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Orthopaedic simulators are popular in innovative surgical training programs, where trainees gain procedural experience in a safe
and controlled environment. Recent studies suggest that an ideal simulator should combine haptic, visual, and audio technology to
create an immersive training environment. 'is article explores the potentialities of mixed-reality using the HoloLens to develop
a hybrid training system for orthopaedic open surgery. Hip arthroplasty, one of the most common orthopaedic procedures, was
chosen as a benchmark to evaluate the proposed system. Patient-specific anatomical 3D models were extracted from a patient
computed tomography to implement the virtual content and to fabricate the physical components of the simulator. Rapid
prototyping was used to create synthetic bones. 'e Vuforia SDK was utilized to register virtual and physical contents. 'e
Unity3D game engine was employed to develop the software allowing interactions with the virtual content using headmovements,
gestures, and voice commands. Quantitative tests were performed to estimate the accuracy of the system by evaluating the
perceived position of augmented reality targets. Mean and maximum errors matched the requirements of the target application.
Qualitative tests were carried out to evaluate workload and usability of the HoloLens for our orthopaedic simulator, considering
visual and audio perception and interaction and ergonomics issues. 'e perceived overall workload was low, and the self-assessed
performance was considered satisfactory. Visual and audio perception and gesture and voice interactions obtained a positive
feedback. Postural discomfort and visual fatigue obtained a nonnegative evaluation for a simulation session of 40 minutes. 'ese
results encourage using mixed-reality to implement a hybrid simulator for orthopaedic open surgery. An optimal design of the
simulation tasks and equipment setup is required to minimize the user discomfort. Future works will include Face Validity,
Content Validity, and Construct Validity to complete the assessment of the hip arthroplasty simulator.

1. Introduction

Surgical simulation, a key enabling technique to revolu-
tionize patient care and patient safety, can provide a stan-
dardized method for surgical training without the risks that
come with operating on real patients [1].

Orthopaedic simulation has generally lagged behind
other specialties, with fewer validated simulators avail-
able; this trend is now changing and recent studies sup-
port the notion that orthopaedic simulators have the
potential to translate useful technical skills into the op-
erating theatre [2].
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Several techniques of simulation are available today,
including virtual reality (VR) simulation, physical simula-
tion, and hybrid (virtual-physical) simulation.
Existing VR orthopaedic simulators are limited by a poor

haptic feedback. One of the major issues to be addressed is
the simplification of the computational models to speed up
the interactive simulation without compromising the ef-
fective realism of the tissue response [3]. Moreover, con-
ventional haptic interfaces are limited in the magnitude of
the forces being rendered, so they do not enable a realistic
simulation of the surgical instruments/bone interaction,
particularly in open surgery where the interaction forces can
be of considerable magnitudes. 'is could explain why, in
a recent study [2], Morgan et al. found that commercially
available VR simulators are mainly focused on arthroscopy,
a minimally invasive procedure.
As for physical simulation, companies like Sawbones [4]

offer orthopaedic training models for open surgery pro-
cedures such as joint replacement surgery. 'e strength of
these simulators lies in the realism of the synthetic bone,
which requires no special handling or preservation and
exhibits mechanical properties similar to human bone [5–7].
'is is very important for a good simulation experience to
allow the surgeon to develop a force-feedback memory,
which is crucial for the success of a surgical procedure
including tasks such as bone drilling. However, standard
commercial mannequins lack objective assessment of per-
formance and cover a very limited range of individual
differences and pathologies. Patient-specific simulation,
a new frontier that promises great benefits for surgical
training and rehearsal [8–10], can overcome this latter
limitation.
As suggested by a literature review on orthopaedic surgery

simulation [11], “an ideal simulator should be multimodal,
combining haptic, visual and audio technology to create an
immersive training environment.” Hybrid simulation tech-
nologies, which combine VR with physical models of the
anatomy, are the best candidate to meet these requirements.
Hybrid systems indeed have the advantages of physical
simulators, which can mimic the properties of human tissue
[12–14] offering the trainee the possibility to use actual sur-
gical instruments and experience a realistic haptic feedback;
and, at the same time, they exploit the benefit of computer
visualization and simulation, offering also objective tools for
assessing the surgical performance. Moreover, augmented
reality (AR) elements can be added to enrich the synthetic
environment, tomake hidden structures visible, and to present
additional information for the surgical tasks guidance
[10, 15–19]. Finally, spatial sound can be added in AR ap-
plications to improve the realism of the simulated scenario.
Available display technologies for AR include spatial

displays (screen-based and projection-based); hand-held
displays (such as phones and tablets); and head-mounted
displays (HMDs). HMDs are deemed as the most ergo-
nomic solution for applications including manual tasks
performed by the user under direct vision, like what
happens in open surgery. HMDs indeed intrinsically
provide the user with an egocentric viewpoint and they
allow the user to work handsfree [20].

