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Abstract Barberà and Coelho (WP 264, CREA-Barcelona Economics, 2007)
documented six screening rules associated with the rule of k names that are used
by diferent institutions around the world. Here, we study whether these screening
rules satisfy stability. A set is said to be a weak Condorcet set à la Gehrlein (Math
Soc Sci 10:199–209) if no candidate in this set can be defeated by any candidate from
outside the set on the basis of simple majority rule. We say that a screening rule is
stable if it always selects a weak Condorcet set whenever such set exists. We show
that all of the six procedures which are used in reality do violate stability if the voters
do not act strategically. We then show that there are screening rules which satisfy sta-
bility. Finally, we provide two results that can explain the widespread use of unstable
screening rules.

1 Introduction

The study of set-valued functions has a long tradition in economics, in general, and in
social choice theory, in particular. The Walrasian correspondence is a salient example.
More specific to social choice theory is the study of social choice correspondences
and of set valued social choice functions.

The specific meaning attached to these rules can be very diverse. But there are two
types of competing interpretations, depending on the nature of the objects to be chosen.
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80 S. Barberà, D. Coelho

In a first interpretation, the chosen sets consist of elements that are not mutually
exclusive. Here are some examples

• The choice of new members for a club, or of several compatible projects, as in
Barberà et al. (1991). In that case, the sets in the range can be of different cardi-
nalities.

• The choice of locations for a fixed number of public facilities, as in Barberà and
Beviá (2002).

• The choice of candidates to form a delegation, or to represent a district in a leg-
islative body, as in Dodgson (1884, 1885a, b).

In the last two cases, the cardinality of the sets to be chosen is exogenously given.
Turning now to a second interpretation, the elements chosen by a social choice

rule are mutually exclusive objects. They may be sets of candidates for office, sets
of alternative policies to solve the same social problem, etc… In this case, the set
cannot be seen as a full solution of the social choice problem, a further resolution is
necessary, and the underlying procedure to solve the remainder of the problem is a
necessary reference to complete the interpretation. To give some examples

• It is sometimes assumed that the final choice will be made without any further
participation of voters, through some random procedure (see Barberà et al. 2001
and references therein).

• It is sometimes assumed that a new decision process, also controlled by some inter-
ested party rather than by chance, will take place to choose from the pre-selected
alternatives. This covers a wide range of possibilities, and it includes the one that
motivates our study here.

Under each of these interpretations, and many others, set valued social choices
become objects of theoretical and practical interest. What questions to ask, and to
eventually solve about them depend very much on our specific interpretations and of
the kind of phenomena we want to focus on.

In this paper, we are mainly interested in the characteristics of (set valued) screen-
ing rules, which are part of the first stage of rules of k names (Barberà and Coelho
2007). We refer by this to a widely used class of collective decision procedures, which
work as follows. Given a set of candidates, a committee must pre-select a short list
consisting of exactly k of them by voting. Then a single decision-maker from outside
the committee, the chooser, will select one of the listed candidates. Hence, rules of
k names are single valued, but their definition must include a description of the vot-
ing method that the committee will be using to decide on the short list. Our paper
concentrates on the properties of these screening methods.

Specifically, we are concerned about the possibility that one candidate who is
included in the short list might be defeated in a majority contest by one who is not
in it. Should this happen, a majority of committee members could agree to vote for
the removal of the included alternative and to substitute it for the dominating one that
is initially excluded. This might be a cause of instability in the proposal. Of course,
our statement is conditional. The members of this majority could agree on that, but
they do not need to. They might agree, or at least they would be better off with this
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How to choose a non-controversial list with k names 81

substitution, under the assumption that the voters’ preferences over sets satisfy the
following monotonicity axiom: if a voter prefers candidate a to b and b is substituted
by a in the elected set then this voter cannot be worse off.1 Under the rule of k names,
this would be a natural assumption in a scenario where no voter has any knowledge
whatsoever of the chooser’s preferences over the candidates. Thus, for them, each
listed name would have the same probability of being the chooser’s selected candidate
for the office.

We want to distinguish between those screening rules that avoid this possible
challenge, which we will call stable screening rules, and those that may be exposed to
it. Notice, however, that we can also easily imagine other scenarios under the rule of k
names where the satisfaction of this monotonicity axiom would not necessarily work
in favor of the members of the committee. For instance, suppose an election for an
office under the rule of two names where {a, b, c} is the set of candidates. Let a com-
mittee member rank candidate a first, b second and c third, and let the chooser rank b
first, a second and c third. Then, if the committee member has complete information
about the chooser’s preferences, his preferred list will be {a, c} rather than {a, b}, thus
violating monotonicity.

