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How to Calculate Shortest Vectors in a Lattice

By U. Dieter*

Dedicated to W. Fenchel, Copenhagen, on the occasion of his 10th birthday

Abstract.   A method for calculating vectors of smallest norm in a given lattice is out-

lined.   The norm is defined by means of a convex, compact, and symmetric subset of

the given space.   The main tool is the systematic use of the dual lattice.   The method

generalizes an algorithm presented by Coveyou and MacPherson, and improved by Knuth,

for the determination of vectors of smallest Euclidean norm.

1.  Formulation of the Problem.  Let G be a lattice in the «-dimensional Euclid-

ean space R", generated by n linearly independent vectors t¡:

0) G = jx = j£ z/ej zi integers V.

The norm in R" is defined by a convex, compact set B which has positive measure and

is symmetric about the origin:

(2) ||x|| = min{X G R \ x G XB} .

Examples of these norms for x = (jcls . . . , xn) are

(i)  The Euclidean norm ||x|| = (x2 + ••• + x2)1^2.

(if)  The Maximum norm ||x|| = maxfjjc,.! |/ = 1, . . . , «}.

Here B„ = {(xx, . . . , xn)\ fcr,|< 1 for all /}.

(iii) The norm ||x|| = \xx\ + ••• + \xn\.

HereBi = {(xx, . . . , xn)\ |x,| + ••• + \xn\ < 1}.

The problem is to find a nonzero vector of shortest length (norm) in G.  The

main tool of the presented method is the use of the dual lattice,

(3) G* = j x* = ¿ z*e* | z* integersi,

where the ejj: are defined by e(-e£ = Sifc; here 5ffc is equal to 1 if i = k and equal to 0

if i i= k, and e(-e^ denotes the scalar product S"=1 e^e^.  The polar of B, namely

(4) B* = {b*GÄ"||bb*|<l,VbGB},

induces a length or norm in G   by

(5) ||x*||* = min{A*GJR|x*GX*B*}.

It should be noted that the Euclidean norm corresponds to itself, whereas the Maximum

norm ||x|| = max,- lx,-| corresponds to ||x*||* = be*I + ••• + |x*| and vice versa.
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828 U. DIETER

For the scalar product x*x = x\*xx + ••• + x*xn the following inequality holds

(6) |x*x|< ||x*||* llxll

which may be proved as follows: Since x = ||x||b, x* = ||x*||*b* for some b G B and

b* G B* one has x*x = ||x*||*||x||b*b. Since |b*b| < 1 holds for all b G B, b* G B*,

the inequality (6) is proved.

2.  Presentation of the Method.  If x = zxtx + ••• + znen is any element of G,

inequality (6) implies that

|z,.| = leffzje, + ••• + z„e„)| = |efx| < ||e*||*||x||.

Hence, if w is the length of a shortest nonzero vector x in G, the coordinates satisfy

(7) IZjKHeJFw   for K/<n.

This inequality helps to limit the search for a shortest vector.   Since

w = Min{||x|||xGG, x=£0}

is not known, when the algorithm is started, the minimum value of ||efc|| is initially

taken.  Hence z¡ is bounded by

(8) |z,.| < ct = niefPlfia ||efc||J,     i=\,...,n\ (\y] integral part of y).

If the bounds c¡ are reasonably small, a direct search through the

(9) P=n(2c/ + 1)
1=1

possibilities may become feasible.  Otherwise, attempts are made to change the bases e,

and e? such that the bounds c¡ are decreased.  The task is to find a transformation with

the following properties:

(M) The new ||ef|| are smaller than the old ones.

(M ) The new ||e*||* are not larger than the old ones.

Among the unimodular transformations of the ef and e,*, two special types are considered,

Tt-
if + z

k*i

c*fc^fcwte

i '
e« ♦-e, + Z mPk

for a fixed i

for a fixed /'
Pt\mfe

for k =£ i,

for k ¥= i.

k±i

It is easy to see that e^* = ôf/- also holds for the new ef and e;*.

In the transformation T¡, the integers mk are chosen in such a way that the Eu-

clidean length e2. is minimized for k # i   Consequently, mk has to be determined by

(ek - (mk - l)e,.)2 > (tk - Wfce,.)2 < (efc - (mk + l)e,.)2.

This leads to
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HOW TO CALCULATE SHORTEST VECTORS IN A LATTICE 829

or

- V, + (e,.efc)/e2 < mk < * + (e^/e2.