'is work explores the potentialities offered by mixed-
reality (MR) using the HoloLens [21], an head-mounted
display designed by Microsoft for MR applications, to de-
velop an hybrid training system with immersive and in-
teractive content.
Hip arthroplasty (HA), which involves replacing

a damaged hip joint with a prosthetic implant, was chosen as
a benchmark to evaluate the benefits/limits of the proposed
system because it is one of the most widely performed
procedures in orthopaedic practice [22], and there is a gap in
the market for a high-fidelity hip replacement training
simulators [11].
In a previous work [23], we have presented a lower torso

phantom for HA including a patient-specific hemi-pelvis
replica embedded in a soft synthetic foam. In this paper, we
present the HipSim app: an evolution of our former sim-
ulator, focusing on the details for the implementation of
wearable AR functionalities using the HoloLens. Quanti-
tative and qualitative test were carried out to perform
a preliminary evaluation of our multimodal surgical sim-
ulator and to explore advantages and limits of the new design
and novel technologies being used.

2. Materials and Methods

'e following paragraphs describe the peculiarities of the
adopted HMD; the virtual content and the physical com-
ponents of the simulator, with details on the implementation/
fabrication strategy; the calibration and registration methods
to align the VR content with the physical word; and the testing
strategies to preliminary validate the simulator.

2.1. Selection of the Head-Mounted Display. HoloLens is an
Optical See-'rough (OST) HMD, which enables optical
superposition of virtual content onto the user direct view of
the physical world. Being an OST system, it offers an un-
hindered and instantaneous full-resolution view of the real
environment which assures that visual and proprioception
information is synchronized [24].
Differently, in Video See-'rough (VST) HMDs, the

virtual content is merged with the camera images captured
by one or two external cameras rigidly fixed on the visor
frame. 'is more obtrusive technology block out the real-
world view in exchange for the ability to offer higher geo-
metric coherence between virtual and real content, without
requiring a user-specific calibration eye-to-display [25]. A
complete comparison of OST and VST technologies is re-
ported in [26].
Assuming that for simulation purposes the perceived

positioning accuracy of the VR content is not as important as
the possibility to give the user a naturalistic experience, we
have opted for an OST system. More in particular, the
HoloLens was chosen for our application since it provides
significant benefits over other commercial HMD from hu-
man factors and ergonomics standpoints [27] and integrates
important functionalities for an immersive and interactive
simulation experience. In fact, the HoloLens offers head
tracking, hand gesture controls, and voice commands and
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enables binaural audio to simulate effects such as spatial
sound within the user environment. Additionally, HoloLens
has no physical tethering constrains that can limit the
movements/gestures of the user during the simulation of the
surgical tasks.
A recent literature study on the evaluation of OST-HMD

suitability for mixed-reality surgical intervention [28] shows
that Microsoft HoloLens outperforms other currently
available OST HMDs (Epson Moverio BT-200, ODG R-7),
in terms of contrast perception, task load, and frame rate.
'e same study shows that the integration of indoor lo-
calization and tracking functionalities, enabled by HoloLens
environmental understanding sensors, provides significantly
less system lag in a relatively motionless scenario.
For all these reasons, HoloLens can be considered a good

candidate for the implementation of mixed-reality open
surgery simulators. However, some well-known technical
issues of HDMs have to be considered, such as a small overlay
field of view (FOV); the vergence-accommodation conflict
(VAC) [29]; the perceptual issues, intrinsic to standard optical
see-through HMDs, due to mismatched accommodation
between the virtual content and the real-world scene [30]; and
the difficulties of OSTsystems in handling occlusion between
the real and virtual contents [26].
'e overlay FOV can be defined as “the region of the

field of view where graphical information and real in-
formation are superimposed” [26] which, in the HoloLens, is
about 35°.
As for the vergence-accommodation conflict, users