Hence, our analysis is inspired by the study of the rule of k names but we do not
claim that the stability requirement is always equally compelling. Yet, we still feel it
is worth to study when it can be satisfied. Moreover, the reader may find that some
of our results can be used under different circumstances, to discuss issues relating to
other types of choice procedures. For example, stability may be attractive for rules that
choose sets of representatives. But, here again, it is in some cases and not in others.
This was already argued by one of the founders of Social Choice Theory, the Rev
Charles Lutwidge Dodgson (Lewis Carroll) who wrote in 1884 a pamphlet entitled
“The principle of parliamentary representation”.2 In the supplement and postscript
of this pamphlet, he rejects the criticism on his method for transferring the spare of
district representative candidates that have more votes than they need to be returned.
The argument against his method said that it fails to pass the test of always selecting
a weak Condorcet set, i.e. a set such that no candidate in it can be defeated by any
candidate from outside by majority rule.

Dodgson rejected this criticism by using two different arguments. The first says
that this “test” would give too much power to the majority. In some circumstances,
49% of the electors would not return any candidates, and using his own words, 49%
of the votes would be wasted. The second says that this test would be valueless by
giving an example where there exists no weak Condorcet set with three candidates.

We have two comments about his arguments. First, the fact that sometimes there
exists no weak Condorcet set cannot be the basis for a criticism to any particular
rule, since this non-existence is prior to it. The most we can ask for a rule is to select
such an alternative when it exists. Second, his argument on the voting power of the

1 This axiom was proposed by Kannai and Peleg (1984) and it is used very often in the literature on
matching under the name of substitutability.
2 William Gehrlein informed us about the existence of this pamphlet. He got it from Bert Levin, an associate
of Duncan Black, after having published a paper about Condorcet winner sets. This pamphlet is reprinted
in McLean and Urken (1995) and its supplement and postscript are in McLean et al. (1996).
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majority would not apply for the case of screening rules, since only one candidate
from its elected outcome will be chosen for office. This proves that although formally
we move in the same framework, the interpretation given to set-valued rules is crucial
in order to appreciate the validity of certain axioms or the criticisms to any given rule.

This paper proceeds as follows: in the next section, we formally define screening
rules and the stability property. In Sect. 3, we show that all screening rules docu-
mented by Barberà and Coelho (2007) and which are used in reality violate stability.
We also discuss the way to adapt several general well known voting rules in order to
choose sets, and we study the extent to which the resulting screening rules may or not
satisfy stability. Then, in Sect. 4, we exibit a difficulty that is common to all stable
rules. We also present a strategic analysis, suggesting that stability may be recovered
when agents act strategically and cooperatively. These two results may help explain
the widespread use of rules that are not stable.

2 Notations and definitions

For n ≥ 2, consider the set of voters N = {1, . . . , n}, whose members confront a
nonempty finite set of candidates A. Writing W for the set of all strict orders (transi-
tive3, asymmetric4, irreflexive5 and complete6) on A, each member i ∈ N has a strict
preference �i∈ W , and we let �N≡ {�i }i∈N ∈ W N. Given k ∈ {1, 2, . . . , # A}, let
2A be the set of all nonempty subsets of A and Ak ≡ {B ∈ 2A|#B = k} be the set of
all possible subsets of A with cardinality equal to k.

Our agents will be allowed to influence the choice of sets by taking actions. Let
MN ≡ M × · · · × M, where M is the space of actions of a voter in N. We leave the
exact form of the elements of M undefined, but the reader will find it easy to identify
the appropriate set of messages for each of the cases we study. For example, if the
actions in MN are casting a vote for a single alternative, then M ≡ A. If the actions
in MN are submissions of a strict preference relation, then M ≡ W .

Definition 1 Given A, N,MN and k ∈ {1, 2, . . . , #A}, a screening rule for k names is
a function Sk : MN −→ Ak associating to each action profile mN ≡ {mi }i∈N ∈ MN

the k-element set Sk(mN).

In words, a screening rule for k names is a voting procedure that selects k alterna-
tives from a given set, on the basis of actions of the voters. These actions may consist
of single votes, sequential votes, the submission of preference of rankings, the filling
of ballots, etc…

We have defined screening rules as a function of general strategies, in order to allow
for methods which go beyond the simple declaration of preferences. However, most of
the paper refers to the relationship between the preferences of agents on alternatives
and the specific sets that will be chosen. As Gibbard (1973) already pointed out, we can

3 Transitive: for all x, y, z ∈ A : (x � y and y � z) implies that x � z.
4 Asymmetric: for all x, y ∈ A : x � y implies that ¬(y � x).

5 Irreflexive: for all x ∈ A, ¬(x � x).

6 Complete: for all x, y ∈ A : x �= y implies that ( y � x or x � y).
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How to choose a non-controversial list with k names 83

always define a clear cut concept of sincere, or straightforward behavior, by assigning
a strategy to each possible preference, even if in principle the agents could fill their
ballots in many ways. In what follows, we often limit our statements to the case where
agents “act according to their true preferences”, in an obvious sense. However, we
prefer to keep the larger definition of screening rules, because this is useful for the
strategic analysis in Sect. 4.