In order to determine mk uniquely, the right-hand inequality sign < is replaced by <.

This suggests the choice

(10) mk = [0.5 + (e^/e2]

in the transformation T¡.  Similarly, for the transformation T¡ the choice

(11) m*= [0.5-f-(efe*)/ef2]

minimizes all e*2 for k =£ i.   This shows that transformation T¡ fulfills property (M)

and T* fulfills (M*) for the Euclidean norm.

It would be nice if T¡ could also be guaranteed to satisfy (M*). Explicitly, this

would mean that

Q*(z*,...,z*)=(tf+ Zz*e*)2
\ k*i /

assumes its minimum at z% = mk. Differentiation of Q¡ (z*, . . . , z*) leads to the

system

(12) e*(e* + Z zPk) = e*e* + Z z*e*e* = 0   for / * i.
\ k^i I k±i

The matrix (qik) = (e¡ek) is orthogonal to the matrix (q^}) = (e^ej").  This follows

from the definition of the dual basis:   Let

and   E* =

denote the matrices whose rows are given by the components of the bases e¿ and e*..

The defining relation e(e* = 8jk reads in matrix notation EE*r = E*Er = I where I

is the unit matrix and ET the transpose of E.  E*Er = I yields E^E* = I.  Hence the

matrix product (e^Ke^*) is equal to EETE*E*r = E(ETE*)E*r = EE*7" = I.

This proves the assertion.

Equating z*. to qiklqtí = efe^/e2 in (12) leads to

Z zkQkj + q*j = (Z liklkj + Wif)/«* " 5«/«S = °-
k=ti \ k±i II

Hence Q*(z\, . . . , z*) assumes its minimal value at z* = i/fc/çw.  The value mk =

[0.5 + qik/qij] is the nearest integer to qiklQti.  This shows that Q*(mx,. .. , mn) is

near its minimal value.    However, numerical examples show that the minimal value

is sometimes assumed at a points* ¥= mk.  In practice, this did not much influence

the efficiency of the algorithm.

In the case of an actual increase in the number P of zfc-combinations, it would

be better to reverse the responsible transformation T¡ and proceed with Tf_x or Ti+X.

However, this was not done in the trial runs in which the method worked quite well

in spite of occasional increases in P.
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830 U. DIETER

It should be noted that the transformations Tt and T* decrease the lengths He, ||

and ||e*||* only with respect to the Euclidean norm.  However, since the compact, con-

vex set B has positive measure, it contains a ball B ={x ER" \x2 + ••• + x2 < r}

and it is contained in a similar ball B. Consequently, a norm defined by this set B is

equivalent to the Euclidean norm.  Therefore, the same transformations T¡ and T¡

were used for calculating shortest vectors of any kind.   In extensive numerical experi-

ments, the transformations T¡ and T* led always to a final basis for which the value P

in (9) was small.  Hence a direct search for a vector of shortest length could be carried

out.

It should be mentioned that both transformations T¡ and T* were always used.

Examples were found where a mere application of transformation T* led to a large

value of P in (9).  A single application of transformation T¡ decreased this value con-

siderably.  Subsequently, transformations T* were applied again and the value of P

was further decreased.

In another experiment, the transformations T¡ were applied more than once, each

time T* got stuck. But this did not improve performance, so it was finally decided to

use T¡ as little as possible.

3.  The Computer Program.  The complete algorithm can now be prepared.   First

of all, the bounds c¡ in (8) are calculated for the given basis e;. of G; and the number

P = n"=1 (2c ¡ + 1) of possible choices of the zf is worked out.   If P is small, a direct

search becomes possible.  Otherwise, the transformations T¡  are applied to the basis

ef.   For this the m* defined in (11) are calculated first and the corresponding trans-

formation T¡  is applied unless all mk are zero.  The process is stopped when n succes-

sive calculations of the m\* have not led to any successful transformation T*, that is to

decrease P.   After n failures the transformation Ti is tried instead, subject to the same

limit on trials.  If P is decreased during T¡, a new attempt at transformation T¡ is

started immediately.  Therefore final failure occurs eventually only after n unsuccessful

trials on both T* and T¡.  Afterwards, the smallest value of ||x|| is found through an

enumeration of vectors x = S"=1 z¡e¡ for which - c¡ < z¡ < c¡.  Since vectors (0, . . . , 0,

z¡, . . . . , z„) and (0, . . . , 0, - z¡, . . . , - zn) lead to the same ||x||, the procedure may

assume that the first nonzero component is positive.  It can be shown that this reduces

the complete enumeration from P to (P- l)/2 steps.