wearing HoloLens are forced to accommodate their eyes to
a fixed focal distance of approximately 2.0m (Figure 1) to
maintain a clear image of the virtual content, while the depth
of the virtual objects (and hence the binocular disparity)
varies depending on the application. 'is results in con-
flicting information within the vergence-accommodation
feedback loops causing visual discomfort [30].
Moreover, the focal distance of each physical object in

the real world depends on its relative distance from the user:
if the distance gap between the display focal plane and real-
world objects is beyond the human eye deep of field, the user
cannot keep in focus both the virtual and real content at the
same time [20].
'e discomfort due to the vergence-accommodation

conflict can be reduced by keeping the virtual content po-
sitioning stable over the time [31, 32]. However, the mis-
match between the focal distances of real and virtual objects,
together with the difficulties in handling the occlusions of
overlapping objects, can affect the accuracy of the rendered
depth [26].
For this reason, quantitative and qualitative tests were

performed to evaluate if the perceived positioning accuracy
matches the requirements of the target application. More-
over, qualitative tests were also performed to evaluate the
visual discomfort and the usability of the proposed HDM for
our specific scenario: orthopaedic open surgery simulation.

2.2.Design and Implementation of the SimulatorComponents:
4e Virtual Content. 'e development of the simulator

starts from the segmentation and surface extraction of the
anatomical organs of interest from a real CT dataset (Fig-
ure 2). 'e stack of medical images in DICOM format is
processed using a semiautomatic tool, the EndoCAS Seg-
mentation Pipeline [33] integrated in the open source soft-
ware ITK-SNAP 1.5 [34]. 'en, mesh reconstruction and
optimization (artefacts removal, holes filling, simplification,
and filtering) stages are performed to generate the 3D models
of the patient anatomy necessary for the surgical simulation.
Optimization stages are performed using the open source
software MeshLab [35] and Blender [36]. 'e bone models
included in the present version of the simulator are: hip
bones, sacrum, coccyx, and femoral heads. Moreover, a model
of pelvis and the principal muscles around the hip joint (such
as gluteal muscles, piriformis, inferior gemellus, superior
gemellus, obturator internus) are included to increase the
anatomical knowledge of the user-trainee and form a solid
basis for a complete surgical simulation system. Other key
surgical structures to be added for further improving the
simulation are fasciae, nerves, tendons, and blood vessels.
Finally, the virtual environment is enriched with in-

formation from a simulated planning phase with the 3D Hip
Plugin [23]: a pair of viewfinders and a dotted line are added
to the virtual anatomical model to show the surgeon the
optimal trajectory for the reaming tool. 'is information,
coupled with the real-time tracking of the surgical in-
strument, could also be used for a quantitative evaluation of
the surgical performance on the basis of the deviation of the
reaming tool from the optimal trajectory.
Moreover, a selection of radiological images (a hip ra-

diograph, a CTslice, a CTvolumetric rendering) (Figure 3) is
added to the virtual content enriching the digital in-
formation available to the learner during the simulation.

2.3.Design and Implementation of the SimulatorComponents:
4e Physical Components. 'e development of the physical
simulator starts from the CAD design (Figure 4). 3D virtual
models are imported in the Creo Parametric 3D Modelling
software, and each physical component is designed, in-
cluding a support for the registration target (an Image Target
as described in the following section). 'is support is rigidly
anchored to the bone synthetic replica to guarantee a precise
registration of the virtual content to the real scene.
A 3D printer (Dimension Elite 3D Printer) is used to

turn the 3D CAD models into tangible 3D synthetic replicas
made of acrylonitrile butadiene styrene (ABS). 'is plastic is
commonly used for the manufacturing of bone replicas for
orthopaedic surgery simulation since it adequately ap-
proximates the mechanical behaviour of the natural tissue
[37]. Finally, silicone mixtures and polyurethane materials
are used for the manufacturing of the soft parts.
'e final mannequin includes a replica of the acetabulum

embedded in a soft synthetic foam. Moreover, a skin-like
covering is provided for an accurate simulation of palpation
and surgical incision.