Definition 2 (Gehrlein 1985) Given A, N,k ∈ {1, 2, . . . , #A} and �N∈ W N, a set
B ∈ Ak is a (weak) Condorcet set if for any a ∈ B and b ∈ A\B we have that
#{i ∈ N|a �i b}(≥) > #{i ∈ N|b �i a}.

In other words, a set B ∈ Ak is a Condorcet set if each candidate in this set defeats
any other candidate from outside the set on the basis of simple majority rule. And a
set B ∈ Ak is a weak Condorcet set if no candidate that belongs to B can be defeated
by any other candidate that belongs to A\B on the basis of simple majority rule.

Remark 1 Notice that Condorcet sets (and also weak Condorcet sets) may not exist
for some A, N, k and �N. Also notice that, by definition, a Condorcet set, if it exists, is
unique and then it is also the unique weak Condorcet set. This coincidence will arise,
in particular, whenever the number of voters is odd.

Notation 1 Given A, N,k ∈ {1, 2, . . . , #A} and �N∈ W N, denote by E(A,�N, k)

the set of all weak Condorcet sets that belong to Ak .

Example 1 Consider the following preference profile
No. of voters: 1 1

a a
b c
c b
d d

We can see that E(A,�N, 1)= {a}, E(A,�N, 2)= {{a, b} , {a, c}} and E(A,�N, 3)=
{{a, b, c}} and E(A,�N, 4) = {{a, b, c, d}}.
Remark 2 For any A, N,k ∈ {1, 2, . . . , #A − 1} and �N∈ W N, E(A,�N, k) is never
empty if the preference profile satisfies single peakedness.

Ratliff (2003) proposes two procedures that always select Condorcet sets, when such
a set exists: these are the Dodgson Method and the Kemeny Method (see Definitions 7
and 8). By contrast, we investigate procedures that always select weak Condorcet sets.

Definition 3 Given any A, N,MN and k ∈ {1, 2, . . . , #A}, we say that a screening
rule Sk : MN → Ak is stable if for all �N∈ W N,

E(A,�N, k) �= φ �⇒ [Sk(mN) ∈ E(A,�N, k)] (where m N is a profile of sincere
actions).

For example, if Sk is based on plurality rule then a voter’s sincere action is casting a
vote for its preferred candidate on each subset that is put to vote. If Sk is based on Borda
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rule7 then a voter’s sincere action is declaring its true preferences over candidates on
each subset from which a choice is to be made.

In words, we say that screening rule for selecting k names is stable if it always
selects a weak Condorcet set, whenever one exists and voters choose sincere actions.

3 Stable versus non-stable screening rules

3.1 Many standard voting rules violate stability

We will show in this section that many screening rules which are actually used in
reality do not satisfy stability, while some others do. However, we will also show that
there is no shortage of rules that are stable. To do that, we provide a single preference
profile in which all screening rules documented in Barberà and Coelho (2007) fail
simultaneously to select a weak Condorcet set. These screening rules, which are used
in reality by different decision bodies around the world, can be described as follows:

(1) Screening 3 names by 3-votes plurality. Each proposer votes for three candidates
and the list has the names of the three most voted candidates, with a tie-break
when needed. This method is used in the election of Irish Bishops and that of
Prosecutor-General in most of Brazilian states.

(2) Screening 3 names by 1-vote sequential plurality. The list is made with the names
of the winning candidate in three sucessive rounds of plurality voting. In each
round, the candidates that won the previous rounds are left out. This method is
used in the election of English Bishops.

(3) Screening 3 names by 3-vote sequential strict plurality. This is a sequential rule
adopted by the Brazilian Superior Court of Justice to select its members. Each
proposer votes for three candidates from a set with six candidates, and if there
are three candidates with more votes than half of the total number of voters, they
will form the list. If there are positions left, the candidates with the least votes
are eliminated, so as to leave twice as many candidate as there are positions to
be filled in the list. The process is repeated until three names are chosen. It may
be that, at some stage (including the first one), all candidates have less than half
of the total number of voters. Then the voters are asked to reconsider their vote
and vote again. Notice that, if they persist in their initial vote, the rule leads to
stalemate. Equivalently, we could say that the rule is not completely defined.
However, in practice, agents tend to reassess their votes on the basis of strategic
cooperative actions. This method is used in the election of the members of the
Brazilian Superior Court of Justice.

(4) Screening 5 names by 3-votes plurality. Each proposer votes for three candidates
and the list has the names of the five most voted candidates, with a tie break when
needed. This method is used in the election of the members of Superior Court of
Justice in Chile.

7 The Borda rule is defined as follows: voters are required to rank the candidates, thus giving #A−1 points
to the one ranked first, #A − 2 to one ranked second, and so on. The Borda winner is the candidate with the
highest total point score. The Borda loser is the candidate with the lowest total point score.
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(5) Screening 3 names by 2-votes plurality. Each proposer votes for two candidates
and the list has the names of the three most voted candidates, with a tie break
when needed. This method is used in the election of the members of Court of
Justice in Chile.