In the special case of the Euclidean norm in dimension 2, i.e. if |pc|| = (x\ +x\)112,

no final search is necessary.  For, if m, = m2 = 0 one has

- 0.5 < (e,e2)/e| < 0.5    and   - 0.5 < (e1e2)/e2 < 0.5.

This is equivalent to the classical condition of Gauss and Legendre that 2|eje2| <

Min(e2, e2) holds for a reduced lattice basis.  Hence, ex or e2 is a vector of shortest

Euclidean length, and its length is already contained in D.

Variants of this procedure are possible.   Knuth suggests that one should apply the

transformations T* and T¡ as long as P is greater than some given C, say C = 1000.   In

the examples to follow this increased the computation times considerably.   In a few

cases P < 1000 wa.s never reached.  The above method of continuing reduction until

the transformations T* and T¡ are stuck is at least theoretically finite, although in prac-
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HOW TO CALCULATE SHORTEST VECTORS IN A LATTICE 831

tice the final enumeration may still cost too much time.

The complete procedure is now stated as a formal algorithm.

Algorithm S (Vector of smallest norm ||x|| in G = {x = S"=1 ziti\zi integers}).

1. Set C <— D <— M (M very large), m <-1, / «— n + 1.

2. For 1 < * < n set rk <— ||efc||, r* «-||e¡J||*; and if rk <D, set D *-rk. Then

for 1 < k < n set cfc <— [D r*.] and work out P = n£=1 (2cfc + 1).  If P < C, set

t* <— r <— «, C*—P and go to 3.  Otherwise, if m = - 1, set r* <— r* - 1 ; but if

m = 1, set t *— r - 1.  If r* = 0, go to 4.

3. (Transformation 7/*.)  If r* + r = 0, go to 5.  Set i <— i - 1 ; and if i = 0,

set / «— n.   For all 1 < k < n do: if k * i, set m% = [0.5 + S?=1 ej^/S^j e*2].

If all m*. are zero, set r* •*— r* - 1 ; and if i* = 0 go to 4, else restart 3.  If at least

one m% is not zero, do for all 1 </< » : set eif- +— e/;- + 1Zk^im^ekj; and for 1 < k

< h do: if k J= i, set e*y *— e%j - m*e*-   (/ = 1, . . . , n). Set m *■-1 and go to 2.

4. (Transformation T.) If r* + t = 0, go to 5.  Set f «— / - 1; and if i = 0, set

/ <— n.   For all 1 < k < « do: if k # i, set wk = [0.5 + S^=1 eijekj/2^xefj].  If all

wfc are zero, set t «— r - 1 ; and if r = 0 go to 3, else restart 4.  If at least one mk is

not zero, do for all 1 </ < n: set eî <— efj + Zki¡imke^-; and for 1 < k < n do: if

Ä: ¥= /, set efc • •<— ek ■ - mke^  (j = 1, . . . , n).  Set m <— 1 and go to 2.

5. (Final Search.)  For all combinations of integers (zx, . . . , z„) =£ (0, . . . , 0)

in which - c¡ < Zj. < c, for all 1 < / < n and for which the first nonzero component

is positive, calculate W = l|2"=1 z¡e¡\\; store the smallest of these values in D and the

corresponding z¡ in d¡.

6. Deliver the vector x = 2"=1 d¡e¡ and its norm D = \\x\\.

4.  Applications.   The task of determining nonzero vectors of shortest length

appeared early in number theory, especially in the theory of quadratic forms started by

Gauss and continued by Hermite and, notably, Minkowski.  Hermite and Minkowski de-

rived global bounds for the vector of shortest Euclidean length; these bounds were not

sharp, and sharp bounds are only proved up to dimension 10.   Furthermore, Minkowski

obtained global bounds for the norms ||x|| = S"=1 |jcf| and ||x|| = max,=1     „ \x¡\.  His

main tool was his famous "convex body theorem".  Sharp global bounds for these

norms are only known for dimensions 2 and 3.  Hopefully, this note will help to estab-

lish guesses for global bounds in higher dimensions.