2.4. Calibration and Registration of the Virtual and Physical
Content. Display-eye calibration and registration should be
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∞ in�nity

2.00 m (focal plane)

Optimal zone (ideal virtual content placement)

Comfort zone (best for short interactions)

1.00 m

Figure 1: Optimal and comfort zones for placing virtual content as declared byMicrosoft for HoloLens mixed-reality applications. Discomfort
from the vergence-accommodation conflict can be avoided orminimized by keeping content that users converge to as close to 2.0m as possible.
When the content cannot be placed near 2.0m, the discomfort can be reduced by keeping the virtual content positioning stable over the time.

A

Medical dataset

B

Dataset segmentation

D

Virtual planning 3D virtual anatomy

C

Plan

E

3D model exporting

Figure 2: Schematic representation of the steps involved in the generation of the simulator virtual content: (A) the medical dataset of the
patient; (B) the segmentation process using ITK-SNAP and the EndoCAS Segmentation Pipeline; (C) the 3D virtual anatomy generated by
exporting the 3D models; (D) the virtual planning including the positioning and sizing of the acetabular component; and (E) the final
preoperative plan.

(a) (b) (c)

Figure 3: Example of AR images illustrating the medical image navigation: (a) first image presented at the beginning of the application and
(b, c) two of the medical images in the collection that the user can visualize. �e Air Tap gesture is used to anchor the position of medical
image navigator in the physical space, whereas the voice command “Next” is used to switch the radiological images.
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performed to properly align the virtual content with the real
objects. 'e calibration procedure is necessary to model
intrinsically and extrinsically the virtual viewing frustum to
the user viewing volume. To perform this calibration, the
Microsoft HoloLens includes an official “Calibration” app,
which however does not offer a complete user-based cali-
bration procedure, but it is designed to solely determine the
interpupillary distance (IPD) [38].
'e registration can be accomplished in real time by

tracking the relative position and orientation of the real
objects with respect to the rendering camera; this information
is then used to update the corresponding transformations
within the virtual world.
HoloLens includes a world-facing camera; thus, the

optical detection and tracking of a target can be used for real-
time registration purposes, with no need for an external
tracking system. At this end, in our application, we use the
detection and tracking functionalities offered by the Vuforia
SDK [39].
More in particular, we employ an Image Target (Fig-

ure 5). Image Targets represent images that Vuforia Engine
can detect and track at runtime. 'e Vuforia Engine detects
and tracks the features that are naturally found in an image.
'ese features, extracted from the original image, are stored
in a preprocessed database, which can then be integrated in
the software application. 'is database can then be used by
Vuforia Engine for runtime comparisons. Once the Image
Target is detected, Vuforia Engine will track it as long as it is
at least partially visible by the camera. 'e fundamental
attributes for an accurate tracking of an Image Target are
good contrast, no repetitive patterns, and wealth of details.
Moreover, for near-field applications, a physical printed
Image Target should be at least 12 cm in width and of
reasonable height [39]. For a more detailed definition of
Vuforia Image Targets, please refer to the Vuforia SDK [39].

2.5. Implementation Details. From the software aspect,
Unity3D (5.6.1f) was used to create the application (the
HipSim app).'eMixedRealityToolkit (2017.1.2), a collection
of C# scripts and Unity components to develop mixed-reality
applications, was utilized for the development of the surgical

simulator. 'is toolkit allows the user to interact with the
virtual content by means of head movements (Gaze), gestures
(Air Tap, Bloom, etc.), and voice commands (via Cortana). A
virtual cursor is added to the application to indicate the
head/view direction: this interaction through head move-
ments is called Gaze. 'e Gaze is estimated from the position
and orientation of the user’s head, without considering the
user’s eyes direction (since the current version of HoloLens
does not include any eye-tracking sensor).
A Fitbox (a MixedRealityToolkit tool) is used in Unity to

anchor in the physical space the virtual collection of radio-
logical images according to the user preferences (Figure 3).
A virtual menu with multiple toggle buttons has been

implemented to select the virtual components (pelvis, bones,
and muscles; preoperative plan) to be visualized during each
surgical task. Figure 6 shows examples of AR images cap-
tured by the HoloLens word-facing camera during a surgical
simulation trial.
Operating room ambient sound, including voices of

surgical staff and sounds of medical equipment, has been
included in the HipSim app to improve the realism and
immersion of the surgical simulation.