(6) Screening 3 names by 1-vote plurality: compute the plurality score of the candi-
dates and include in the list the names of the three most voted candidates, with
a tie break when needed. This method is used in the election of rectors of public
universities in Brazil.

Having defined these six rules, let us now propose a case where they all fail to work
properly.

Example 2 Consider the preference profile below with 11 voters and 9 candidates

No. of voters: 1 1 1 1 1 1 1 1 1 1 1
i d g f a b g g h b i
e b f a h d c b f c h
c e i i g g i d e e b
d h h d e a a a a a a
a c a c d f f h g f f
f a c g f e e f c h e
g f d e c h h e d g d
h i e h i c d c i d c
b g b b b i b i b i g

Figure 1 displays the majority graph induced by the preference profile where #{i ∈
N|x �i y} > #{i ∈ N|y �i x} if and only if there is a line from x to y induced by the
preference profile above.

g

Fig. 1 The majority graph induced by the preference profile in Example 2
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It can be verified with the help of Fig. 1 that E(A,�N, 1) = {{a}}, E(A,�N, 2) =
{{a, f }}, E(A,�N, 3) = {{a, f, g}}, E(A,�N, 4) = {{a, f, g, e}}, E(A,�N, 5) =
{{a, f, g, e, h}}.
Now let us check that the screening rules listed above do not select these weak
Condorcet sets when ties are broken according to the following order: a � b �
c � d � e � f � g � h � i. Notice that the first screening rule described above
selects {b, g, i} and the second one {b, d, g}. The table below presents the complete
list of sets selected by our screening rules

Screening rules Screened sets
1 {b, g, i}
2 {b, d, g}
3 Not defined
4 {b, c, e, g, i}
5 {b, f, g}
6 {b, g, i}

Therefore, all these six rules fail to satisfy stability since they do not select the Condor-
cet sets which we have already calculated above. This lack of stability arises because
candidate a is the Condorcet winner candidate. To make things worse, the reader can
check that a is also the Borda winner candidate, and yet does not belong to the out-
comes of those screening rules. Moreover, five of these rules do select candidate b,

who is the Condorcet loser and the Borda loser candidate.

3.2 Scoring rules

In this subsection, we will show that any screening method based on scoring rules fails
to satisfy stability.8

Definition 4 A scoring rule is characterized by a nondecreasing sequence of real
numbers s0 ≤ s1 ≤ . . . ≤ s#A−1 with s0 < s#A−1. Voters are required to rank the
candidates, thus giving s#A−1 points to the one ranked first, s#A−2 to one ranked sec-
ond, and so on. The winner of the election is the candidate with the highest total point
score (see Moulin 1988).

As first pointed out by Condorcet, there exist some preference profiles in which
any scoring voting rule fails to select the Condorcet winner candidate (see Fishburn
1974, p. 544). Moreover, Theorem 1 in Saari (1989) states that the rankings given by
the scoring rules over subsets of candidates need not be related to each other in any
manner. Thus, our next proposition can be viewed as a natural consequence of this the-
orem, when applied to the choice of sets. Notice that the screening rules documented
by Barbera and Coelho (2007) are based on scoring rules.

8 Gehrlein (1985) provides estimations of the conditional probability of one-stage constant scoring rules
selecting the Condorcet set given that such a set exists, in a context with three candidates and an infinitely
large number of voters. One-stage constant scoring rules can be described as follows: each voter is instructed
to vote for q candidates and the k most voted candidates are selected.
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Proposition 1 For any k ≥ 1, there exist A and N such that screening a list of k
names by applying a scoring voting rule, either sequentially or one shot, does not
satisfy stability (with ties broken according to a fixed ordering).9

Proof For k = 1. Consider the following profile with 17 voters and 3 candidates.10

No. of voters: 3 6 4 4
c a b b
a b a c
b c c a

Here candidate a is the Condorcet winner candidate. However for any scoring method
candidate b will be elected. So the elected outcome will not be a weak Condorcet set.
Let us show why a cannot be elected.

score of a = 6s2 + 7s1 + 4s0
score of b = 8s2 + 6s1 + 3s0
(score of b) − (score of a) = (s2 − s1) + (s2 − s0) > 0

The inequality above is strict because (s2 − s1) is nonnegative and (s2 − s0) is strictly
positive.

For k = 2, consider the following preference profile with 17 voters 4 candidates.
No. of voters: 3 6 4 3 1

d d d d b
c a b b d
a b a c c
b c c a a

Notice that the only weak Condorcet set is {d, a}. However for any sequential applica-
tion of a scoring method the elected set is {d, b}. This set is not a weak Condorcet set,
since the majority of the voters prefers a to b. For the case of a simultaneous applica-
tion of a scoring method the proof needs to be a little bit more elaborate. Notice that

score of a = 6s2 + 7s1 + 4s0.

score of b = 1s3 + 7s2 + 6s1 + 3s0.

score of c = 3s2 + 4s1 + 10s0.

score of d = 16s3 + 1s2.