Initially, the above algorithm was developed for investigating the lattice structure

of pseudo-random numbers generated by the linear congruential method.  Only the

simplest case will be considered here.  Construct a sequence of integers fz,} by

z, = az¡_ x   (mod 2e),      z0 = 1   (mod 4),      0 < z,- < 2e  and a = 5  (mod 8).

Since the sequence {z¡} contains all numbers of the form 4fc + 1, the fractions u¡ =

Zj/2e are used as samples from the uniform distribution in [0, 1).  Consider the points

P„ = («,-, ui+x, . . . , w1+„_i) in the «-dimensional space R".  Equating u¡ and

(4k + l)2_c, one obtains

pn = 2~e(4k + l,a(4k + 1), . . . , a"~l(4k + 1))    (mod 1)

^eo+tej    (modi)   where ex = 2~(e-2)(l, a.,a"_1),      e0 = %e1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Here the integer k runs from 0 to 2e~2 - 1.  If the integer k is smaller than 0 or

greater than 2e~2, the corresponding ?n = e0 + kex is congruent modulo 1 to one of

the former Pn for which 0 < k < 2e~2.  Consequently, if one enlarges the set {?n}

to the set

{Q«} = eo + i*iei + *2e2 + '" + knen \ki> k2, . . . , kn integers}

where

e1=2-(e-2>(l,a,...,û"-1),    e2=(0,l,0,...,0),...,    e„ = (0,..., 0,1),

the new set {Q„} is the translate of a lattice G generated by e,, e2,..., e„. Its dual lat-

tice G* generated by

e* = (2e-2,0.0),    ej = (-a, 1,0,... ,0),...,    e* = (-a"~», 0,..., 0,1)

has a simple geometric meaning: G* corresponds uniquely to the set of parallel hyper-

planes x*x = 0 (mod 1), on which all points of G lie. This may be proved as follows:

First, all points of G lie on the set of hyperplanes x*x = 0 (mod 1) where x* = SJLjZfe*

is a fixed element of G* (which means zf integral). Conversely, if the set of hyperplanes

x*x = (2"=1 z*e*)x = 0 (mod 1), zf fixed, contains all points of G, it contains especially

the points ex,e2,. .. ,en. Consequently, zf has to be integral.

For qualifying random number generators, the following questions can now be

answered:

(i) Determine the minimal number of parallel hyperplanes on which all points P„ lie.

(ii) Determine the maximal distance of parallel hyperplanes on which all points P„ he.

For (i) one has to compute

TV* = Minj^ |**| x* = (x*, . . . , x*) G G*, x* ± 0 I,

since the right-hand side of the equation x*x = Z"=1 xfx¡ = v can only attain the

values v for which - 2"=1 (xf)_ < v < S"=1 (x*)+.  Here x    and x_ are defined by

!x   ifx>0, ( 0     ifx>0,
x_ = l

0    ifx<0, {-x    ifx<0.

The number of these v is equal to

Z (**)+ +Z (*f)--i = Z i**i-i-
1=1 1=1 1=1

For (ii) one has to calculate

D* = Max jl/(¿ (x?)2\ 1/2 |x* = (x*, ...,x*)G G*, x* ± o|= \/W*

where

W* = MinU ¿ (x*)2\ 1/2 |x* = (x*, . . . , x*) G G*,x*^0 i.

Question (i) was raised by G. Marsaglia in his famous paper [4], where he derived

upper bounds for TV* using Minkowski's 'convex body theorem'.   The table below con-
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tains exact values of TV* for some random number generators; the Minkowski bounds

are listed at the end of the table.

Question (ii) was considered by R. R. Coveyou and R. D. MacPherson in their

Fourier analysis of random number generators.   For this purpose they developed an

algorithm to calculate W*; the algorithm was improved by D. E. Knuth in [3, pp. 89-

97].  The systematic use of the dual basis as outlined above simplified the algorithm

considerably in this special case of the Euclidean norm.

Table of values of TV* and [W*] (in parentheses) for some generators mod 231

a  (mod231) TV* ^ K n: TV*

65 533

258 585 933

414 536 077

32 765

(23 169)

22 107

(17 440)

27 307

(19 758)

15

(10)

1 115

(698)

1 115

(781)

15

(10)

257

(146)

209

(124)

15

(10)

69

(40)

91

(49)

15

(10)

31

(17)

41

(20)

Minkowski

bounds for TV*
32 768 1 476 336 145 85
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