2.6. Quantitative Study. Quantitative tests were performed
to estimate the accuracy of the system by evaluating the
perceived position of AR targets.
Five (5) subjects (gender: 2 males, 3 females, 0 non-

binary; years of age: 24min, 32 mean, 39 max, 6 STD) with
10/10 vision were recruited to participate in this study. 'e
HoloLens were used to present four (4) virtual targets
consisting of red spheres (0.5mm radius) virtually located
on the acetabulum surface (Figure 7(a)). Targets were
designed in the CAD environment and their 3D positions
were acquired in the virtual environment reference frame.
Figure 7 shows the experimental setup consisting of:

(i) the Microsoft HoloLens HMD;

(ii) the rigid components of the mannequin, without
the synthetic soft tissue;

(iii) the Vuforia SDK Image Target for tracking and
registration;

A

3D models

B

Cad design

C

3D printer

D

Hard parts

E

So� parts

Figure 4: Schematic representation of the steps involved in the development and manufacturing of the physical components of the hybrid
simulator: (A) the 3Dmodel of the bones as generated from the CTdataset of the patient; (B) the CAD design for 3D printing, including the
acetabulum and the support for the Image Target; (C) the 3D printer Dimension Elite; (D) and (E) the hard and soft components
(respectively) of the hybrid simulator, including the Vuforia Image Target placed on top of an ad hoc support.
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(iv) the NDI Aurora electromagnetic tracking system
(V2 System); and

(v) the NDI Aurora calibrated 6 degrees of freedom
(DOF) digitizer.

'emannequin and the Aurora EM emitter were fixed in
a stable position to avoid relative movement during the
targeting trials.
'e rigid transformation A

TV between the Aurora ref-
erence system and virtual environment reference frame was
derived with a point-based registration algorithm: the po-
sitions of three landmarks (three corners of the simulator)
were acquired in the CAD environment; the positions of the

same landmarks were then acquired in the Aurora reference
system with the digitizer; and then the transformation was
derived with a least-squares error minimization algorithm
[40]. Finally, the root mean squared registration error
(RMSE) and the maximum registration error (MR) were
computed and saved.
'e official HoloLens app was used to calibrate the HMD

for each user before the targeting session. 'e tracking and
registration functionalities supported by the Vuforia SDK
were used for the real-time registration of the virtual targets
and the real mannequin.
'e subjects were asked to use the digitizer to point at the

perceived position of the four (4) virtual targets displayed

(a) (b) (c)

Figure 6: Examples of AR images captured during the simulated surgical procedure: (a) the mannequin, positioned on a surgical table and
covered with a surgical drape to enhance the realism of simulation, and the virtual AR menu for the selection of the virtual anatomical
components to be visualized; (b) the surgeon can visualize in AR mode the virtual anatomy before performing the surgical incision; (c) with
the help of the virtual viewfinder, the surgeon can orient the surgical instrument, so that the acetabulum reaming can proceed in the
direction of the planned implant.

(a) (b)

Figure 5: 'e designed Image Target that was printed with a size of 12 × 14 cm (a) and the image features detected by the Vuforia SDK (b).
'is Image Target obtained a 5/5-star rating: star rating defines how well an image can be detected and tracked using the Vuforia SDK, and
this rating is displayed in the Target Manager and returned for each uploaded Image Target via the Vuforia web API.
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through the HMD (Figure 7). Each target was acquired 3
times by each user, for a total of 12 targeting trials per person
(60 in total). Target positions, acquired in the Aurora ref-
erence frame, were then expressed in the virtual environment
reference frame by means of the A

TV rigid transformation.
Targeting accuracy was measured as the average Eu-

clidean distance between the perceived (digitized) position
and the actual position of each target. 'e maximum and
minimum error (Euclidean distance), as well as the standard
deviation, were also calculated for each target.

2.7. Qualitative Study. Twenty (20) subjects with 10/10 or
corrected (lenses) to 10/10 vision were recruited from
technical employees (engineers) and personnel with medical
background (medical students, orthopaedic resident sur-
geons, orthopaedic surgeons) of the University of Pisa (see
Table 1 for detailed demographics).
'e qualitative study includes: subjective workload as-

sessments with the NASA Task Load Index (NASA-TLX)
Questionnaire and a Likert Questionnaire to evaluate visual
and audio perception, and interaction and ergonomics is-
sues. NASA-TLX is a multidimensional rating procedure
that provides an overall workload score, between 0 and 100,
based on a weighted average of ratings on six subscales [41]:

(i) mental demands (“How mentally demanding was
the task?”),

(ii) physical demands (“How physically demanding was
the task?”),

(iii) temporal demands (“How hurried or rushed was the
pace of the task?”),

(iv) own performance (“How successful were you in
performing the task?”),

(v) effort (“How hard did you have to work to achieve
your level of performance?”), and

(vi) frustration (“How insecure, discouraged, irritated,
stressed, and annoyed were you?”).