(score d+score b) > (score x+score y) for every x, y ∈ {a, b, c, d} such that
(x, y) �= (b, d).

For k ≥ 3, the proof is similar, we only need to add k-2 candidates at the top of
this preference profile. 
�

9 A sequential application of a voting rule can be described as follows: given a voting rule, write in the list
the name of the winning candidate. Then a new election is held with the same voting rule on the set of the
remaining candidates. Continue the process until k names are chosen.
10 This preference profile was used in Fishburn (1984) to prove that the scoring voting rules do not satisfy
Condorcet consistency (see Moulin 1988, p. 232).
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3.3 The Simpson rule

Now we will explore the consequence of trying to use a voting rule that always selects
a weak Condorcet winner candidate whenever one exists.

Definition 5 Compare candidate a with every other candidate x. Let N (a, x) be the
number of voters preferring a to x. The Simpson score of a is the minimum of N (a, x)

over all x ∈ A\{a}. The winner of the election, called a Simpson winner, is the
candidate with the highest total point score (see Moulin 1988).

We begin (Proposition 2) with the case with two names because it is rather singular.
Then, Proposition 3 provides a statement for k ≥ 3.

Proposition 2 There exist A and N such that screening a list of two names by selecting
the two candidates with the highest Simpson score (one shot method) does not satisfy
stability. However, this statement is not true if the Simpson rule is applied sequentially
to screen a list of two names.

Proof First let us prove that making a list of two names by selecting the two candidates
with the highest Simpson score (one shot method) does not satisfy stability. We will
prove it through the example below with three voters and three candidates.

No. of voters: 2 1
a c
b a
c b

Candidates Simpson score
a 2
b 0
c 1

Thus the elected outcome is {a, c}. However E(A,�N, 2) = {{a, b}}.
To prove that applying the Simpson rule sequentially satisfies stability for k = 2

just notice that for any A, N and �N∈ W N we have that E(A,�N, 2) = {{x, y} ⊆ A|x
is a weak Condorcet winner over A and y is a weak Condorcet winner over A\{x}}. In
addition, the set of winning candidates under the Simpson rule is the set of all weak
Condorcet winners whenever such candidates exist. 
�
Proposition 3 For any k ≥ 3, there exist A and N such that screening a list of k
names by applying the Simpson rule, either sequentially or in one shot, does not
satisfy stability.

Proof This proposition will be proved with an example with nine voters and four
candidates.

No. of voters: 3 2 1 3
a c d d
b a c b
c b a c
d d b a

Candidates Simpson score
a 3
b 3
c 3
d 4

Notice that E(A,�N, 3) = {{a, b, c}}. However, it is easy to see that if we apply the
Simpson rule, either sequentially or in one shot, the elected set must contain d. To
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How to choose a non-controversial list with k names 89

prove this for k > 3, we just need to substitute, in the preference profile above, the
top cycle of size 3 for another top cycle with size k such that candidate d is still the
Simpson winner and does not belong to this top cycle. This completes the proof. 
�

3.4 The Copeland rule

Now let us check another method that always selects a Condorcet winner candidate
whenever one exists.

Definition 6 Compare candidate a with every other candidate x . Give a the score +1 if
a majority prefers a to x , −1 if a majority prefers x to a, and 0 if there is a tie. Adding
up those scores over all x ∈ A\{a} yields the Copeland score of a. The winner of the
election, called a Copeland winner, is the candidate with the highest total point score
(see Moulin 1988).

Proposition 4 For any k ≥ 1, there exist A and N such that screening a list of k names
by applying the Copeland rule, either sequentially or in one shot, does not guarantee
stability.

Proof In the preference profile below we have that E(A,�N, 1) = {{a}, {c}} and
E(A,�N, 2) = {{a, c}}. However, applying the Copeland rule sequentially or taking
the candidates with highest scores leads to {d} when k = 1 and {d, c} when k = 2.

No. of voters: 1 1 1 1
a e d b
c f h d
b g g a
d c f e
h h c c
g a e f
f b a g
e d b h

Copeland score
Candidates 1st stage 2st stage

a 1 1
b −1 −2
c 2 2
d 3 −
e −1 0
f −1 0
g −1 0
h −2 −1

Therefore the proof is established for k ∈ {1, 2}. To prove the result for k > 2, we
need just to add k − 2 candidates at the top of this preference profile. 
�

Our next proposition is interesting, because it shows that, for the Copeland rule,
the lack of stability only arises at profiles where weak Condorcet sets exist, but not
Condorcet sets. In particular, Corollary 1 will establish that the result of Proposition 4
just holds for societies where the number of voters is even. This makes the Copeland
rule rather special. The reader can check in the proofs that the parity in the number of
voters is irrelevant for the screening rules based on scoring rules or the Simpson rule.
This because the examples of Sects. 3.1, 3.2 and 3.3, which involve an odd number of
voters, replicating each voter would lead to an even number of them, and still maintain
the validity of the statement.
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Proposition 5 For any A, N, k ∈ {1, 2, . . . , #A} and �N∈ W N, if there is a Condor-
cet set with cardinality k then it will be selected by applying the Copeland rule, either
sequentially or in one shot.

