Across Habitat Types
We found that species’ niche expansion from natural to
transformed habitats, namely increased TNW, did not necessarily
imply dramatic changes in both WIC and BIC. While we did
record markedly larger TNW in urban than in natural habitats,
differences in WIC were negligible and species only showed
a non-significant tendency to have larger BIC between these
two habitat types. Many studies using different approaches have
reported similar patterns of niche expansion across habitat
transformation gradients (Bonier et al., 2007; Devictor et al.,
2008a; Callaghan et al., 2019; Pagani-Núñez et al., 2019; Palacio,
2019), yet no study had thoroughly addressed how this pattern
is a result of changes in different niche characteristics at
the individual level. Our study is original in showing this
pattern of trophic specialization within species, while previous

TABLE 2 | Relationships among niche characteristics within habitats.

WIC

*Fixed effects Estimate SE t P

Intercept 0.05 0.23 0.21 0.84

TNW: Natural 0.62 0.26 2.42 0.02

TNW: Rural 0.31 0.13 2.42 0.02

TNW: Urban 0.41 0.11 3.91 < 0.01

Taxa 0.08 0.24 0.34 0.73

Body mass 0.00 0.01 −0.44 0.66

*Random effects Variance SD

Location 0.02 0.15

Species 0.02 0.13

Residual 0.05 0.21

BIC

*Fixed effects Estimate SE t P

Intercept −0.05 0.23 −0.21 0.84

TNW: Natural 0.38 0.26 1.47 0.14

TNW: Rural 0.69 0.13 5.32 < 0.01

TNW: Urban 0.59 0.11 5.61 < 0.01

Taxa −0.09 0.24 −0.38 0.71

Body mass <0.01 0.01 0.47 0.64

*Random effects Variance SD

Location 0.02 0.14

Species 0.02 0.12

Residual 0.05 0.22

IS (WIC/TNW)

*Fixed effects Estimate SE t P

Intercept 0.60 0.18 3.38 <0.01

TNW: Natural 0.14 0.23 0.63 0.53

TNW: Rural −0.12 0.10 −1.25 0.21

TNW: Urban −0.02 0.09 −0.20 0.84

Taxa −0.02 0.19 −0.09 0.93

Body mass −0.01 0.01 −1.12 0.26

*Random effects Variance SD

Location 0.04 0.20

Species <0.01 0.05

Residual 0.02 0.15

Results from a set of linear mixed-effects models using the Within-Individual (WIC)

and Between-Individual (BIC) niche components, and Individual Specialization

(IS = WIC/TNW) in 21 populations of birds and frogs as response variables. The

predictors were the interaction between Total Niche Width (TNW) and habitat type

(natural, rural or urban), taxa (birds or frogs) and body mass (g). Location (see

Supplementary Material 1) and species (see Supplementary Material 2) were

random factors. Significant effects are marked in bold letters.

studies analyzing changes in specialization mostly focused on
interspecific comparisons in habitat use (Julliard et al., 2006;
Devictor et al., 2008b; Rivas-Salvador et al., 2019). Nevertheless,
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having a clear idea of what happens to individuals is fundamental
to avoid biased estimations of species- or population-level
estimation of isotopic niches (Flaherty and Ben-David, 2010).

Larger TNWs could be a product of urban individuals
showing high behavioral innovativeness typical of generalist
species (Ducatez et al., 2015; Sol et al., 2016; Griffin et al., 2017),
having broad available empty niches (Sanz-Aguilar et al., 2015;
Yurkowski et al., 2016; Balme et al., 2019), or a combination of
both processes. However, since BIC increased more than WIC
across the transformation gradients, our results suggest therefore
that habitat heterogeneity would be the main facilitator of niche
expansion –promoting lower overlap among individuals within
each species (Darimont et al., 2009; Newsome et al., 2015). We
cannot discard that changes in aggressiveness toward conspecifics
across habitats may have influenced BIC values too.

Differences in the Relationships Between
Niche Characteristics Within Habitat
Types
We recorded different relationships among niche characteristics
within habitat types. A positive relationship between TNW and
WIC was apparent in natural, rural and urban habitats. We also
recorded strong positive relationships between TNW and BIC in
rural and urban habitats, but not in natural habitats. Both WIC
and BIC facilitated niche expansion (Figure 1), and our results
showed that increased distance among individuals, i.e., BICs or
decreased inter-individual niche overlap, was only possible in
transformed habitats, where population niches (TNWs) were
large enough to allow this process to occur, supporting the idea
that increasing habitat heterogeneity may have facilitated niche
expansion across the transformation gradient.

In contrast with previous studies using a diverse array of
statistical approaches (Newsome et al., 2015; Navarro et al., 2017;
Murray et al., 2018), we recorded no significant relationships
between TNW expansion and individual specialization (IS).
Traditionally, the niche variation hypothesis suggests that
increases in niche width (TNW in our case) are mainly
achieved as a main consequence of a parallel increase in IS
(Ebenman and Nilsson, 1982; Dayan and Simberloff, 1994;
Bolnick et al., 2007; Cachera et al., 2017; Maldonado et al., 2017).
Conversely, our study suggests that WIC, and especially BIC, are
predominantly associated with increases in TNW. We recorded
this pattern using two rather different taxonomic groups, birds
and frogs, which suggests that this fashion may be common
throughout vertebrates.

CONCLUSION

Generally, research investigating the consequences of habitat
transformation for niche characteristics of species and
populations (and, therefore, community assemblage dynamics)
focus on broad scale processes (Darimont et al., 2009; Quevedo
et al., 2009; Newbold et al., 2018; Sol et al., 2020). Thus, it remains
unclear how individuals respond to these changes at finer scales.
In other words, environmental generalists have broad niches
and are able to colonize many habitat types but, so far, it was

unclear how their individual niches were configured (Ducatez
et al., 2018). Our research is important in linking population-
level niche processes to individual-level niche characteristics.
Although we may acknowledge that our sample size was rather
limited and we were pooling different taxa (birds and frogs), our
findings overturn traditional conceptions on the mechanisms
and consequences of niche expansion, illustrating diverse ways
in which it can be achieved. Further research could ascertain to
what extent individual-level niche characteristics of transformed
habitats are a consequence of individuals being generally more
innovative and thus exploiting a broad variety of food and habitat
resources or whether they merely reflect a particular habitat
structure that enables individuals having broad niches without
overlapping with conspecifics (Ducatez et al., 2015).
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