NASA-TLX Questionnaire was administrated to identify
the primary source of workload during the execution of the
proposed AR-based simulation and to investigate workload
levels of users with differing characteristics (“Profession/
Position Held,” “Experience with AR” etc.).
'e Likert Questionnaire, which is reported in Table 2,

comprises 14 items, each evaluated using a 5-points
Likert scale (from 1 � strongly disagree, to 5 � strongly
agree).
'e experimental setup is depicted in Figure 6. 'e

mannequin was positioned on a fixed height surgical table.
'e study protocol for each participant included the fol-
lowing steps:

(1) 'e participant fills out a Consent Form and a De-
mographic Form (Table 1) including information

(a) (b) (c)

Figure 7: Experimental setup for the quantitative study: (a) planned position of targets (red points) in the CAD environment; (b)
mannequin used for the test with the Vuforia Image Target; (c) a user wearing the HoloLens during a targeting task and using the Aurora
digitizer to point at the perceived position of one target.

Table 1: Demographics of participants in the qualitative evaluation
study.

Profession/Position Held (engineers; med. staff:
students, orthop. residents, and orthop. surgeons)

10;
10 (6, 1, 3)

Gender (male, female, nonbinary) 13, 7, 0
Age (min, max, mean, STD) 23, 48, 32, 7
Handedness (left, right, ambidextrous) 2, 18, 0
Vision (10/10 naked eyes, corrected to 10/10 with
lenses)

10, 10

Experience with AR (none, limited, familiar,
experienced)

8, 5, 5, 2

Experience with HoloLens (none, limited, familiar,
experienced)

16, 3, 1, 0

Colour Blindness (no, yes) 20, 0
English Reading (none, limited, familiar,
experienced)

0, 0, 12, 8

English Speaking (none, limited, familiar,
experienced)

0, 2, 11, 6

Journal of Healthcare Engineering 7



about his/her previous experience with AR and
HoloLens.

(2) 'e subject calibrates the HoloLens using the Cali-
bration app (by Microsoft).

(3) 'e subject learns how to interact with HoloLens by
means of head movements, gestures, and voice com-
mands, using the Learn Gestures app (by Microsoft).

(4) 'e subject fills out the NASA-TLX Questionnaire
(part 1, weights form).

(5) 'e HipSim app is launched and the subject has to
perform a series of tasks (Figure 8).

(6) 'e subject fills out the NASA-TLX Questionnaire
(part 2, rating form).

(7) 'e subject fills out the Likert Questionnaire.

(8) 'e total time of the study was recorded for every
participant.

Statistical analysis of data was performed using the
SPSS® Statistics Base 19 software.
Results of the NASA-TLX Questionnaire are summa-

rized in terms of means and standard deviation. Data were
processed using the analysis of variance (ANOVA) to ex-
amine possible relationships between individual character-
istics and workload.
As for the Likert Questionnaire, the central tendencies of

responses to a single Likert item were summarized by using
median, with dispersion measured by interquartile range.
'e Mann–Whitney U test and Kruskal–Wallis test were
used to understand whether the answering tendencies (with
respect to each Likert item) differ based on “Profession/
Position Held” and “Experience with AR”/“Experience with
HoloLens”. A p value <0.05 was considered statistically
significant.

3. Results

3.1. Quantitative Evaluation Results. 'e obtained RMSE
and MR are, respectively, 0.6mm and 0.8mm. Table 2 re-
ports the accuracy obtained for each target, as well as the
maximum error, minimum error and the standard de-
viation. 'e maximum error is compatible with values de-
clared by HoloLens developers: Klein G. reported [42]
a maximum static registration error <10mrad, which results
in an error of about 5mm at a distance of 50 cm from the
user (the approximate working distance in our setup).