Proof Take any A, N, k ∈ {1, 2, . . . , #A − 1} and �N∈ W N, and suppose that B is a
Condorcet set with cardinality k. We need to prove that if the Copeland rule is applied
sequentially or in one shot then the set B will be the screened set. In order to prove
it, it is enough to show that all the candidates in B have higher Copeland scores than
any candidate in A\B. Notice that the fact that B is a Condorcet set implies that all
candidates of B defeat by majority any candidate in A\B. Let a be the number of
candidates in A. Thus, the Copeland score of any candidate in B cannot be smaller
than a − k. By this same reason, the Copeland score of any candidate in A\B cannot
be higher than a − 1 − k. Since a − k > a − 1 − k, the proof is established. 
�
Corollary 1 For any A, N and k ∈ {1, 2, . . . , #A}, if the number of voters is odd then
screening k names by applying the Copeland rule, either sequentially or in one shot,
guarantees stability.

3.5 The Dodgson rule

Now let us turn our attention to a method that was specifically proposed to select a
Condorcet set of cardinality k provided that one exists.

Definition 7 Compute for each set B ∈ Ak the minimum number of adjacency
switches on the voters’ preferences required for B to become the Condorcet set. The
Dodgson winner is the set with k candidates that requires the fewest adjacency switches
(see Ratliff 2003).

Stability is stronger than the requirement of choosing the Condorcet set whenever
such a set exists, because it also requires choosing weak Condorcet sets when there
are some. That is why we get the following negative result.

Proposition 6 For any k ≥ 2, there exist A and N such that the Dodgson method for
selecting a set with cardinality k does not satisfy stability.

Proof In the preference profile below we have that E(A,�N, 2) = {{a, c}}. Now let
us apply the Dodgson method to select a set with cardinality two. Notice that the weak
Condorcet set {a, c} requires five switches on the voters’ preferences. However, the
set {d, c} is the Dodgson winner since it requires only four adjacency switches on the
voters’ preferences.
No. of voters: 1 1 1 1

a c d b
c g g d
b f f a
d e e c
e a c e
f b a g
g d b f
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This proves the statement for k = 2. To prove it for k > 2, we just need to add k − 2
candidates at the top of this preference profile. 
�

3.6 The Kemeny rule

The following method was proposed by Ratliff (2003). It is a generalization of the
procedure proposed by Kemeny (1959).

Definition 8 (Ratliff 2003) The total margin of loss of a set B ∈ 2A to the candidates
in A\B induced by a profile of preferences �N∈ W N is denoted by K E(A,�N, B)

and defined over A as follows:

K E(A,�N, B) =
∑

y∈A\B and x∈B

Max{0, #{i ∈ N|y �i x} − #{i ∈ N|x �i y}}

The Kemeny method (KEk) is defined as follows: compute the KE score for all subsets
of candidates with cardinality k. The elected set is the one with the lowest KE score.

The Kemeny method was specifically proposed to select Condorcet sets. The prop-
osition below shows that it also selects weak Condorcet set whenever such set exists.

Proposition 7 For any A, N and k ∈ {1, 2, . . . , #A}, the Kemeny method for selecting
a set with cardinality k satisfies stability.

Proof Take any k ≥ 1, suppose that B is a weak Condorcet set with cardinality k. By
definition of weak Condorcet set and of the KE score, we have that K E(A,�N, B) =
0. Thus, it is enough to prove that for any X ∈ Ak that is not a weak Condorcet set with
cardinality k we have that K E(A,�N, X) > 0. Since X is not a weak Condorcet set
then for any x ∈ X there exists y ∈ A\X such that #{i ∈ N|y �i x} − #{i ∈ N|x �i

y} > 0. This implies that K E(A,�N, X) > 0. Therefore the proof is established. 
�
Many other stable screening rules can be conceived. Below we give three examples.

We leave to the reader to check that they satisfy stability.

Example 3 (a) Compute for every subset with cardinality k, the total number of pair-
wise majority defeats of the candidates in the set against the candidates outside
the set. The elected set is the one with the smallest total number of pairwise
majority defeats.

(b) Compute for every subset with cardinality k, the highest margin of loss of a can-
didate in the set against a candidate outside the set. The elected set is the one
with the smallest margin of loss.
This method can be viewed as an adaptation of the Simpson rule for selecting
sets of fixed size.

(c) Compute for every subset with cardinality k, the minimum number of adjacency
switches on the voters’ preferences required for the set to become the weak
Condorcet set. The winner is the set with k candidates that requires the fewest
adjacency switches.
Notice that this method is an adaptation of the Dodgson method (see Definition 7).
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4 Why are unstable screening rules so popular?

We have shown in the previous sections that unstable screening rules are often used.
In fact, we do not have any example of a stable screening rules that is actually used
by some decision body. Yet, we have also shown that there exist stable and reasonable
screening rules. In this section, we provide two results that can be viewed as hints to
solve this apparent puzzle.

4.1 An impossibility result

The following proposition shows that stability is incompatible with another desirable
property that one might expect from screening rules.

Definition 9 A familiy of screening rules is a function S : k −→ Sk associating to
each k ∈ {1, 2, . . . , #A} a screening rule for k names Sk .

Definition 10 Enlargement consistency: a family of screening rules satisfies enlarge-
ment consistency whenever a candidate who is included in the chosen set with k names
must also be in the chosen set with k + 1 names.

Proposition 8 There exist no family of stable screening rules satisfying enlargement
consistency.

Proof The proof of this proposition is very simple and by contradiction. Suppose that
there exist a family of stable screening rules for k satisfying enlargement consistency.
Consider the following preference profile:
No. of voters: 1 1 1 1 1 1

a a a c e d
b b b d c e
c e d e d c
d c e a a a
e d c b b b

Notice that {a, b} and {c, e, d} are the unique weak Condorcet sets for k = 2 and
k = 3, respectively. Hence, since the screening rules of this family are stable then we
have that for k = 2, the selected set has to be {a, b} and for k = 3, the selected set
has to be {c, e, d}. Therefore, enlargement consistency is violated since {a, b} is not
contained in {c, e, d}. 
�
Remark 3 It turns out that all screening rules based on the sequential application of
any voting rules satisfy enlargement consistency, but not stability.

Remark 4 Notice that in the domain of single peaked preferences, with an odd number
of voters, any family of stable screening rules satisfies enlargement consistency. This
last result follows from Remarks 1 and 2.

4.2 A strategic analysis: the Random Chooser Game

We now study the case where the voters act strategically and cooperatively. More
specifically, we propose a voting game where the players choose by voting a subset
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of candidates with a fixed size from a given set of candidates. We call this game the
Random Chooser Game because it is inspired in a scenario under the rule of k names
where the committee members who are supposed to choose the list with k names by
voting, do not have any knowledge whatsoever of the chooser’s preferences over the
candidates. Thus, each committee member would choose their voting strategies under
the assumption that each listed name would have the same probability of being the
chooser’s selected candidate for the office. After describing the game, we will show
that for some type of unstable screening rules which are used in reality, the chosen set
with k names in any pure strong Nash equilibrium of this game is a weak Condorcet
set.

Definition 11 Given k ∈ {1, 2, . . . , # A}, a screening rule for k names Sk : MN −→Ak

and a preference profile �N∈ W N, the Random Chooser Game can be described as
follows: it is a simultaneous game with complete information where each voter i ∈ N
chooses a message mi ∈ M . Given m N ≡ {mi }i∈N ∈ MN, Sk(m) ∈ Ak is the screened
set. Each voter i ∈ N has a payoff function ui : MN → R that satisfies the following
axioms: (Axiom 1) For any mN, m′

N ∈ MN we have that ui (mN) > ui (m′
N) only if

Sk(mN) �= Sk(m′
N), and (Axiom 2) for any mN, m′

N ∈ MN and any y, x ∈A we have
that ui (mN) > ui (m′

N) if x �i y, y ∈ Sk(m′
N) and Sk(mN) = {x} ∪ (Sk(m′

N)\{y}).11

Let us introduce the solution concept that we will use to analyze this game.

Definition 12 Given k ∈ {1, 2, . . . , # A}, a screening rule for k names Sk : MN −→Ak

and a preference profile �N∈ W N, a joint strategy mN = {mi }i∈N ∈ MN is a pure
strong Nash equilibrium of the Random Chooser Game if and only if, given any coali-
tion C ⊂ N, there exists no m

′
N ≡ {m ′

i }i∈N ∈ MN with m
′
j = m j for every j ∈ N\C

such that ui (m′
N) > ui (mN) for each i ∈ C.

The first three screening rules described in Sect. 3.1 and documented in Barberà
and Coelho (2007) are majoritarian, and the others are not.

Definition 13 We say that a screening rule Sk : MN −→ Ak is majoritarian if and
only if for every set B ∈ Ak there exists m ∈ M such that for every coalition C ⊆ N
with #C > n/2, and every profile of the complementary coalition mN\C ∈ MN\C we
have that Sk(mN\C , mC ) = B provided that mi = m for every i ∈ C.

Proposition 9 Let Sk : MN −→Ak be a majoritarian screening rule. If a set is a
pure strong Nash equilibrium outcome of the Random Chooser Game then it is a weak
Condorcet set.