3.2. Qualitative Evaluation Results. 'e average time for the
completion of the study was 40 minutes.

Figure 9 shows the results of the subjective workload scores
from the NASA-TLXQuestionnaire. No statistically significant
differences were found between personnel with medical
background and engineers (Mental Demand p � 0.741;
Physical Demand p � 0.079; Temporal Demand p � 0.246;
Frustration Demand p � 0.297; Effort p � 0.445; Performance
Evaluation p � 0.826; Overall Workload p � 0.825). More-
over, no statistically significant differences were found between
groups with different experience with AR (Mental Demand
p � 0.418; Physical Demand p � 0.539; Temporal Demand
p � 0.524; Frustration Demand p � 0.912; Effort p � 0.218;
Performance Evaluation p � 0.709; Overall Workload
p � 0.931); and HoloLens (Mental Demand p � 0.419;
Physical Demand p � 0.800; Temporal Demand p � 0.718;
Frustration Demand p � 0.831; Effort p � 0.530; Performance
Evaluation p � 0.704; Overall Workload p � 0.905).
'e overall workload obtained (30.65) can be considered

low giving that the average overall score observed in the
literature for medical task is 50.60 (min 9.00; max 77.35) and
for computer activities is 54.00 (min 7.46; max 78.00) [43].
Performance induced the highest workload indicating the
overall satisfaction with self-assessed performance.
Table 3 summarizes the results of the Likert Question-

naire. Results show no statistically significant differences in
answering tendencies between engineers and clinicians with
an exception for the postural discomfort during the appli-
cation and the ease of aligning the surgical instrument to the
AR viewfinders.
As for the postural discomfort, clinicians expressed

a neutral opinion (median 3), while engineers agreed that
they did not experience postural discomfort (median 4).
Moreover, clinician also expressed a neutral opinion (me-
dian 3) regarding the ease of aligning the surgical in-
strument, while engineers strongly agreed that this task is
easy (median 5).
Overall, participants agreed/strongly agreed that the

virtual content is correctly aligned to the real objects
(median 5), it is easy to perceive the spatial relationships
between real and virtual objects (median 5), they did not
notice motion of virtual content (median 4), they did not
notice latency (median 4), they did not notice jitter (median
4), they did not experience double vision (median 5), they
did not notice colour separation (median 5), the field of view
is adequate for the application (median 4), the spatial sounds
make the experience more immersive (median 4.5), the
gesture interaction is easy and intuitive (median 5), and the
voice interaction is easy and intuitive (median 4.5). 'e
overall median opinion regarding the experience of visual
fatigue is neutral (median 3.5).

4. Conclusions

As suggested by a recent literature review on orthopaedic
surgery simulation [11], “an ideal simulator should be
multimodal, combining haptic, visual and audio technology
to create an immersive training environment.” In this work,
we present an innovative multimodal simulation tool, which
takes advantage from patient-specific modelling to improve
the realism of the simulated surgical case; rapid prototyping

Table 2: Spatial accuracy evaluation.

Accuracy (mean error) Max. error Min. error STD

Target 1 2.1 4.4 1.0 1.1
Target 2 1.7 3.3 0.9 0.8
Target 3 1.7 3.3 0.7 0.7
Target 4 2.5 5.2 0.8 1.4
Total 2.0 5.2 0.7 1.1
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for the manufacturing of synthetic models, which guarantees
a realistic haptic feedback; AR to enrich the simulated
scenario and guide the learner during the surgical procedure;
and HoloLens functionalities for an interactive and
immersive simulation experience.
Results of quantitative and qualitative study encourage

the usage of HoloLens technology for the implementation of
a hybrid simulator for orthopaedic open surgery. 'e per-
ceived positioning accuracy matches the requirements of the
target application. Moreover, the perceived overall workload
can be considered low, and subjects participating in this
study expressed satisfaction with self-assessed performance.
A positive feedback was obtained on visual and audio
perception, and gesture and voice interaction independently
of the level of previous experience with AR and HoloLens,
and education backgrounds (medical or technical). As
regards postural discomfort during the application and the
experience visual fatigue, obtained results show a non-
negative opinion for a simulation experience with duration
of 40 minutes (enough for the specific purposes). A more
prolonged usage could negatively impact the comfort be-
cause of an increase of the visual fatigue. An optimal design
of the simulation tasks and the simulation setup (time for
each task, height of the surgical table, distance of user in-
teraction) are required to minimize the user discomfort, so
that the virtual content appears in the optimal/comfort zone