Proof Suppose that a subset B ⊂ A with cardinality k is an outcome of a strong
equilibrium of the Random Chooser Game. Thus there exists a strong Nash equi-
librium strategy profile m′

N ≡ {m′
i }i∈N ∈ MN such that Sk(m′

N) = B. Suppose
by contradiction that B is not a weak Condorcet set. Then there exists x ∈ B and

11 Axiom 2 is a modified version of the monotonicity axiom of Kannai and Peleg (1984), used among
others by Roth and Sotomayor(1990) and Kaymak and Sanver (2003). We have referred to it informally in
Sect. 1.
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y ∈A\B such that a strict majority of the voters prefers y to x . Let D ≡ {y} ∪ B\{x}
and C ≡ {i ∈ N|y �i x}. Since the screening rule is majoritarian and #C > n

2 ,

there exists m
′′
N ≡ {m ′′

i }i∈N ∈ MN with m
′′
j = m′

j for every j ∈ N\C such that

Sk(m
′′
N) = D. By Axiom 2, we have that ui (m′′

N) > ui (m′
N) for every i ∈ C. This

is a contradiction since m′
N is a strong Nash equilibrium. Therefore any Strong Nash

equilibrium outcome needs to be a weak Condorcet set. 
�

This result implies that any majoritarian screening rule tends to be stable if the vot-
ers act strategically and cooperatively, provided that the monotonicity axiom holds.
Notice also that to be a weak Condorcet set is a necessary but not sufficient condition
to be pure strong Nash equilibrium of this game. A sufficient condition would require
that set to be a Condorcet set à la Fishburn, i.e., a set that cannot be defeated by any
other set with the same cardinality on the basis of majority rule.12 As Kaymak and
Sanver (2003) already pointed out, a set being a weak Condorcet set à la Gerhlein
does not guarantee that it is a weak Condorcet set à la Fishburn (1981).13

In the example below, we provide a preference profile over candidates in which
there is a unique Condorcet set with cardinality two. However, for a given players’
payoff function that satisfy both axioms 1 and 2 and a majoritarian screening rule, the
set of Strong Nash equilibrium outcomes of the Random Chooser Game is empty.

Example 4 Consider the following preference profile over candidates:

No. of voters: 1 1 1
a c d
b b a
c a b
d d c

As we can see in Fig. 2, any candidate of the set {a, b} defeats any other candidate of
A\{a, b} on the basis of simple majority rule. Hence {a, b} is a Condorcet set.

Consider now the following preference profile over sets of two candidates which
is a lexicographic extension of the above preference profile over candidates.

Fig. 2 The majority graph induced by the preference profile over candidates in Example 4

12 Notice that Fishburn’s definition is based on preferences over sets.
13 See Kaymak and Sanver (2003) study the connections between these two alternative definitions of weak
Condorcet sets.
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Fig. 3 The majority graph induced by the preference profile over sets of candidates in Example 4

No. of voters: 1 1 1

{a, b} {b, c} {a, d}
{a, c} {a, c} {b, d}
{a, d} {c, d} {c, d}
{b, c} {a, b} {a, b}
{b, d} {b, d} {a, c}
{c, d} {a, d} {b, c}

Notice that the players’ payoff functions derived from this preference profile over sets
satisfy axioms 1 and 2. As we can see in Fig. 2, there exists a strict majority of voters
that prefers {c, d} to the weak Condorcet set {a, b}. Hence, {a, b} cannot be a strong
Nash equilibrium outcome of the Random Chooser Game whenever the screening rule
is majoritarian. Therefore, by Proposition 9, the set of strong Nash equilibrium out-
comes of the Random Chooser Game is empty. It can be easily check in the preference
profile over sets, with the help of Fig. 3, that there is no Condorcet set à la Fishburn.

5 Concluding remarks

We have shown that all of the six screening rules documented in Barberà and Coelho
(2007) violate stability if the voters do not act strategically. In our search for stable
procedures, we have proved that any procedure based on scoring rules or resulting from
a sequential use of standard Condorcet consistent methods such as those of Simpson,
Copeland and Dodgson, also violates this property. We also give several examples
of stable screening rules. One example is the Kemeny method proposed by Ratliff
(2003).

We provide two results that can explain the widespread use of unstable screening
rules. The first one states that there exists no family of stable screening rules satis-
fying the natural requirement that any listed name should not be excluded if the list
is enlarged. Or, in other words, a candidate who is included in the chosen list with
k names must also be in the chosen list with k + 1 names. Therefore, leaving stabil-
ity aside can be seen as a price to pay for a rule to keep an alternative important or
desirable property.
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The second justification comes from the remark that any majoritarian procedure
tends to select weak Condorcet sets if the agents act strategically and cooperatively.
More specifically, we propose a voting game where under any majoritarian procedure,
a set is a strong Nash equilibrium outcome only if it is a weak Condorcet winner set.
Half of the six screening rules documented in Barberà and Coelho (2007) turn out to
be majoritarian and would thus generate attractive choices under this form of strategic
behavior.
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