for most of the time of the simulation period, and the head
tilt is sustainable. Moreover, attention should be paid to the
design of AR viewfinders (optimal shape, colour, trans-
parency level) to ease the alignment task, which is already
impaired by the focus rivalry between the physical and
virtual content.
Hip arthroplasty, a surgical procedure which could take

great advantage from simulation, was selected as a bench-
mark for this study. Primary and revision total HA indeed
were ranked third and fourth among the orthopaedic in-
terventions accounted for the greatest share of adverse
events and excess hospital stay [44] and, as showed by several
studies [45, 46], the risk of complications after HA is
strongly related to the surgeon’s case volume. In this context,
surgical simulation could play a pivotal role, offering novices
an opportunity to practice skills outside the operating
theatre, in a safe controlled environment.
Future work will include Face Validity, Content

Validity, and Construct Validity for a complete assess-
ment of the proposed simulator for this specific ortho-
paedic intervention. Additionally, in the future, our
system could integrate novel haptic equipment and able to
simulate high-magnitude force feedback. However, in this
case, the usage of haptic interfaces will be limited to the
simulation of the reamer-bone interactions, whereas the
direct interactions between the surgeon hands and the soft

Table 3: Qualitative evaluation using a 5-point Likert questionnaire. Central tendency summarized using median with dispersion measured
by interquartile range (25°∼75°).

Item Questionnaire items
Median (25°∼75°) P value

(Eng. vs Clin.)Engineers Clinicians All

Visual and
audio
perception

A
'e virtual content is correctly aligned to the real

objects.
5 (5∼4) 4 (5∼3.75) 5 (5∼4) 0.280

B
It is easy to perceive the spatial relationships between

real and virtual objects.
5 (5∼4) 4.5 (5∼4) 5 (5∼4) 0.739

C I did not notice motion of virtual content. 4 (5∼4) 4 (5∼3.75) 4 (5∼4) 0.436

D
I did not notice latency (lag, delay) between virtual

content and objects real.
4.5 (5∼4) 4 (5∼4) 4 (5∼4) 0.353

E
I did not notice jitter (high-frequency shaking of the

virtual content).
4 (5∼2.75) 4 (4.75∼3.75) 4 (5∼3) 0.912

F I did not experience double vision. 4.5 (5∼4) 5 (5∼4) 5 (5∼4) 0.481
G I did not notice colour separation. 5 (5∼3.75) 5 (5∼4.75) 5 (5∼4) 0.393

H
'e field of view (FOV) is adequate for the

application.
4 (4.25∼2.75) 3.5 (4∼2.0) 4 (4∼2.25) 0.579

I Spatial sounds make the experience more immersive. 4 (5∼4) 5 (5∼3.75) 4.5 (5∼4) 0.796

Interaction
and
ergonomics

J
I did not experience postural discomfort during the

application.
4 (4.25∼3.75) 3 (4 ∼ 2) 4 (4∼2.25) 0.029

K
I did not experience visual fatigue (eyestrain, dried
mucus or tears around the eyelids, discomfort when
the eyes are open, hot eyes, and headaches).

4 (4.25∼2.75) 2.5 (4.25∼2) 3.5 (4∼2) 0.393

L Gesture interaction is easy and intuitive. 4.5 (5∼4) 5 (5∼4) 5 (5∼4) 0.631
M Voice interaction is easy and intuitive. 4 (5∼4) 5 (5∼4) 4.5 (5∼4) 0.481

N
It is easy to aligning the surgical instrument to the AR

viewfinders.
5 (5∼4) 3 (4∼2) 4 (5∼3) 0.023

No statistically significant differences were found between groups with different experience with AR (Item A p � 0.126; Item B p � 0.219; Item C p � 0.789;
Item D p � 0.653; Item E p � 0.590; Item F p � 0.085; Item G p � 0.204; Item H p � 0.466; Item I p � 0.196; Item J p � 0.204; Item K p � 0.246; Item L
p � 0.469; Item M p � 0.284; Item N p � 0.193) and HoloLens (Item A p � 0.606; Item B p � 0.662; Item C p � 0.772; Item D p � 0.326; Item E p � 0.986;
Item F p � 0.986; Item G p � 0.772; Item H p � 0.499; Item I p � 0.364, item J p � 0.470; Item K p � 0.508; Item L p � 0.739; Item M p � 0.187; Item N
p � 0.760).
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tissue will be still simulated using the current synthetic
mannequin.
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